• This record comes from PubMed

Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery

. 2025 Mar 03 ; 22 (3) : 1110-1141. [epub] 20250129

Language English Country United States Media print-electronic

Document type Journal Article, Review

Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.

See more in PubMed

Manzari M. T.; Shamay Y.; Kiguchi H.; Rosen N.; Scaltriti M.; Heller D. A. Targeted Drug Delivery Strategies for Precision Medicines. Nat. Rev. Mater. 2021, 6 (4), 351–370. 10.1038/s41578-020-00269-6. PubMed DOI PMC

Rommasi F.; Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Res. Lett. 2021, 16 (1), 95.10.1186/s11671-021-03553-8. PubMed DOI PMC

Barenholz Y. Doxil® - The First FDA-Approved Nano-Drug: Lessons Learned. J. Controlled Release 2012, 160 (2), 117–134. 10.1016/j.jconrel.2012.03.020. PubMed DOI

Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC

Duggan S. T.; Keating G. M. Pegylated Liposomal Doxorubicin. Drugs 2011, 71 (18), 2531–2558. 10.2165/11207510-000000000-00000. PubMed DOI

Allen T. M.; Cullis P. R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Delivery Rev. 2013, 65 (1), 36–48. 10.1016/j.addr.2012.09.037. PubMed DOI

Babadi D.; Dadashzadeh S.; Osouli M.; Abbasian Z.; Daryabari M. S.; Sadrai S.; Haeri A. Biopharmaceutical and Pharmacokinetic Aspects of Nanocarrier-Mediated Oral Delivery of Poorly Soluble Drugs. J. Drug Delivery Sci. Technol. 2021, 62, 102324.10.1016/j.jddst.2021.102324. DOI

Zhang Y. Q.; Guo R. R.; Chen Y. H.; Li T. C.; Du W. Z.; Xiang R. W.; Guan J.-B.; Li Y. P.; Huang Y. Y.; Yu Z. Q.; et al. Ionizable Drug Delivery Systems for Efficient and Selective Gene Therapy. Mil. Med. Res. 2023, 10 (1), 1–29. 10.1186/s40779-023-00445-z. PubMed DOI PMC

Sun D.; Lu Z.-R. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm. Res. 2023, 40, 27.10.1007/s11095-022-03460-2. PubMed DOI PMC

Verbeke R.; Lentacker I.; De Smedt S. C.; Dewitte H. Three Decades of Messenger RNA Vaccine Development. Nano Today 2019, 28, 100766.10.1016/j.nantod.2019.100766. DOI

Samaridou E.; Heyes J.; Lutwyche P. Lipid Nanoparticles for Nucleic Acid Delivery: Current Perspectives. Adv. Drug Delivery Rev. 2020, 154–155, 37–63. 10.1016/j.addr.2020.06.002. PubMed DOI

Mulligan M. J.; Lyke K. E.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Neuzil K.; Raabe V.; Bailey R.; Swanson K. A.; et al. Phase I/II Study of COVID-19 RNA Vaccine BNT162b1 in Adults. Nature 2020, 586 (7830), 589–593. 10.1038/s41586-020-2639-4. PubMed DOI

Goel R. R.; Painter M. M.; Apostolidis S. A.; Mathew D.; Meng W.; Rosenfeld A. M.; Lundgreen K. A.; Reynaldi A.; Khoury D. S.; Pattekar A.; et al. MRNA Vaccines Induce Durable Immune Memory to SARS-CoV-2 and Variants of Concern. Science 2021, 374 (6572), abm082.10.1126/science.abm0829. PubMed DOI PMC

Schoenmaker L.; Witzigmann D.; Kulkarni J. A.; Verbeke R.; Kersten G.; Jiskoot W.; Crommelin D. J. A. MRNA-Lipid Nanoparticle COVID-19 Vaccines: Structure and Stability. Int. J. Pharm. 2021, 601 (April), 120586.10.1016/j.ijpharm.2021.120586. PubMed DOI PMC

Hou X.; Zaks T.; Langer R.; Dong Y. Lipid Nanoparticles for MRNA Delivery. Nat. Rev. Mater. 2021, 6 (12), 1078–1094. 10.1038/s41578-021-00358-0. PubMed DOI PMC

Pardi N.; Hogan M. J.; Porter F. W.; Weissman D. MRNA Vaccines-a New Era in Vaccinology. Nat. Rev. Drug Discovery 2018, 17 (4), 261–279. 10.1038/nrd.2017.243. PubMed DOI PMC

Buschmann M. D.; Carrasco M. J.; Alishetty S.; Paige M.; Alameh M. G.; Weissman D. Nanomaterial Delivery Systems for Mrna Vaccines. Vaccines 2021, 9 (1), 65.10.3390/vaccines9010065. PubMed DOI PMC

Mehta M.; Bui T. A.; Yang X.; Aksoy Y.; Goldys E. M.; Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au 2023, 3 (6), 600–619. 10.1021/acsmaterialsau.3c00032. PubMed DOI PMC

Sasso J. M.; Ambrose B. J. B.; Tenchov R.; Datta R. S.; Basel M. T.; DeLong R. K.; Zhou Q. A. The Progress and Promise of RNA Medicine–An Arsenal of Targeted Treatments. J. Med. Chem. 2022, 65 (10), 6975–7015. 10.1021/acs.jmedchem.2c00024. PubMed DOI PMC

Tenchov R.; Bird R.; Curtze A. E.; Zhou Q. Lipid Nanoparticles–From Liposomes to MRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15 (11), 16982–17015. 10.1021/acsnano.1c04996. PubMed DOI

Chen L. H.; Hu J. N. Development of Nano-Delivery Systems for Loaded Bioactive Compounds: Using Molecular Dynamics Simulations. Crit. Rev. Food Sci. Nutr. 2024, 0 (0), 1–22. 10.1080/10408398.2023.2301427. PubMed DOI

Scioli Montoto S.; Muraca G.; Ruiz M. E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 1–24. 10.3389/fmolb.2020.587997. PubMed DOI PMC

Akbarzadeh A.; Rezaei-Sadabady R.; Davaran S.; Joo S. W.; Zarghami N.; Hanifehpour Y.; Samiei M.; Kouhi M.; Nejati-Koshki K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8 (1), 1.10.1186/1556-276X-8-102. PubMed DOI PMC

Freeman F.; Hayward J.; Chapman D. Permeability Studies on Liposomes Formed from Polymerisable Diacetylenic Phospholipids and Their Potential Applications as Drug Delivery Systems. Biochim. Biophys. Acta - Gen. Subj. 1987, 924 (2), 341–351. 10.1016/0304-4165(87)90032-8. PubMed DOI

Pattni B. S.; Chupin V. V.; Torchilin V. P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115 (19), 10938–10966. 10.1021/acs.chemrev.5b00046. PubMed DOI

Saraf S.; Jain A.; Tiwari A.; Verma A.; Panda P. K.; Jain S. K. Advances in Liposomal Drug Delivery to Cancer: An Overview. J. Drug Delivery Sci. Technol. 2020, 56, 101549.10.1016/j.jddst.2020.101549. DOI

Zhang L.; Chan J. M.; Gu F. X.; Rhee J. W.; Wang A. Z.; Radovic-Moreno A. F.; Alexis F.; Langer R.; Farokhzad O. C. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano 2008, 2 (8), 1696–1702. 10.1021/nn800275r. PubMed DOI PMC

Almeida A. J.; Souto E. Solid Lipid Nanoparticles as a Drug Delivery System for Peptides and Proteins. Adv. Drug Delivery Rev. 2007, 59 (6), 478–490. 10.1016/j.addr.2007.04.007. PubMed DOI

Erdogan S. Liposomal Nanocarriers for Tumor Imaging. J. Biomed. Nanotechnol. 2009, 5 (2), 141–150. 10.1166/jbn.2009.1016. PubMed DOI

Gilbert J.; Sebastiani F.; Arteta M. Y.; Terry A.; Fornell A.; Russell R.; Mahmoudi N.; Nylander T. Evolution of the Structure of Lipid Nanoparticles for Nucleic Acid Delivery: From in Situ Studies of Formulation to Colloidal Stability. J. Colloid Interface Sci. 2024, 660, 66–76. 10.1016/j.jcis.2023.12.165. PubMed DOI

Yanez Arteta M.; Kjellman T.; Bartesaghi S.; Wallin S.; Wu X.; Kvist A. J.; Dabkowska A.; Székely N.; Radulescu A.; Bergenholtz J.; Lindfors L.; et al. Successful Reprogramming of Cellular Protein Production through MRNA Delivered by Functionalized Lipid Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (15), E3351–E3360. 10.1073/pnas.1720542115. PubMed DOI PMC

Ibrahim M.; Gilbert J.; Heinz M.; Nylander T.; Schwierz N. Structural Insights on Ionizable Dlin-MC3-DMA Lipids in DOPC Layers by Combining Accurate Atomistic Force Fields, Molecular Dynamics Simulations and Neutron Reflectivity. Nanoscale 2023, 15 (27), 11647–11656. 10.1039/D3NR00987D. PubMed DOI

Hammel M.; Fan Y.; Sarode A.; Byrnes A. E.; Zang N.; Kou P.; Nagapudi K.; Leung D.; Hoogenraad C. C.; Chen T.; et al. Correlating the Structure and Gene Silencing Activity of Oligonucleotide-Loaded Lipid Nanoparticles Using Small-Angle X-Ray Scattering. ACS Nano 2023, 17 (12), 11454–11465. 10.1021/acsnano.3c01186. PubMed DOI PMC

Szebeni J.; Kiss B.; Bozó T.; Turjeman K.; Levi-Kalisman Y.; Barenholz Y.; Kellermayer M. Insights into the Structure of Comirnaty Covid-19 Vaccine: A Theory on Soft, Partially Bilayer-Covered Nanoparticles with Hydrogen Bond-Stabilized MRNA-Lipid Complexes. ACS Nano 2023, 17 (14), 13147–13157. 10.1021/acsnano.2c11904. PubMed DOI PMC

Li S.; Hu Y.; Li A.; Lin J.; Hsieh K.; Schneiderman Z.; Zhang P.; Zhu Y.; Qiu C.; Kokkoli E. Payload Distribution and Capacity of mRNA Lipid Nanoparticles. Nat. Commun. 2022, 13 (1), 556110.1038/s41467-022-33157-4. PubMed DOI PMC

van der Meel R.; Chen S.; Zaifman J.; Kulkarni J. A.; Zhang X. R. S.; Tam Y. K.; Bally M. B.; Schiffelers R. M.; Ciufolini M. A.; Cullis P. R.; et al. Modular Lipid Nanoparticle Platform Technology for SiRNA and Lipophilic Prodrug Delivery. Small 2021, 17 (37), 1–12. 10.1002/smll.202103025. PubMed DOI

Cheng M. H. Y.; Leung J.; Zhang Y.; Strong C.; Basha G.; Momeni A.; Chen Y.; Jan E.; Abdolahzadeh A.; Wang X.; et al. Induction of Bleb Structures in Lipid Nanoparticle Formulations of MRNA Leads to Improved Transfection Potency. Adv. Mater. 2023, 35 (31), 1–11. 10.1002/adma.202303370. PubMed DOI

Leung A. K. K.; Tam Y. Y. C.; Chen S.; Hafez I. M.; Cullis P. R. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. J. Phys. Chem. B 2015, 119 (28), 8698–8706. 10.1021/acs.jpcb.5b02891. PubMed DOI

Simonsen J. B. A Perspective on Bleb and Empty LNP Structures. J. Controlled Release 2024, 373 (July), 952–961. 10.1016/j.jconrel.2024.07.046. PubMed DOI

