The DNA and RNA sugar-phosphate backbone emerges as the key player. An overview of quantum-chemical, structural biology and simulation studies
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23072945
DOI
10.1039/c2cp41987d
Knihovny.cz E-zdroje
- MeSH
- DNA chemie MeSH
- fosfáty chemie MeSH
- kvantová teorie * MeSH
- molekulární struktura MeSH
- RNA chemie MeSH
- sacharidy chemie MeSH
- simulace molekulární dynamiky * MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA MeSH
- fosfáty MeSH
- RNA MeSH
- sacharidy MeSH
Knowledge of geometrical and physico-chemical properties of the sugar-phosphate backbone substantially contributes to the comprehension of the structural dynamics, function and evolution of nucleic acids. We provide a side by side overview of structural biology/bioinformatics, quantum chemical and molecular mechanical/simulation studies of the nucleic acids backbone. We highlight main features, advantages and limitations of these techniques, with a special emphasis given to their synergy. The present status of the research is then illustrated by selected examples which include classification of DNA and RNA backbone families, benchmark structure-energy quantum chemical calculations, parameterization of the dihedral space of simulation force fields, incorporation of arsenate into DNA, sugar-phosphate backbone self-cleavage in small RNA enzymes, and intricate geometries of the backbone in recurrent RNA building blocks. Although not apparent from the current literature showing limited overlaps between the QM, simulation and bioinformatics studies of the nucleic acids backbone, there in fact should be a major cooperative interaction between these three approaches in studies of the sugar-phosphate backbone.
Citace poskytuje Crossref.org
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies
Assessing the Current State of Amber Force Field Modifications for DNA