Ramezanpour M.; Schmidt M. L.; Bodnariuc I.; Kulkarni J. A.; Leung S. S. W.; Cullis P. R.; Thewalt J. L.; Tieleman D. P. Ionizable Amino Lipid Interactions with POPC: Implications for Lipid Nanoparticle Function. Nanoscale 2019, 11 (30), 14141–14146. 10.1039/C9NR02297J. PubMed DOI

Kulkarni J. A.; Witzigmann D.; Leung J.; Van Der Meel R.; Zaifman J.; Darjuan M. M.; Grisch-Chan H. M.; Thöny B.; Tam Y. Y. C.; Cullis P. R. Fusion-Dependent Formation of Lipid Nanoparticles Containing Macromolecular Payloads. Nanoscale 2019, 11 (18), 9023–9031. 10.1039/C9NR02004G. PubMed DOI

Carrasco M. J.; Alishetty S.; Alameh M. G.; Said H.; Wright L.; Paige M.; Soliman O.; Weissman D.; Cleveland T. E.; Grishaev A.; et al. Ionization and Structural Properties of MRNA Lipid Nanoparticles Influence Expression in Intramuscular and Intravascular Administration. Commun. Biol. 2021, 4 (1), 1–15. 10.1038/s42003-021-02441-2. PubMed DOI PMC

An K.; Kurek D.; Mahadeo M.; Zhang Y.; Thewalt J. L.; Cullis P. R.; Kulkarni J. A. On the Influence of Nucleic Acid Backbone Modifications on Lipid Nanoparticle Morphology. Langmuir 2022, 38 (46), 14036–14043. 10.1021/acs.langmuir.2c01492. PubMed DOI

Zhang D.; Atochina-Vasserman E. N.; Lu J.; Maurya D. S.; Xiao Q.; Liu M.; Adamson J.; Ona N.; Reagan E. K.; Ni H.; et al. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted MRNA Delivery Activity. J. Am. Chem. Soc. 2022, 144 (11), 4746–4753. 10.1021/jacs.2c00273. PubMed DOI

Felgner P. L.; Gadek T. R.; Holm M.; Roman R.; Chan H. W.; Wenz M.; Northrop J. P.; Ringold G. M.; Danielsen M. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proc. Natl. Acad. Sci. U. S. A. 1987, 84 (21), 7413–7417. 10.1073/pnas.84.21.7413. PubMed DOI PMC

Eloy J. O.; Claro de Souza M.; Petrilli R.; Barcellos J. P. A.; Lee R. J.; Marchetti J. M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surfaces B Biointerfaces 2014, 123, 345–363. 10.1016/j.colsurfb.2014.09.029. PubMed DOI

Kulkarni J. A.; Witzigmann D.; Leung J.; Tam Y. Y. C.; Cullis P. R. On the Role of Helper Lipids in Lipid Nanoparticle Formulations of SiRNA. Nanoscale 2019, 11 (45), 21733–21739. 10.1039/C9NR09347H. PubMed DOI

Sych T.; Schlegel J.; Barriga H. M. G.; Ojansivu M.; Hanke L.; Weber F.; Beklem Bostancioglu R.; Ezzat K.; Stangl H.; Plochberger B.; et al. High-Throughput Measurement of the Content and Properties of Nano-Sized Bioparticles with Single-Particle Profiler. Nat. Biotechnol. 2024, 42, 587.10.1038/s41587-023-01825-5. PubMed DOI PMC

Han X.; Zhang H.; Butowska K.; Swingle K. L.; Alameh M.-G.; Weissman D.; Mitchell M. J. An Ionizable Lipid Toolbox for RNA Delivery. Nat. Commun. 2021, 12 (1), 8–13. 10.1038/s41467-021-27493-0. PubMed DOI PMC

Schlich M.; Palomba R.; Costabile G.; Mizrahy S.; Pannuzzo M.; Peer D.; Decuzzi P. Cytosolic Delivery of Nucleic Acids: The Case of Ionizable Lipid Nanoparticles. Bioeng. Transl. Med. 2021, 6, 1–16. 10.1002/btm2.10213. PubMed DOI PMC

Tesei G.; Hsiao Y.-W.; Dabkowska A.; Grönberg G.; Yanez Arteta M.; Ulkoski D.; Bray D. J.; Trulsson M.; Ulander J.; Lund M.; et al. Lipid Shape and Packing Are Key for Optimal Design of PH-Sensitive MRNA Lipid Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (2), 2017.10.1073/pnas.2311700120. PubMed DOI PMC

Jayaraman M.; Ansell S. M.; Mui B. L.; Tam Y. K.; Chen J.; Du X.; Butler D.; Eltepu L.; Matsuda S.; Narayanannair J. K.; et al. Maximizing the Potency of SiRNA Lipid Nanoparticles for Hepatic Gene Silencing in Vivo. Angew. Chemie - Int. Ed. 2012, 51 (34), 8529–8533. 10.1002/anie.201203263. PubMed DOI PMC

Dhumal D.; Lan W.; Ding L.; Jiang Y.; Lyu Z.; Laurini E.; Marson D.; Tintaru A.; Dusetti N.; Giorgio S.; et al. An Ionizable Supramolecular Dendrimer Nanosystem for Effective SiRNA Delivery with a Favorable Safety Profile. Nano Res. 2021, 14 (7), 2247–2254. 10.1007/s12274-020-3216-8. DOI

Li W.; Szoka F. C. Lipid-Based Nanoparticles for Nucleic Acid Delivery. Pharm. Res. 2007, 24 (3), 438–449. 10.1007/s11095-006-9180-5. PubMed DOI

Bozzuto G.; Molinari A. Liposomes as Nanomedical Devices. Int. J. Nanomedicine 2015, 10, 975–999. 10.2147/IJN.S68861. PubMed DOI PMC

Heyes J.; Hall K.; Tailor V.; Lenz R.; MacLachlan I. Synthesis and Characterization of Novel Poly(Ethylene Glycol)-Lipid Conjugates Suitable for Use in Drug Delivery. J. Controlled Release 2006, 112 (2), 280–290. 10.1016/j.jconrel.2006.02.012. PubMed DOI

Mohamed M.; Abu Lila A. S.; Shimizu T.; Alaaeldin E.; Hussein A.; Sarhan H. A.; Szebeni J.; Ishida T. PEGylated Liposomes: Immunological Responses. Sci. Technol. Adv. Mater. 2019, 20 (1), 710–724. 10.1080/14686996.2019.1627174. PubMed DOI PMC

Vargason A. M.; Anselmo A. C.; Mitragotri S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5 (9), 951–967. 10.1038/s41551-021-00698-w. PubMed DOI

Gjetting T.; Arildsen N. S.; Christensen C. L.; Poulsen T. T.; Roth J. A.; Handlos V. N.; Poulsen H. S. In Vitro and in Vivo Effects of Polyethylene Glycol (PEG)-Modified Lipid in DOTAP/Cholesterol-Mediated Gene Transfection. Int. J. Nanomed. 2010, 5 (1), 371–383. 10.2147/ijn.s10462. PubMed DOI PMC

Francia V.; Schiffelers R. M.; Cullis P. R.; Witzigmann D. The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjugate Chem. 2020, 31 (9), 2046–2059. 10.1021/acs.bioconjchem.0c00366. PubMed DOI

Suk J. S.; Xu Q.; Kim N.; Hanes J.; Ensign L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2016, 99, 28–51. 10.1016/j.addr.2015.09.012. PubMed DOI PMC

Xu Q.; Ensign L. M.; Boylan N. J.; Schön A.; Gong X.; Yang J. C.; Lamb N. W.; Cai S.; Yu T.; Freire E.; et al. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus Ex Vivo and Distribution in Vivo. ACS Nano 2015, 9 (9), 9217–9227. 10.1021/acsnano.5b03876. PubMed DOI PMC

Zhao C.; Deng H.; Xu J.; Li S.; Zhong L.; Shao L.; Wu Y.; Liang X. J. Sheddable PEG-Lipid to Balance the Contradiction of PEGylation between Long Circulation and Poor Uptake. Nanoscale 2016, 8 (20), 10832–10842. 10.1039/C6NR02174C. PubMed DOI

Bunker A.; Magarkar A.; Viitala T. Rational Design of Liposomal Drug Delivery Systems, a Review: Combined Experimental and Computational Studies of Lipid Membranes, Liposomes and Their PEGylation. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (10), 2334–2352. 10.1016/j.bbamem.2016.02.025. PubMed DOI

Yatvin M.; Weinstein J.; Dennis W.; Blumenthal R. Design of Liposomes for Enhanced Local Release of Drugs by Hyperthermia. Science 1978, 202 (4374), 1290–1293. 10.1126/science.364652. PubMed DOI

Zhao Y.; Ye Z.; Song D.; Wich D.; Gao S.; Khirallah J.; Xu Q. Nanomechanical Action Opens Endo-Lysosomal Compartments. Nat. Commun. 2023, 14 (1), 6645.10.1038/s41467-023-42280-9. PubMed DOI PMC

Sabnis S.; Kumarasinghe E. S.; Salerno T.; Mihai C.; Ketova T.; Senn J. J.; Lynn A.; Bulychev A.; McFadyen I.; Chan J.; et al. A Novel Amino Lipid Series for MRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-Human Primates. Mol. Ther. 2018, 26 (6), 1509–1519. 10.1016/j.ymthe.2018.03.010. PubMed DOI PMC

Bailey A. L.; Cullis P. R. Modulation of Membrane Fusion by Asymmetric Transbilayer Distributions of Amino Lipids. Biochemistry 1994, 33 (42), 12573–12580. 10.1021/bi00208a007. PubMed DOI

Jörgensen A. M.; Wibel R.; Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. Small 2023, 10.1002/smll.202206968. PubMed DOI

Tilstra G.; Couture-Senécal J.; Lau Y. M. A.; Manning A. M.; Wong D. S. M.; Janaeska W. W.; Wuraola T. A.; Pang J.; Khan O. F. Iterative Design of Ionizable Lipids for Intramuscular MRNA Delivery. J. Am. Chem. Soc. 2023, 145 (4), 2294–2304. 10.1021/jacs.2c10670. PubMed DOI

Rajesh M.; Sen J.; Srujan M.; Mukherjee K.; Sreedhar B.; Chaudhuri A. Dramatic Influence of the Orientation of Linker between Hydrophilic and Hydrophobic Lipid Moiety in Liposomal Gene Delivery. J. Am. Chem. Soc. 2007, 129 (37), 11408–11420. 10.1021/ja0704683. PubMed DOI

Eygeris Y.; Patel S.; Jozic A.; Sahay G. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. Nano Lett. 2020, 20 (6), 4543–4549. 10.1021/acs.nanolett.0c01386. PubMed DOI

Dao H. M.; AboulFotouh K.; Hussain A. F.; Marras A. E.; Johnston K. P.; Cui Z.; Williams R. O. Characterization of MRNA Lipid Nanoparticles by Electron Density Mapping Reconstruction: X-Ray Scattering with Density from Solution Scattering (DENSS) Algorithm. Pharm. Res. 2024, 41 (3), 501–512. 10.1007/s11095-024-03671-9. PubMed DOI

Thelen J. L.; Leite W.; Urban V. S.; O’Neill H. M.; Grishaev A. V.; Curtis J. E.; Krueger S.; Castellanos M. M. Morphological Characterization of Self-Amplifying MRNA Lipid Nanoparticles. ACS Nano 2024, 18 (2), 1464–1476. 10.1021/acsnano.3c08014. PubMed DOI

Kulkarni J. A.; Darjuan M. M.; Mercer J. E.; Chen S.; Van Der Meel R.; Thewalt J. L.; Tam Y. Y. C.; Cullis P. R. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and SiRNA. ACS Nano 2018, 12 (5), 4787–4795. 10.1021/acsnano.8b01516. PubMed DOI

Zhao B.; Kamanzi A.; Zhang Y.; Chan K. Y. T.; Robertson M.; Leslie S.; Cullis P. R. Determination of the Interior PH of Lipid Nanoparticles Using a PH-Sensitive Fluorescent Dye-Based DNA Probe. Biosens. Bioelectron. 2024, 251, 116065.10.1016/j.bios.2024.116065. PubMed DOI

Guruge A. G.; Warren D. B.; Pouton C. W.; Chalmers D. K. Molecular Dynamics Simulation Studies of Bile, Bile Salts, Lipid-Based Drug Formulations, and MRNA-Lipid Nanoparticles: A Review. Mol. Pharmaceutics 2023, 20 (6), 2781–2800. 10.1021/acs.molpharmaceut.3c00049. PubMed DOI

Marrink S. J.; Corradi V.; Souza P. C. T.; Ingólfsson H. I.; Tieleman D. P.; Sansom M. S. P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019, 119, 6184.10.1021/acs.chemrev.8b00460. PubMed DOI PMC

Paquet E.; Viktor H. L. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review. Biomed Res. Int. 2015, 2015, 1.10.1155/2015/183918. PubMed DOI PMC

Leonard A. N.; Wang E.; Monje-Galvan V.; Klauda J. B. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem. Rev. 2019, 119 (9), 6227–6269. 10.1021/acs.chemrev.8b00384. PubMed DOI

Kleinschmidt A. T.; Chen A. X.; Pascal T. A.; Lipomi D. J. Computational Modeling of Molecular Mechanics for the Experimentally Inclined. Chem. Mater. 2022, 34, 7620.10.1021/acs.chemmater.2c00292. DOI

Neale C.; Pomès R. Sampling Errors in Free Energy Simulations of Small Molecules in Lipid Bilayers. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (10), 2539–2548. 10.1016/j.bbamem.2016.03.006. PubMed DOI

Di Meo F.; Fabre G.; Berka K.; Ossman T.; Chantemargue B.; Paloncýová M.; Marquet P.; Otyepka M.; Trouillas P. In Silico Pharmacology: Drug Membrane Partitioning and Crossing. Pharmacol. Res. 2016, 111, 471–486. 10.1016/j.phrs.2016.06.030. PubMed DOI

Stevens J. A.; Grunewald F.; van Tilburg P. A. M.; Konig M.; Gilbert B. R.; Brier T. A.; Thornburg Z. R.; Luthey-Schulten Z.; Marrink S. J. Molecular Dynamics Simulation of an Entire Cell. Front. Chem. 2023, 11, 1106495.10.3389/fchem.2023.1106495. PubMed DOI PMC

Hadden J. A.; Perilla J. R. All-Atom Virus Simulations. Curr. Opin. Virol. 2018, 31, 82–91. 10.1016/j.coviro.2018.08.007. PubMed DOI PMC

Bunker A.; Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front. Mol. Biosci. 2020, 7, 604770.10.3389/fmolb.2020.604770. PubMed DOI PMC

Schmid N.; Eichenberger A. P.; Choutko A.; Riniker S.; Winger M.; Mark A. E.; Van Gunsteren W. F. Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40 (7), 843–856. 10.1007/s00249-011-0700-9. PubMed DOI

Marzuoli I.; Margreitter C.; Fraternali F. Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description. J. Chem. Theory Comput. 2019, 15 (10), 5175–5193. 10.1021/acs.jctc.9b00509. PubMed DOI PMC

Poger D.; Van Gunsteren W. F.; Mark A. E. A New Force Field for Simulating Phosphatidylcholine Bilayers. J. Comput. Chem. 2010, 31 (6), 1117–1125. 10.1002/jcc.21396. PubMed DOI

Skjevik Å. A.; Madej B. D.; Walker R. C.; Teigen K. LIPID11: A Modular Framework for Lipid Simulations Using Amber. J. Phys. Chem. B 2012, 116 (36), 11124–11136. 10.1021/jp3059992. PubMed DOI PMC

Dickson C. J.; Rosso L.; Betz R. M.; Walker R. C.; Gould I. R. GAFFlipid: A General Amber Force Field for the Accurate Molecular Dynamics Simulation of Phospholipid. Soft Matter 2012, 8 (37), 9617–9627. 10.1039/c2sm26007g. DOI

Dickson C. J.; Madej B. D.; Skjevik Å. A.; Betz R. M.; Teigen K.; Gould I. R.; Walker R. C. Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput. 2014, 10 (2), 865–879. 10.1021/ct4010307. PubMed DOI PMC

Case D. A.; Cerutti D. S.; T.E. Cheatham I.; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Greene D.; Homeyer N.. et al.AMBER 2017; University of California: San Francisco, 2017.

Dickson C. J.; Walker R. C.; Gould I. R. Lipid21: Complex Lipid Membrane Simulations with AMBER. J. Chem. Theory Comput. 2022, 18 (3), 1726–1736. 10.1021/acs.jctc.1c01217. PubMed DOI PMC

Jämbeck J. P. M.; Lyubartsev A. P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B 2012, 116 (10), 3164–3179. 10.1021/jp212503e. PubMed DOI PMC

Jämbeck J. P. M.; Lyubartsev A. P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J. Chem. Theory Comput. 2012, 8 (8), 2938–2948. 10.1021/ct300342n. PubMed DOI

Jämbeck J. P. M.; Lyubartsev A. P. Another Piece of the Membrane Puzzle: Extending Slipids Further. J. Chem. Theory Comput. 2013, 9 (1), 774–784. 10.1021/ct300777p. PubMed DOI

Grote F.; Lyubartsev A. P. Optimization of Slipids Force Field Parameters Describing Headgroups of Phospholipids. J. Phys. Chem. B 2020, 124 (40), 8784–8793. 10.1021/acs.jpcb.0c06386. PubMed DOI PMC

Ermilova I.; Swenson J. DOPC: Versus DOPE as a Helper Lipid for Gene-Therapies: Molecular Dynamics Simulations with DLin-MC3-DMA. Phys. Chem. Chem. Phys. 2020, 22 (48), 28256–28268. 10.1039/D0CP05111J. PubMed DOI

Ermilova I.; Swenson J. Ionizable Lipids Penetrate Phospholipid Bilayers with High Phase Transition Temperatures: Perspectives from Free Energy Calculations. Chem. Phys. Lipids 2023, 253, 105294.10.1016/j.chemphyslip.2023.105294. PubMed DOI

Schlenkrich M.; Brickmann J.; MacKerell A. D.; Karplus M.. An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In Biological Membranes; Merz K. M.; Roux B., Eds.; Birkhäuser Boston: Boston, MA, 1996; pp 31–81.

Feller S. E.; Yin D.; Pastor R. W.; MacKerell A. D. Molecular Dynamics Simulation of Unsaturated Lipid Bilayers at Low Hydration: Parameterization and Comparison with Diffraction Studies. Biophys. J. 1997, 73 (5), 2269–2279. 10.1016/S0006-3495(97)78259-6. PubMed DOI PMC

Feller S. E.; MacKerell A. D. An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids. J. Phys. Chem. B 2000, 104 (31), 7510–7515. 10.1021/jp0007843. DOI

Klauda J. B.; Brooks B. R.; MacKerell A. D.; Venable R. M.; Pastor R. W. An Ab Initio Study on the Torsional Surface of Alkanes and Its Effect on Molecular Simulations of Alkanes and a DPPC Bilayer. J. Phys. Chem. B 2005, 109 (11), 5300–5311. 10.1021/jp0468096. PubMed DOI

Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D.; Pastor R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114 (23), 7830–7843. 10.1021/jp101759q. PubMed DOI PMC

Lim J. B.; Rogaski B.; Klauda J. B. Update of the Cholesterol Force Field Parameters in CHARMM. J. Phys. Chem. B 2012, 116 (1), 203–210. 10.1021/jp207925m. PubMed DOI

Wu E. L.; Cheng X.; Jo S.; Rui H.; Song K. C.; Dávila-Contreras E. M.; Qi Y.; Lee J.; Monje-Galvan V.; Venable R. M.; et al. CHARMM-GUI Membrane Builder toward Realistic Biological Membrane Simulations. J. Comput. Chem. 2014, 35 (27), 1997–2004. 10.1002/jcc.23702. PubMed DOI PMC

Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12 (1), 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC

Lee J.; Patel D. S.; Ståhle J.; Park S. J.; Kern N. R.; Kim S.; Lee J.; Cheng X.; Valvano M. A.; Holst O.; et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019, 15 (1), 775–786. 10.1021/acs.jctc.8b01066. PubMed DOI

Park S.; Choi Y. K.; Kim S.; Lee J.; Im W. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. J. Chem. Inf. Model. 2021, 61 (10), 5192–5202. 10.1021/acs.jcim.1c00770. PubMed DOI PMC

Pogozheva I. D.; Armstrong G. A.; Kong L.; Hartnagel T. J.; Carpino C. A.; Gee S. E.; Picarello D. M.; Rubin A. S.; Lee J.; Park S.; et al. Comparative Molecular Dynamics Simulation Studies of Realistic Eukaryotic, Prokaryotic, and Archaeal Membranes. J. Chem. Inf. Model. 2022, 62 (4), 1036–1051. 10.1021/acs.jcim.1c01514. PubMed DOI

Maciejewski A.; Pasenkiewicz-Gierula M.; Cramariuc O.; Vattulainen I.; Rog T. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. J. Phys. Chem. B 2014, 118 (17), 4571–4581. 10.1021/jp5016627. PubMed DOI

Kulig W.; Pasenkiewicz-Gierula M.; Róg T. Cis and Trans Unsaturated Phosphatidylcholine Bilayers: A Molecular Dynamics Simulation Study. Chem. Phys. Lipids 2016, 195, 12–20. 10.1016/j.chemphyslip.2015.07.002. PubMed DOI

Kulig W.; Pasenkiewicz-Gierula M.; Róg T. Topologies, Structures and Parameter Files for Lipid Simulations in GROMACS with the OPLS-Aa Force Field: DPPC, POPC, DOPC, PEPC, and Cholesterol. Data Br. 2015, 5, 333–336. 10.1016/j.dib.2015.09.013. PubMed DOI PMC

Stepniewski M.; Pasenkiewicz-Gierula M.; Rog T.; Danne R.; Orlowski A.; Karttunen M.; Urtti A.; Yliperttula M.; Vuorimaa E.; Bunker A. Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies. Langmuir 2011, 27 (12), 7788–7798. 10.1021/la200003n. PubMed DOI

Magarkar A.; Róg T.; Bunker A. Molecular Dynamics Simulation of PEGylated Membranes with Cholesterol: Building toward the DOXIL Formulation. J. Phys. Chem. C 2014, 118 (28), 15541–15549. 10.1021/jp504962m. DOI

Rog T.; Koivuniemi A. The Biophysical Properties of Ethanolamine Plasmalogens Revealed by Atomistic Molecular Dynamics Simulations. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (1), 97–103. 10.1016/j.bbamem.2015.10.023. PubMed DOI PMC

Róg T.; Orłowski A.; Llorente A.; Skotland T.; Sylvänne T.; Kauhanen D.; Ekroos K.; Sandvig K.; Vattulainen I. Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (2), 281–288. 10.1016/j.bbamem.2015.12.003. PubMed DOI

Kurki M.; Poso A.; Bartos P.; Miettinen M. S. Structure of POPC Lipid Bilayers in OPLS3e Force Field. J. Chem. Inf. Model. 2022, 62 (24), 6462–6474. 10.1021/acs.jcim.2c00395. PubMed DOI PMC

Harder E.; Damm W.; Maple J.; Wu C.; Reboul M.; Xiang J. Y.; Wang L.; Lupyan D.; Dahlgren M. K.; Knight J. L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12 (1), 281–296. 10.1021/acs.jctc.5b00864. PubMed DOI

Mahmoudzadeh M.; Magarkar A.; Koivuniemi A.; Róg T.; Bunker A. Mechanistic Insight into How PEGylation Reduces the Efficacy of PH-Sensitive Liposomes from Molecular Dynamics Simulations. Mol. Pharmaceutics 2021, 18 (7), 2612–2621. 10.1021/acs.molpharmaceut.1c00122. PubMed DOI PMC

Jorgensen W. L.; Ghahremanpour M. M.; Saar A.; Tirado-Rives J. OPLS/2020 Force Field for Unsaturated Hydrocarbons, Alcohols, and Ethers. J. Phys. Chem. B 2024, 128 (1), 250–262. 10.1021/acs.jpcb.3c06602. PubMed DOI

Lu C.; Wu C.; Ghoreishi D.; Chen W.; Wang L.; Damm W.; Ross G. A.; Dahlgren M. K.; Russell E.; Von Bargen C. D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17 (7), 4291–4300. 10.1021/acs.jctc.1c00302. PubMed DOI

Case D. A.; Cheatham T. E.; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26 (16), 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC

Weiner S. J.; Kollman P. A.; Case D. A.; Singh U. C.; Ghio C.; Alagona G.; Profeta S.; Weiner P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106 (17), 765–784. 10.1021/ja00315a051. DOI

Wang J.; Cieplak P.; Kollman P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?. J. Comput. Chem. 2000, 21 (12), 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Tian C.; Kasavajhala K.; Belfon K. A. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; et al. Ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16 (1), 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI

Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29 (4), 622–655. 10.1002/jcc.20820. PubMed DOI PMC

Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; et al. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2016, 13 (1), 55–58. 10.1038/nmeth.3658. PubMed DOI PMC

Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11 (12), 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI

Zgarbová M.; Šponer J.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17 (10), 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI

Liebl K.; Zacharias M. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J. Chem. Theory Comput. 2021, 17 (11), 7096–7105. 10.1021/acs.jctc.1c00682. PubMed DOI

Love O.; Galindo-Murillo R.; Zgarbová M.; Šponer J.; Jurečka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA–2023 Edition. J. Chem. Theory Comput. 2023, 19 (13), 4299–4307. 10.1021/acs.jctc.3c00233. PubMed DOI PMC

Banáš P.; Hollas D.; Zgarbová M.; Jurečka P.; Orozco M.; Cheatham T. E.; Šponer J.; Otyepka M. Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. J. Chem. Theory Comput. 2010, 6 (12), 3836–3849. 10.1021/ct100481h. PubMed DOI PMC

Zgarbová M.; Otyepka M.; Šponer J.; Mládek A.; Banáš P.; Cheatham T. E.; Jurečka P. Refinement of the Cornell et Al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7 (9), 2886–2902. 10.1021/ct200162x. PubMed DOI PMC

Yildirim I.; Kennedy S. D.; Stern H. A.; Hart J. M.; Kierzek R.; Turner D. H. Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and IGiC Base Pairs. J. Chem. Theory Comput. 2012, 8 (1), 172–181. 10.1021/ct200557r. PubMed DOI PMC

Tan D.; Piana S.; Dirks R. M.; Shaw D. E. RNA Force Field with Accuracy Comparable to State-of-the-Art Protein Force Fields. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (7), E1346-E135510.1073/pnas.1713027115. PubMed DOI PMC

Chen A. A.; Garcia A. E. High-Resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (42), 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC

Sponer J.; Bussi G.; Krepl M.; Banas P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; et al. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118 (8), 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC

Grotz K. K.; Nueesch M. F.; Holmstrom E. D.; Heinz M.; Stelzl L. S.; Schuler B.; Hummer G. Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments. J. Phys. Chem. B 2018, 122 (49), 11626–11639. 10.1021/acs.jpcb.8b07537. PubMed DOI

Mlýnský V.; Kührová P.; Kühr T.; Otyepka M.; Bussi G.; Banáš P.; Šponer J. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. J. Chem. Theory Comput. 2020, 16 (6), 3936–3946. 10.1021/acs.jctc.0c00228. PubMed DOI

Fröhlking T.; Mlýnský V.; Janeček M.; Kührová P.; Krepl M.; Banáš P.; Šponer J.; Bussi G. Automatic Learning of Hydrogen-Bond Fixes in an AMBER RNA Force Field. J. Chem. Theory Comput. 2022, 18 (7), 4490–4502. 10.1021/acs.jctc.2c00200. PubMed DOI PMC

Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Šponer J.; Mládek A.; Šponer J. E.; Svozil D.; Zgarbová M.; Banáš P.; Jurečka P.; Otyepka M. The DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies. Phys. Chem. Chem. Phys. 2012, 14 (44), 15257.10.1039/c2cp41987d. PubMed DOI

Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC

Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA 2015, 21 (9), 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC

Kührová P.; Best R. B.; Bottaro S.; Bussi G.; Šponer J.; Otyepka M.; Banáš P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016, 12 (9), 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC

Havrila M.; Zgarbová M.; Jurečka P.; Banáš P.; Krepl M.; Otyepka M.; Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J. Phys. Chem. B 2015, 119 (49), 15176–15190. 10.1021/acs.jpcb.5b08876. PubMed DOI

He X.; Man V. H.; Yang W.; Lee T. S.; Wang J. A Fast and High-Quality Charge Model for the next Generation General AMBER Force Field. J. Chem. Phys. 2020, 153 (11), 11450210.1063/5.0019056. PubMed DOI PMC

Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI

Li P.; Merz K. M. MCPB.Py: A Python Based Metal Center Parameter Builder. J. Chem. Inf. Model. 2016, 56 (4), 599–604. 10.1021/acs.jcim.5b00674. PubMed DOI

Paloncýová M.; Fabre G.; Devane R. H.; Trouillas P.; Berka K.; Otyepka M. Benchmarking of Force Fields for Molecule - Membrane Interactions. J. Chem. Theory Comput. 2014, 10 (9), 4143–4151. 10.1021/ct500419b. PubMed DOI

Brooks B. R.; Brooks C. L.; Mackerell A. D.; Nilsson L.; Petrella R. J.; Roux B.; Won Y.; Archontis G.; Bartels C.; Boresch S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30 (10), 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC

Vanommeslaeghe K.; Hatcher E.; Acharya C.; Kundu S.; Zhong S.; Shim J.; Darian E.; Guvench O.; Lopes P.; Vorobyov I.; et al. CHARMM General Force Field: A Force Field for Drug-like Molecules Compatible with the CHARMM All-atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31 (4), 671–690. 10.1002/jcc.21367. PubMed DOI PMC

Zhu X.; Lopes P. E. M.; Mackerell A. D. Recent Developments and Applications of the CHARMM Force Fields. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 167–185. 10.1002/wcms.74. PubMed DOI PMC

Feng S.; Park S.; Choi Y. K.; Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J. Chem. Theory Comput. 2023, 19 (8), 2161–2185. 10.1021/acs.jctc.2c01246. PubMed DOI PMC

MacKerell A. D.; Wiorkiewicz-Kuczera J.; Karplus M. An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids. J. Am. Chem. Soc. 1995, 117 (48), 11946–11975. 10.1021/ja00153a017. DOI

MacKerell A.; Banavali N. All-Atom Empirical Force Field for Nucleic Acids: II. Application to Molecular Dynamics Simulations of DNA and RNA in Solution. J. Comput. Chem. 2000, 21, 105–120. 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P. DOI

Hart K.; Foloppe N.; Baker C. M.; Denning E. J.; Nilsson L.; MacKerell A. D. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. J. Chem. Theory Comput. 2012, 8 (1), 348–362. 10.1021/ct200723y. PubMed DOI PMC

Galindo-Murillo R.; Robertson J. C.; Zgarbová M.; Šponer J.; Otyepka M.; Jurečka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12 (8), 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC

Minhas V.; Sun T.; Mirzoev A.; Korolev N.; Lyubartsev A. P.; Nordenskiöld L. Modeling DNA Flexibility: Comparison of Force Fields from Atomistic to Multiscale Levels. J. Phys. Chem. B 2020, 124 (1), 38–49. 10.1021/acs.jpcb.9b09106. PubMed DOI

Fadrná E.; Špačková N.; Sarzyñska J.; Koča J.; Orozco M.; Cheatham T. E.; Kulinski T.; Šponer J. Single Stranded Loops of Quadruplex DNA as Key Benchmark for Testing Nucleic Acids Force Fields. J. Chem. Theory Comput. 2009, 5 (9), 2514–2530. 10.1021/ct900200k. PubMed DOI

Lemkul J. A. Same Fold, Different Properties: Polarizable Molecular Dynamics Simulations of Telomeric and TERRA G-Quadruplexes. Nucleic Acids Res. 2020, 48 (2), 561–575. 10.1093/nar/gkz1154. PubMed DOI PMC

Beššeová I.; Banáš P.; Kührová P.; Košinová P.; Otyepka M.; Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J. Phys. Chem. B 2012, 116 (33), 9899–9916. 10.1021/jp3014817. PubMed DOI

Vanommeslaeghe K.; Raman E. P.; MacKerell A. D. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J. Chem. Inf. Model. 2012, 52 (12), 3155–3168. 10.1021/ci3003649. PubMed DOI PMC

MacKerell A. D.; Bashford D.; Bellott M.; Dunbrack R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins †. J. Phys. Chem. B 1998, 102 (18), 3586–3616. 10.1021/jp973084f. PubMed DOI

Jorgensen W. L.; Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110 (6), 1657–1666. 10.1021/ja00214a001. PubMed DOI

Magarkar A.; Róg T.; Bunker A. A Computational Study Suggests That Replacing PEG with PMOZ May Increase Exposure of Hydrophobic Targeting Moiety. Eur. J. Pharm. Sci. 2017, 103, 128–135. 10.1016/j.ejps.2017.03.008. PubMed DOI

Dzieciuch-Rojek M.; Poojari C.; Bednar J.; Bunker A.; Kozik B.; Nowakowska M.; Vattulainen I.; Wydro P.; Kepczynski M.; Roǵ T. Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Mol. Pharmaceutics 2017, 14 (4), 1057–1070. 10.1021/acs.molpharmaceut.6b00969. PubMed DOI

Mastrotto F.; Brazzale C.; Bellato F.; De Martin S.; Grange G.; Mahmoudzadeh M.; Magarkar A.; Bunker A.; Salmaso S.; Caliceti P. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Mol. Pharmaceutics 2020, 17 (2), 472–487. 10.1021/acs.molpharmaceut.9b00887. PubMed DOI

Dzieciuch M.; Rissanen S.; Szydłowska N.; Bunker A.; Kumorek M.; Jamróz D.; Vattulainen I.; Nowakowska M.; Róg T.; Kepczynski M. Pegylated Liposomes as Carriers of Hydrophobic Porphyrins. J. Phys. Chem. B 2015, 119 (22), 6646–6657. 10.1021/acs.jpcb.5b01351. PubMed DOI

Hu W.; Mao A.; Wong P.; Larsen A.; Yazaki P. J.; Wong J. Y. C.; Shively J. E. Characterization of 1,2-Distearoyl-Sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene Glycerol)-2000] and Its Complex with Doxorubicin Using Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics. Bioconjugate Chem. 2017, 28 (6), 1777–1790. 10.1021/acs.bioconjchem.7b00238. PubMed DOI PMC

Robertson M. J.; Tirado-Rives J.; Jorgensen W. L. Improved Treatment of Nucleosides and Nucleotides in the OPLS-AA Force Field. Chem. Phys. Lett. 2017, 683, 276–280. 10.1016/j.cplett.2017.02.049. PubMed DOI PMC

Robertson M. J.; Qian Y.; Robinson M. C.; Tirado-Rives J.; Jorgensen W. L. Development and Testing of the OPLS-AA/M Force Field for RNA. J. Chem. Theory Comput. 2019, 15 (4), 2734–2742. 10.1021/acs.jctc.9b00054. PubMed DOI PMC

Cornebise M.; Narayanan E.; Xia Y.; Acosta E.; Ci L.; Koch H.; Milton J.; Sabnis S.; Salerno T.; Benenato K. E. Discovery of a Novel Amino Lipid That Improves Lipid Nanoparticle Performance through Specific Interactions with MRNA. Adv. Funct. Mater. 2022, 32 (8), 2106727.10.1002/adfm.202106727. DOI

Dodda L. S.; Cabeza de Vaca I.; Tirado-Rives J.; Jorgensen W. L. LigParGen Web Server: An Automatic OPLS-AA Parameter Generator for Organic Ligands. Nucleic Acids Res. 2017, 45 (W1), W331–W336. 10.1093/nar/gkx312. PubMed DOI PMC

Lemkul J. A.; Huang J.; Roux B.; MacKerell A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116 (9), 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC

Ponder J. W.; Wu C.; Ren P.; Pande V. S.; Chodera J. D.; Schnieders M. J.; Haque I.; Mobley D. L.; Lambrecht D. S.; Distasio R. a.; et al. Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B 2010, 114, 2549–2564. 10.1021/jp910674d. PubMed DOI PMC

Gao X. C.; Hao Q.; Wang C. S. Improved Polarizable Dipole-Dipole Interaction Model for Hydrogen Bonding, Stacking, T-Shaped, and X-H···φ Interactions. J. Chem. Theory Comput. 2017, 13 (6), 2730–2741. 10.1021/acs.jctc.6b00936. PubMed DOI

Gkionis K.; Kruse H.; Platts J. A.; Mládek A.; Koča J.; Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J. Chem. Theory Comput. 2014, 10 (3), 1326–1340. 10.1021/ct4009969. PubMed DOI

Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A Practical Guide to Biologically Relevant Molecular Simulations with Charge Scaling for Electronic Polarization. J. Chem. Phys. 2020, 153 (5), 05090110.1063/5.0017775. PubMed DOI

Ren P.; Wu C.; Ponder J. W. Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules. J. Chem. Theory Comput. 2011, 7 (10), 3143–3161. 10.1021/ct200304d. PubMed DOI PMC

Lemkul J. A.; MacKerell A. D. Polarizable Force Field for RNA Based on the Classical Drude Oscillator. J. Comput. Chem. 2018, 39 (32), 2624–2646. 10.1002/jcc.25709. PubMed DOI PMC

Chowdhary J.; Harder E.; Lopes P. E. M.; Huang L.; MacKerell A. D.; Roux B. B. A Polarizable Force Field of Dipalmitoylphosphatidylcholine Based on the Classical Drude Model for Molecular Dynamics Simulations of Lipids. J. Phys. Chem. B 2013, 117 (31), 9142–9160. 10.1021/jp402860e. PubMed DOI PMC

Patel S.; Mackerell A. D.; Brooks C. L. CHARMM Fluctuating Charge Force Field for Proteins: II Protein/Solvent Properties from Molecular Dynamics Simulations Using a Nonadditive Electrostatic Model. J. Comput. Chem. 2004, 25 (12), 1504–1514. 10.1002/jcc.20077. PubMed DOI

Lin Y. C.; Ren P.; Webb L. J. AMOEBA Force Field Trajectories Improve Predictions of Accurate p KaValues of the GFP Fluorophore: The Importance of Polarizability and Water Interactions. J. Phys. Chem. B 2022, 126 (40), 7806–7817. 10.1021/acs.jpcb.2c03642. PubMed DOI PMC

Shi Y.; Xia Z.; Zhang J.; Best R.; Wu C.; Ponder J. W.; Ren P. Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins. J. Chem. Theory Comput. 2013, 9 (9), 4046–4063. 10.1021/ct4003702. PubMed DOI PMC

Adjoua O.; Lagardère L.; Jolly L. H.; Durocher A.; Very T.; Dupays I.; Wang Z.; Inizan T. J.; Célerse F.; Ren P.; et al. Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. J. Chem. Theory Comput. 2021, 17 (4), 2034–2053. 10.1021/acs.jctc.0c01164. PubMed DOI PMC

Eastman P.; Swails J.; Chodera J. D.; McGibbon R. T.; Zhao Y.; Beauchamp K. A.; Wang L. P.; Simmonett A. C.; Harrigan M. P.; Stern C. D.; et al. OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol. 2017, 13 (7), e1005659.10.1371/journal.pcbi.1005659. PubMed DOI PMC

Yu Y.; Venable R. M.; Thirman J.; Chatterjee P.; Kumar A.; Pastor R. W.; Roux B.; MacKerell A. D.; Klauda J. B. Drude Polarizable Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Saturated and Monounsaturated Zwitterionic Lipids. J. Chem. Theory Comput. 2023, 19 (9), 2590–2605. 10.1021/acs.jctc.3c00203. PubMed DOI PMC

Jing Z.; Liu C.; Cheng S. Y.; Qi R.; Walker B. D.; Piquemal J.-P.; Ren P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu. Rev. Biophys. 2019, 48 (1), 371–394. 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC

Levitt M.; Warshel A. Computer Simulation of Protein Folding. Nature 1975, 253 (5494), 694–698. 10.1038/253694a0. PubMed DOI

Jin J.; Pak A. J.; Durumeric A. E. P.; Loose T. D.; Voth G. A. Bottom-up Coarse-Graining: Principles and Perspectives. J. Chem. Theory Comput. 2022, 18 (10), 5759–5791. 10.1021/acs.jctc.2c00643. PubMed DOI PMC

Goetz R.; Gompper G.; Lipowsky R. Mobility and Elasticity of Self-Assembled Membranes. Phys. Rev. Lett. 1999, 82 (1), 221–224. 10.1103/PhysRevLett.82.221. DOI

Tolpekina T. V.; Den Otter W. K.; Briels W. J. Simulations of Stable Pores in Membranes: System Size Dependence and Line Tension. J. Chem. Phys. 2004, 121 (16), 8014–8020. 10.1063/1.1796254. PubMed DOI

Noguchi H.; Takasu M. Self-Assembly of Amphiphiles into Vesicles: A Brownian Dynamics Simulation. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64 (4), 7.10.1103/PhysRevE.64.041913. PubMed DOI

Von Gottberg F. K.; Smith K. A.; Hatton T. A. Stochastic Dynamics Simulation of Surfactant Self-Assembly. J. Chem. Phys. 1997, 106 (23), 9850–9857. 10.1063/1.473873. DOI

Marrink S. J.; Corradi V.; Souza P. C. T.; Ingólfsson H. I.; Tieleman D. P.; Sansom M. S. P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019, 119 (9), 6184–6226. 10.1021/acs.chemrev.8b00460. PubMed DOI PMC

Noid W. G. Perspective: Advances, Challenges, and Insight for Predictive Coarse-Grained Models. J. Phys. Chem. B 2023, 127 (19), 4174–4207. 10.1021/acs.jpcb.2c08731. PubMed DOI

Borges-Araújo L.; Patmanidis I.; Singh A. P.; Santos L. H. S.; Sieradzan A. K.; Vanni S.; Czaplewski C.; Pantano S.; Shinoda W.; Monticelli L.; et al. Pragmatic Coarse-Graining of Proteins: Models and Applications. J. Chem. Theory Comput. 2023, 19 (20), 7112–7135. 10.1021/acs.jctc.3c00733. PubMed DOI

Noid W. G.; Chu J. W.; Ayton G. S.; Krishna V.; Izvekov S.; Voth G. A.; Das A.; Andersen H. C. The Multiscale Coarse-Graining Method. I. A Rigorous Bridge between Atomistic and Coarse-Grained Models. J. Chem. Phys. 2008, 128 (24), 24411410.1063/1.2938860. PubMed DOI PMC

Izvekov S.; Voth G. A. A Multiscale Coarse-Graining Method for Biomolecular Systems. J. Phys. Chem. B 2005, 109 (7), 2469–2473. 10.1021/jp044629q. PubMed DOI

Reith D.; Pütz M.; Müller-Plathe F. Deriving Effective Mesoscale Potentials from Atomistic Simulations. J. Comput. Chem. 2003, 24 (13), 1624–1636. 10.1002/jcc.10307. PubMed DOI

Webb M. A.; Delannoy J. Y.; De Pablo J. J. Graph-Based Approach to Systematic Molecular Coarse-Graining. J. Chem. Theory Comput. 2019, 15 (2), 1199–1208. 10.1021/acs.jctc.8b00920. PubMed DOI

Walther J.; Dans P. D.; Balaceanu A.; Hospital A.; Bayarri G.; Orozco M. A Multi-Modal Coarse Grained Model of DNA Flexibility Mappable to the Atomistic Level. Nucleic Acids Res. 2020, 48 (5), e29.10.1093/nar/gkaa015. PubMed DOI PMC

Knotts T. A.; Rathore N.; Schwartz D. C.; De Pablo J. J. A Coarse Grain Model for DNA. J. Chem. Phys. 2007, 126 (8), 08490110.1063/1.2431804. PubMed DOI

Sun T.; Minhas V.; Korolev N.; Mirzoev A.; Lyubartsev A. P.; Nordenskiöld L. Bottom-Up Coarse-Grained Modeling of DNA. Front. Mol. Biosci. 2021, 8 (March), 1–17. 10.3389/fmolb.2021.645527. PubMed DOI PMC

Ayton G. S.; Voth G. A. Hybrid Coarse-Graining Approach for Lipid Bilayers at Large Length and Time Scales. J. Phys. Chem. B 2009, 113 (13), 4413–4424. 10.1021/jp8087868. PubMed DOI PMC

Lu L.; Voth G. A. Systematic Coarse-Graining of a Multicomponent Lipid Bilayer. J. Phys. Chem. B 2009, 113 (5), 1501–1510. 10.1021/jp809604k. PubMed DOI PMC

Grzetic D. J.; Hamilton N. B.; Shelley J. C. Coarse-Grained Simulation of MRNA-Loaded Lipid Nanoparticle Self-Assembly. Mol. Pharmaceutics 2024, 21 (9), 4747–4753. 10.1021/acs.molpharmaceut.4c00216. PubMed DOI

Marrink S. J.; De Vries A. H.; Mark A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 2004, 108 (2), 750–760. 10.1021/jp036508g. DOI

Marrink S. J.; Risselada H. J.; Yefimov S.; Tieleman D. P.; de Vries A. H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111 (27), 7812–7824. 10.1021/jp071097f. PubMed DOI

Dahlberg M. Polymorphic Phase Behavior of Cardiolipin Derivatives Studied by Coarse-Grained Molecular Dynamics. J. Phys. Chem. B 2007, 111 (25), 7194–7200. 10.1021/jp071954f. PubMed DOI

Lee H.; Pastor R. W. Coarse-Grained Model for Pegylated Lipids: Effect of Pegylation on the Size and Shape of Self-Assembled Structures. J. Phys. Chem. B 2011, 115 (24), 7830–7837. 10.1021/jp2020148. PubMed DOI PMC

López C. A.; Sovova Z.; Van Eerden F. J.; De Vries A. H.; Marrink S. J. Martini Force Field Parameters for Glycolipids. J. Chem. Theory Comput. 2013, 9 (3), 1694–1708. 10.1021/ct3009655. PubMed DOI

Wassenaar T. A.; Ingólfsson H. I.; Böckmann R. A.; Tieleman D. P.; Marrink S. J. Computational Lipidomics with Insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J. Chem. Theory Comput. 2015, 11 (5), 2144–2155. 10.1021/acs.jctc.5b00209. PubMed DOI

Melo M. N.; Ingólfsson H. I.; Marrink S. J. Parameters for Martini Sterols and Hopanoids Based on a Virtual-Site Description. J. Chem. Phys. 2015, 143 (24), 243152.10.1063/1.4937783. PubMed DOI

Van Oosten B.; Harroun T. A. A MARTINI Extension for Pseudomonas Aeruginosa PAO1 Lipopolysaccharide. J. Mol. Graph. Model. 2016, 63, 125–133. 10.1016/j.jmgm.2015.12.002. PubMed DOI

Hsu P.-C.; Jefferies D.; Khalid S. Molecular Dynamics Simulations Predict the Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes. J. Phys. Chem. B 2016, 120 (43), 11170–11179. 10.1021/acs.jpcb.6b06615. PubMed DOI

Ma H.; Cummins D. D.; Edelstein N. B.; Gomez J.; Khan A.; Llewellyn M. D.; Picudella T.; Willsey S. R.; Nangia S. Modeling Diversity in Structures of Bacterial Outer Membrane Lipids. J. Chem. Theory Comput. 2017, 13, 811.10.1021/acs.jctc.6b00856. PubMed DOI

Gu R. X.; Ingólfsson H. I.; De Vries A. H.; Marrink S. J.; Tieleman D. P. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121 (15), 3262–3275. 10.1021/acs.jpcb.6b07142. PubMed DOI PMC

Carpenter T. S.; López C. A.; Neale C.; Montour C.; Ingólfsson H. I.; Di Natale F.; Lightstone F. C.; Gnanakaran S. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. J. Chem. Theory Comput. 2018, 14 (11), 6050–6062. 10.1021/acs.jctc.8b00496. PubMed DOI

Grunewald F.; Rossi G.; De Vries A. H.; Marrink S. J.; Monticelli L. Transferable MARTINI Model of Poly(Ethylene Oxide). J. Phys. Chem. B 2018, 122 (29), 7436–7449. 10.1021/acs.jpcb.8b04760. PubMed DOI

Souza P. C. T.; Alessandri R.; Barnoud J.; Thallmair S.; Faustino I.; Grunewald F.; Patmanidis I.; Abdizadeh H.; Bruininks B. M. H.; Wassenaar T. A.; et al. Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics. Nat. Methods 2021, 18 (4), 382–388. 10.1038/s41592-021-01098-3. PubMed DOI

Borges-Araújo L.; Souza P. C. T.; Fernandes F.; Melo M. N. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. J. Chem. Theory Comput. 2022, 18 (1), 357–373. 10.1021/acs.jctc.1c00615. PubMed DOI

Grünewald F.; Punt M. H.; Jefferys E. E.; Vainikka P. A.; König M.; Virtanen V.; Meyer T. A.; Pezeshkian W.; Gormley A. J.; Karonen M.; et al. Martini 3 Coarse-Grained Force Field for Carbohydrates. J. Chem. Theory Comput. 2022, 18, 7555.10.1021/acs.jctc.2c00757. PubMed DOI PMC

Borges-Araújo L.; Borges-Araújo A. C.; Ozturk T. N.; Ramirez-Echemendia D. P.; Fábián B.; Carpenter T. S.; Thallmair S.; Barnoud J.; Ingólfsson H. I.; Hummer G.; et al. Martini 3 Coarse-Grained Force Field for Cholesterol. J. Chem. Theory Comput. 2023, 19 (20), 7387–7404. 10.1021/acs.jctc.3c00547. PubMed DOI

Vaiwala R.; Ayappa K. G. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of Escherichia Coli. J. Chem. Theory Comput. 2024, 20 (4), 1704–1716. 10.1021/acs.jctc.3c00471. PubMed DOI

Brandner A. F.; Prakaash D.; Blanco González A.; Waterhouse F.; Khalid S. Faster but Not Sweeter: A Model of Escherichia Coli Re-Level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics. J. Chem. Theory Comput. 2024, 20, 6890.10.1021/acs.jctc.4c00374. PubMed DOI PMC

Kjølbye L. R.; Valério M.; Paloncýová M.; Borges-Araújo L.; Pestana-Nobles R.; Grünewald F.; Bruininks B. H. M.; Araya-Osorio R.; Šrejber M.; Mera-Adasme R.. Martini 3 Building Blocks for Lipid Nanoparticle Design. ChemRxiv (Biological and Medicinal Chemistry), January 02, 2025, version 2. DOI: 10.26434/chemrxiv-2024-bf4n8-v2. (accessed 2025–01–04)

Pedersen K. B.; Ingólfsson H. I.; Ramirez-Echemendia D. P.; Borges-Araújo L.; Andreasen M. D.; Empereur-mot C.; Melcr J.; Ozturk T. N.; Bennett D. W. F.; Kjølbye L. R., et al.The Martini 3 Lipidome: Expanded and Refined Parameters Improve Lipid Phase Behavior. ChemRxiv, 2024, DOI: 10.26434/chemrxiv-2024-8bjrr. (accessed 2025–01–02).

Shinoda W.; DeVane R.; Klein M. L. Zwitterionic Lipid Assemblies: Molecular Dynamics Studies of Monolayers, Bilayers, and Vesicles Using a New Coarse Grain Force Field. J. Phys. Chem. B 2010, 114 (20), 6836–6849. 10.1021/jp9107206. PubMed DOI PMC

MacDermaid C. M.; Kashyap H. K.; DeVane R. H.; Shinoda W.; Klauda J. B.; Klein M. L.; Fiorin G. Molecular Dynamics Simulations of Cholesterol-Rich Membranes Using a Coarse-Grained Force Field for Cyclic Alkanes. J. Chem. Phys. 2015, 143 (24), 24314410.1063/1.4937153. PubMed DOI

MacDermaid C. M.; Hall K. W.; DeVane R. H.; Klein M. L.; Fiorin G. Coexistence of Lipid Phases Stabilizes Interstitial Water in the Outer Layer of Mammalian Skin. Biophys. J. 2020, 118 (7), 1588–1601. 10.1016/j.bpj.2020.01.044. PubMed DOI PMC

Seo S.; Shinoda W. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. J. Chem. Theory Comput. 2019, 15 (1), 762–774. 10.1021/acs.jctc.8b00987. PubMed DOI

Miyazaki Y.; Okazaki S.; Shinoda W. PSPICA: A Coarse-Grained Force Field for Lipid Membranes Based on a Polar Water Model. J. Chem. Theory Comput. 2020, 16 (1), 782–793. 10.1021/acs.jctc.9b00946. PubMed DOI

Barrera E. E.; Frigini E. N.; Porasso R. D.; Pantano S. Modeling DMPC Lipid Membranes with SIRAH Force-Field. J. Mol. Model. 2017, 23 (9), 2–7. 10.1007/s00894-017-3426-5. PubMed DOI

Barrera E. E.; Machado M. R.; Pantano S. Fat SIRAH: Coarse-Grained Phospholipids to Explore Membrane-Protein Dynamics. J. Chem. Theory Comput. 2019, 15 (10), 5674–5688. 10.1021/acs.jctc.9b00435. PubMed DOI

Groot R. D.; Rabone K. L. Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants. Biophys. J. 2001, 81 (2), 725–736. 10.1016/S0006-3495(01)75737-2. PubMed DOI PMC

Kranenburg M.; Nicolas J. P.; Smit B. Comparison of Mesoscopic Phospholipid-Water Models. Phys. Chem. Chem. Phys. 2004, 6 (16), 4142–4151. 10.1039/B406433J. DOI

Gao L.; Shillcock J.; Lipowsky R. Improved Dissipative Particle Dynamics Simulations of Lipid Bilayers. J. Chem. Phys. 2007, 126 (1), 015101.10.1063/1.2424698. PubMed DOI

Li X.; Gao L.; Fang W. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-to-One Coarse-Grained Mapping Scheme. PLoS One 2016, 11 (5), e0154568.10.1371/journal.pone.0154568. PubMed DOI PMC

Wan M.; Gao L.; Fang W. Implicit-Solvent Dissipative Particle Dynamics Force Field Based on a Four-to-One Coarse-Grained Mapping Scheme. PLoS One 2018, 13 (5), e019804910.1371/journal.pone.0198049. PubMed DOI PMC

Marrink S. J.; Monticelli L.; Melo M. N.; Alessandri R.; Tieleman D. P.; Souza P. C. T. Two Decades of Martini: Better Beads, Broader Scope. WIREs Comput. Mol. Sci. 2023, 13 (1), 1–42. 10.1002/wcms.1620. DOI

Alessandri R.; Souza P. C. T.; Thallmair S.; Melo M. N.; De Vries A. H.; Marrink S. J. Pitfalls of the Martini Model. J. Chem. Theory Comput. 2019, 15 (10), 5448–5460. 10.1021/acs.jctc.9b00473. PubMed DOI PMC

Jarin Z.; Newhouse J.; Voth G. A. Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover. J. Chem. Theory Comput. 2021, 17 (2), 1170–1180. 10.1021/acs.jctc.0c00638. PubMed DOI PMC

Dahlberg M.; Maliniak A. Mechanical Properties of Coarse-Grained Bilayers Formed by Cardiolipin and Zwitterionic Lipids. J. Chem. Theory Comput. 2010, 6 (5), 1638–1649. 10.1021/ct900654e. PubMed DOI

Boyd K. J.; Alder N. N.; May E. R. Molecular Dynamics Analysis of Cardiolipin and Monolysocardiolipin on Bilayer Properties. Biophys. J. 2018, 114 (9), 2116–2127. 10.1016/j.bpj.2018.04.001. PubMed DOI PMC

Ingólfsson H. I.; Carpenter T. S.; Bhatia H.; Bremer P.; Marrink S. J.; Lightstone F. C. Computational Lipidomics of the Neuronal Plasma Membrane. Biophys. J. 2017, 113 (10), 2271–2280. 10.1016/j.bpj.2017.10.017. PubMed DOI PMC

Ingólfsson H. I.; Melo M. N.; van Eerden F. J.; Arnarez C.; Lopez C. A.; Wassenaar T. A.; Periole X.; de Vries A. H.; Tieleman D. P.; Marrink S. J. Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 2014, 136 (41), 14554–14559. 10.1021/ja507832e. PubMed DOI

Monticelli L.; Kandasamy S. K.; Periole X.; Larson R. G.; Tieleman D. P.; Marrink S. J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 2008, 4 (5), 819–834. 10.1021/ct700324x. PubMed DOI

De Jong D. H.; Singh G.; Bennett W. F. D.; Arnarez C.; Wassenaar T. A.; Schäfer L. V.; Periole X.; Tieleman D. P.; Marrink S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013, 9 (1), 687–697. 10.1021/ct300646g. PubMed DOI

López C. A.; Rzepiela A. J.; de Vries A. H.; Dijkhuizen L.; Hünenberger P. H.; Marrink S. J. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J. Chem. Theory Comput. 2009, 5 (12), 3195–3210. 10.1021/ct900313w. PubMed DOI

Uusitalo J. J.; Ingólfsson H. I.; Akhshi P.; Tieleman D. P.; Marrink S. J. Martini Coarse-Grained Force Field: Extension to DNA. J. Chem. Theory Comput. 2015, 11 (8), 3932–3945. 10.1021/acs.jctc.5b00286. PubMed DOI

Uusitalo J. J.; Ingólfsson H. I.; Marrink S. J.; Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys. J. 2017, 113 (2), 246–256. 10.1016/j.bpj.2017.05.043. PubMed DOI PMC

Grünewald F.; Alessandri R.; Kroon P. C.; Monticelli L.; Souza P. C. T.; Marrink S. J. Polyply; a Python Suite for Facilitating Simulations of Macromolecules and Nanomaterials. Nat. Commun. 2022, 13 (1), 68.10.1038/s41467-021-27627-4. PubMed DOI PMC

Arnarez C.; Uusitalo J. J.; Masman M. F.; Ingólfsson H. I.; de Jong D. H.; Melo M. N.; Periole X.; de Vries A. H.; Marrink S. J. Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. J. Chem. Theory Comput. 2015, 11 (1), 260–275. 10.1021/ct500477k. PubMed DOI

Yesylevskyy S. O.; Schäfer L. V.; Sengupta D.; Marrink S. J. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLoS Comput. Biol. 2010, 6 (6), e100081010.1371/journal.pcbi.1000810. PubMed DOI PMC

Michalowsky J.; Schäfer L. V.; Holm C.; Smiatek J. A Refined Polarizable Water Model for the Coarse-Grained MARTINI Force Field with Long-Range Electrostatic Interactions. J. Chem. Phys. 2017, 146 (5), 054501.10.1063/1.4974833. PubMed DOI

Michalowsky J.; Zeman J.; Holm C.; Smiatek J. A Polarizable MARTINI Model for Monovalent Ions in Aqueous Solution. J. Chem. Phys. 2018, 149 (16), 163319.10.1063/1.5028354. PubMed DOI

Grünewald F.; Souza P. C. T.; Abdizadeh H.; Barnoud J.; De Vries A. H.; Marrink S. J. Titratable Martini Model for Constant pH Simulations. J. Chem. Phys. 2020, 153 (2), 024118.10.1063/5.0014258. PubMed DOI

Aho N.; Buslaev P.; Jansen A.; Bauer P.; Groenhof G.; Hess B. Scalable Constant PH Molecular Dynamics in GROMACS. J. Chem. Theory Comput. 2022, 18 (10), 6148–6160. 10.1021/acs.jctc.2c00516. PubMed DOI PMC

Hilpert C.; Beranger L.; Souza P. C. T.; Vainikka P. A.; Nieto V.; Marrink S. J.; Monticelli L.; Launay G. Facilitating CG Simulations with MAD: The MArtini Database Server. J. Chem. Inf. Model. 2023, 63 (3), 702–710. 10.1021/acs.jcim.2c01375. PubMed DOI

Berendsen H. J. C.; van der Spoel D.; van Drunen R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91 (1–3), 43–56. 10.1016/0010-4655(95)00042-E. DOI

MacCallum J. L.; Hu S.; Lenz S.; Souza P. C. T.; Corradi V.; Tieleman D. P. An Implementation of the Martini Coarse-Grained Force Field in OpenMM. Biophys. J. 2023, 122 (14), 2864–2870. 10.1016/j.bpj.2023.04.007. PubMed DOI PMC

Phillips J. C.; Braun R.; Wang W.; Gumbart J.; Tajkhorshid E.; Villa E.; Chipot C.; Skeel R. D.; Kalé L.; Schulten K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26 (16), 1781–1802. 10.1002/jcc.20289. PubMed DOI PMC

Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117 (1), 1–19. 10.1006/jcph.1995.1039. DOI

Souza P. C. T.; Borges-Araújo L.; Brasnett C.; Moreira R. A.; Grünewald F.; Park P.; Wang L.; Razmazma H.; Borges-Araújo A. C.; Cofas-Vargas L. F.. Go̅Martini 3: From Large Conformational Changes in Proteins to Environmental Bias Corrections. bioRxiv (Biophysics), April 16, 2024, 2024.04.15.589479, DOI: 10.1101/2024.04.15.589479. (accessed 2024–11–22).

Poma A. B.; Cieplak M.; Theodorakis P. E. Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. J. Chem. Theory Comput. 2017, 13 (3), 1366–1374. 10.1021/acs.jctc.6b00986. PubMed DOI

Pedersen K. B.; Borges-Araújo L.; Stange A. D.; Souza P. C. T.; Marrink S. J.; Schiøtt B. OLIVES: A Go-like Model for Stabilizing Protein Structure via Hydrogen Bonding Native Contacts in the Martini 3 Coarse-Grained Force Field. J. Chem. Theory Comput. 2024, 10.1021/acs.jctc.4c00553. PubMed DOI

Shinoda W.; DeVane R.; Klein M. L. Multi-Property Fitting and Parameterization of a Coarse Grained Model for Aqueous Surfactants. Mol. Simul. 2007, 33 (1–2), 27–36. 10.1080/08927020601054050. DOI

Prabhu J.; Frigerio M.; Petretto E.; Campomanes P.; Salentinig S.; Vanni S. A Coarse-Grained SPICA Makeover for Solvated and Bare Sodium and Chloride Ions. J. Chem. Theory Comput. 2024, 20 (17), 7624–7634. 10.1021/acs.jctc.4c00529. PubMed DOI PMC

Kawamoto S.; Liu H.; Miyazaki Y.; Seo S.; Dixit M.; Devane R.; Macdermaid C.; Fiorin G.; Klein M. L.; Shinoda W. SPICA Force Field for Proteins and Peptides. J. Chem. Theory Comput. 2022, 18, 3204.10.1021/acs.jctc.1c01207. PubMed DOI

Yamada T.; Miyazaki Y.; Harada S.; Kumar A.; Vanni S.; Shinoda W. Improved Protein Model in SPICA Force Field. J. Chem. Theory Comput. 2023, 19 (23), 8967–8977. 10.1021/acs.jctc.3c01016. PubMed DOI

Shinoda W.; Klein M. L. Effective Interaction between Small Unilamellar Vesicles as Probed by Coarse-Grained Molecular Dynamics Simulations. Pure Appl. Chem. 2014, 86 (2), 215–222. 10.1515/pac-2014-5023. DOI

Jusufi A.; DeVane R. H.; Shinoda W.; Klein M. L. Nanoscale Carbon Particles and the Stability of Lipid Bilayers. Soft Matter 2011, 7 (3), 1139.10.1039/C0SM00963F. DOI

Bacle A.; Gautier R.; Jackson C. L.; Fuchs P. F. J.; Vanni S. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophys. J. 2017, 112 (7), 1417–1430. 10.1016/j.bpj.2017.02.032. PubMed DOI PMC

Machado M. R.; Barrera E. E.; Klein F.; Sónora M.; Silva S.; Pantano S. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J. Chem. Theory Comput. 2019, 15 (4), 2719–2733. 10.1021/acs.jctc.9b00006. PubMed DOI

Brandner A.; Schüller A.; Melo F.; Pantano S. Exploring DNA Dynamics within Oligonucleosomes with Coarse-Grained Simulations: SIRAH Force Field Extension for Protein-DNA Complexes. Biochem. Biophys. Res. Commun. 2018, 498 (2), 319–326. 10.1016/j.bbrc.2017.09.086. PubMed DOI

Soñora M.; Martínez L.; Pantano S.; Machado M. R. Wrapping up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus. J. Chem. Inf. Model. 2021, 61 (1), 408–422. 10.1021/acs.jcim.0c01205. PubMed DOI

Garay P. G.; Barrera E. E.; Klein F.; Machado M. R.; Soñora M.; Pantano S. The SIRAH-CoV-2 Initiative: A Coarse-Grained Simulations’ Dataset of the SARS-CoV-2 Proteome. Front. Med. Technol. 2021, 3, 644039.10.3389/fmedt.2021.644039. PubMed DOI PMC

Salomon-Ferrer R.; Case D. A.; Walker R. C. An Overview of the Amber Biomolecular Simulation Package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3 (2), 198–210. 10.1002/wcms.1121. DOI

Hoogerbrugge P. J.; Koelman J. M. V. A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Epl 1992, 19 (3), 155–160. 10.1209/0295-5075/19/3/001. DOI

Groot R. D.; Warren P. B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107 (11), 4423–4435. 10.1063/1.474784. DOI

Peter E. K.; Pivkin I. V. A Polarizable Coarse-Grained Water Model for Dissipative Particle Dynamics. J. Chem. Phys. 2014, 141 (16), 164506.10.1063/1.4899317. PubMed DOI

Español P.; Warren P. B. Perspective: Dissipative Particle Dynamics. J. Chem. Phys. 2017, 146 (15), 150901.10.1063/1.4979514. PubMed DOI

Wang Y.; Hernandez R. Construction of Multiscale Dissipative Particle Dynamics (DPD) Models from Other Coarse-Grained Models. ACS Omega 2024, 10.1021/acsomega.4c01868. PubMed DOI PMC

de Meyer F.; Smit B. Effect of Cholesterol on the Structure of a Phospholipid Bilayer. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (10), 3654–3658. 10.1073/pnas.0809959106. PubMed DOI PMC

Li Z.; Gorfe A. A. Receptor-Mediated Membrane Adhesion of Lipid-Polymer Hybrid (LPH) Nanoparticles Studied by Dissipative Particle Dynamics Simulations. Nanoscale 2015, 7 (2), 814–824. 10.1039/C4NR04834B. PubMed DOI PMC

Burgess S.; Wang Z.; Vishnyakov A.; Neimark A. V. Adhesion, Intake, and Release of Nanoparticles by Lipid Bilayers. J. Colloid Interface Sci. 2020, 561, 58–70. 10.1016/j.jcis.2019.11.106. PubMed DOI

Wang S.; Guo H.; Li Y.; Li X. Penetration of Nanoparticles across a Lipid Bilayer: Effects of Particle Stiffness and Surface Hydrophobicity. Nanoscale 2019, 11 (9), 4025.10.1039/C8NR09381D. PubMed DOI

Chong G.; Foreman-Ortiz I. U.; Wu M.; Bautista A.; Murphy C. J.; Pedersen J. A.; Hernandez R. Defects in Self-Assembled Monolayers on Nanoparticles Prompt Phospholipid Extraction and Bilayer-Curvature-Dependent Deformations. J. Phys. Chem. C 2019, 123, 27951.10.1021/acs.jpcc.9b08583. DOI

Grafmüller A.; Shillcock J.; Lipowsky R. The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics. Biophys. J. 2009, 96 (7), 2658–2675. 10.1016/j.bpj.2008.11.073. PubMed DOI PMC

Yildiz M.; Kacar G. Investigation of Ibuprofen Loading in PEG-PLGA-PEG Micelles by Coarse-Grained DPD Simulations. MRS Adv. 2021, 6 (28), 689–694. 10.1557/s43580-021-00073-6. DOI

Kacar G. Molecular Understanding of Interactions, Structure, and Drug Encapsulation Efficiency of Pluronic Micelles from Dissipative Particle Dynamics Simulations. Colloid Polym. Sci. 2019, 297 (7–8), 1037–1051. 10.1007/s00396-019-04535-0. DOI

Guo R.; Mao J.; Yan L. T. Unique Dynamical Approach of Fully Wrapping Dendrimer-like Soft Nanoparticles by Lipid Bilayer Membrane. ACS Nano 2013, 7 (12), 10646–10653. 10.1021/nn4033344. PubMed DOI

Harris J.; Chipot C.; Roux B. How Is Membrane Permeation of Small Ionizable Molecules Affected by Protonation Kinetics?. J. Phys. Chem. B 2024, 128 (3), 795–811. 10.1021/acs.jpcb.3c06765. PubMed DOI PMC

Paloncýová M.; Šrejber M.; Čechová P.; Kührová P.; Zaoral F.; Otyepka M. Atomistic Insights into Organization of RNA-Loaded Lipid Nanoparticles. J. Phys. Chem. B 2023, 127 (5), 1158–1166. 10.1021/acs.jpcb.2c07671. PubMed DOI

Trollmann M. F. W.; Böckmann R. A. MRNA Lipid Nanoparticle Phase Transition. Biophys. J. 2022, 121, 3927.10.1016/j.bpj.2022.08.037. PubMed DOI PMC

Berka K.; Hendrychová T.; Anzenbacher P.; Otyepka M. Membrane Position of Ibuprofen Agrees with Suggested Access Path Entrance to Cytochrome P450 2C9 Active Site. J. Phys. Chem. A 2011, 115 (41), 11248–11255. 10.1021/jp204488j. PubMed DOI PMC

Paloncýová M.; Berka K.; Otyepka M. Molecular Insight into Affinities of Drugs and Their Metabolites to Lipid Bilayers. J. Phys. Chem. B 2013, 117 (8), 2403–2410. 10.1021/jp311802x. PubMed DOI

Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29 (11), 1859–1865. 10.1002/jcc.20945. PubMed DOI

Kern N. R.; Lee J.; Kyo Choi Y.; Im W. CHARMM-GUI Multicomponent Assembler for Modeling and Simulation of Complex Multicomponent Systems. Biophys. J. 2022, 121 (3), 529a.10.1016/j.bpj.2021.11.2789. PubMed DOI PMC

Qi Y.; Ingólfsson H. I.; Cheng X.; Lee J.; Marrink S. J.; Im W. CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. J. Chem. Theory Comput. 2015, 11 (9), 4486–4494. 10.1021/acs.jctc.5b00513. PubMed DOI

Hsu P. C.; Bruininks B. M. H.; Jefferies D.; Souza P. C. T.; Lee J.; Patel D. S.; Marrink S. J.; Qi Y.; Khalid S.; Im W. Charmm-Gui Martini Maker for Modeling and Simulation of Complex Bacterial Membranes with Lipopolysaccharides. J. Comput. Chem. 2017, 38 (27), 2354–2363. 10.1002/jcc.24895. PubMed DOI PMC

Wassenaar T. A.; Pluhackova K.; Böckmann R. A.; Marrink S. J.; Tieleman D. P. Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. J. Chem. Theory Comput. 2014, 10 (2), 676–690. 10.1021/ct400617g. PubMed DOI

Vickery O. N.; Stansfeld P. J. CG2AT2: An Enhanced Fragment-Based Approach for Serial Multi-Scale Molecular Dynamics Simulations. J. Chem. Theory Comput. 2021, 17 (10), 6472–6482. 10.1021/acs.jctc.1c00295. PubMed DOI PMC

Bennett W. F. D.; Bernardi A.; Ozturk T. N.; Ingólfsson H. I.; Fox S. J.; Sun D.; Maupin C. M. EzAlign: A Tool for Converting Coarse-Grained Molecular Dynamics Structures to Atomistic Resolution for Multiscale Modeling. Molecules 2024, 29 (15), 3557.10.3390/molecules29153557. PubMed DOI PMC

Pezeshkian W.; König M.; Wassenaar T. A.; Marrink S. J. Backmapping Triangulated Surfaces to Coarse-Grained Membrane Models. Nat. Commun. 2020, 11 (1), 2296.10.1038/s41467-020-16094-y. PubMed DOI PMC

Martínez J. M.; Martínez L. Packing Optimization for Automated Generation of Complex System’s Initial Configurations for Molecular Dynamics and Docking. J. Comput. Chem. 2003, 24 (7), 819–825. 10.1002/jcc.10216. PubMed DOI

Stanley N.; Pardo L.; Fabritiis G. De. The Pathway of Ligand Entry from the Membrane Bilayer to a Lipid G Protein-Coupled Receptor. Sci. Rep. 2016, 6, 1–9. 10.1038/srep22639. PubMed DOI PMC

Harada R.; Morita R.; Shigeta Y. Free-Energy Profiles for Membrane Permeation of Compounds Calculated Using Rare-Event Sampling Methods. J. Chem. Inf. Model. 2023, 63 (1), 259–269. 10.1021/acs.jcim.2c01097. PubMed DOI

Duché G.; Sanderson J. M. The Chemical Reactivity of Membrane Lipids. Chem. Rev. 2024, 124, 3284.10.1021/acs.chemrev.3c00608. PubMed DOI PMC

Wang A. H.; Zhang Z. C.; Li G. H. Advances in Enhanced Sampling Molecular Dynamics Simulations for Biomolecules. Chin. J. Chem. Phys. 2019, 32 (3), 277–286. 10.1063/1674-0068/cjcp1905091. DOI

Mori T.; Miyashita N.; Im W.; Feig M.; Sugita Y. Molecular Dynamics Simulations of Biological Membranes and Membrane Proteins Using Enhanced Conformational Sampling Algorithms. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (7), 1635–1651. 10.1016/j.bbamem.2015.12.032. PubMed DOI PMC

Matos A. L. L.; Pereira G.; Santos B. S.; Fontes A. Fluorescent Liposomes to Probe How DOTAP Lipid Concentrations Can Change Red Blood Cells Homeostasis. Biophotonics South Am. 2015, 9531, 953139.10.1117/12.2180957. DOI

Hénin J.; Lelièvre T.; Shirts M. R.; Valsson O.; Delemotte L. Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0]. Living J. Comput. Mol. Sci. 2022, 4 (1), 1–60. 10.33011/livecoms.4.1.1583. DOI

Shen W.; Zhou T.; Shi X. Enhanced Sampling in Molecular Dynamics Simulations and Their Latest Applications—A Review. Nano Res. 2023, 16 (12), 13474–13497. 10.1007/s12274-023-6311-9. DOI

Jämbeck J. P. M.; Lyubartsev A. P. Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers. J. Phys. Chem. Lett. 2013, 4 (11), 1781–1787. 10.1021/jz4007993. PubMed DOI

Bottaro S.; Di Palma F.; Bussi G. The Role of Nucleobase Interactions in RNA Structure and Dynamics. Nucleic Acids Res. 2014, 42 (21), 13306–13314. 10.1093/nar/gku972. PubMed DOI PMC

Branduardi D.; Gervasio F. L.; Parrinello M. From A to B in Free Energy Space. J. Chem. Phys. 2007, 126 (5), 054103.10.1063/1.2432340. PubMed DOI

Spiwok V.; Králová B. Metadynamics in the Conformational Space Nonlinearly Dimensionally Reduced by Isomap. J. Chem. Phys. 2011, 135 (22), 1–7. 10.1063/1.3660208. PubMed DOI

Paloncýová M.; Navrátilová V.; Berka K.; Laio A.; Otyepka M. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. J. Chem. Theory Comput. 2016, 12 (4), 2101–2109. 10.1021/acs.jctc.6b00075. PubMed DOI

Bhakat S. Collective Variable Discovery in the Age of Machine Learning: Reality, Hype and Everything in Between. RSC Adv. 2022, 12 (38), 25010–25024. 10.1039/D2RA03660F. PubMed DOI PMC

Ciccotti G.; Kapral R.; Vanden-Eijnden E. Blue Moon Sampling, Vectorial Reaction Coordinates, and Unbiased Constrained Dynamics. ChemPhysChem 2005, 6 (9), 1809–1814. 10.1002/cphc.200400669. PubMed DOI

Torrie G. M.; Valleau J. P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23 (2), 187–199. 10.1016/0021-9991(77)90121-8. DOI

Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. THE Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. Chem. 1992, 13 (8), 1011–1021. 10.1002/jcc.540130812. DOI

Darve E.; Rodríguez-Gómez D.; Pohorille A. Adaptive Biasing Force Method for Scalar and Vector Free Energy Calculations. J. Chem. Phys. 2008, 128 (14), 1–13. 10.1063/1.2829861. PubMed DOI

Laio A.; Parrinello M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (20), 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC

Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100 (2), 1–4. 10.1103/PhysRevLett.100.020603. PubMed DOI

Wu X.; Dai X.; Liao Y.; Sheng M.; Shi X. Investigation on Drug Entrapment Location in Liposomes and Transfersomes Based on Molecular Dynamics Simulation. J. Mol. Model. 2021, 27 (4), 111.10.1007/s00894-021-04722-3. PubMed DOI

Mitsuta Y.; Asada T.; Shigeta Y. Calculation of the Permeability Coefficients of Small Molecules through Lipid Bilayers by Free-Energy Reaction Network Analysis Following the Explicit Treatment of the Internal Conformation of the Solute. Phys. Chem. Chem. Phys. 2022, 24 (42), 26070–26082. 10.1039/D2CP03678A. PubMed DOI

Zamani Zakaria A.; Malde A. K.; Gould T. Permeability of Dermatological Solutes through the Short Periodicity Phase of Human Stratum Corneum Lipid Bilayers. J. Chem. Inf. Model. 2024, 64 (1), 276–288. 10.1021/acs.jcim.3c01362. PubMed DOI

Jo S.; Rui H.; Lim J. B.; Klauda J. B.; Im W. Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. J. Phys. Chem. B 2010, 114 (42), 13342–13348. 10.1021/jp108166k. PubMed DOI

Čechová P.; Paloncýová M.; Šrejber M.; Otyepka M. Mechanistic Insights into Interactions between Ionizable Lipid Nanodroplets and Biomembranes. J. Biomol. Struct. Dyn. 2024, 0 (0), 1–11. 10.1080/07391102.2024.2329307. PubMed DOI

Poojari C. S.; Scherer K. C.; Hub J. S. Free Energies of Membrane Stalk Formation from a Lipidomics Perspective. Nat. Commun. 2021, 12 (1), 1–10. 10.1038/s41467-021-26924-2. PubMed DOI PMC

Sugita Y.; Okamoto Y. Replica-Exchange Molecular Dynamics Method for Protein Folding Simulation. Chem. Phys. Lett. 1999, 314, 141–151. 10.1016/S0009-2614(99)01123-9. DOI

Kirkpatrick S.; Gelatt C. D.; Vecchi M. P. Optimization by Simulated Annealing. Science 1983, 220 (4598), 671–680. 10.1126/science.220.4598.671. PubMed DOI

Sugita Y.; Kitao A.; Okamoto Y. Multidimensional Replica-Exchange Method for Free-Energy Calculations. J. Chem. Phys. 2000, 113 (15), 6042–6051. 10.1063/1.1308516. DOI

Bunker A.; Dünweg B. Parallel Excluded Volume Tempering for Polymer Melts. Phys. Rev. E 2000, 63 (1), 016701.10.1103/PhysRevE.63.016701. PubMed DOI

Wang L.; Friesner R. A.; Berne B. J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115 (30), 9431–9438. 10.1021/jp204407d. PubMed DOI PMC

Miao Y.; Feher V. A.; McCammon J. A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11 (8), 3584–3595. 10.1021/acs.jctc.5b00436. PubMed DOI PMC

Pang Y. T.; Miao Y.; Wang Y.; McCammon J. A. Gaussian Accelerated Molecular Dynamics in NAMD. J. Chem. Theory Comput. 2017, 13 (1), 9–19. 10.1021/acs.jctc.6b00931. PubMed DOI PMC

Wang J.; Arantes P. R.; Bhattarai A.; Hsu R. V.; Pawnikar S.; Huang Y.M. M.; Palermo G.; Miao Y. Gaussian Accelerated Molecular Dynamics: Principles and Applications. WIREs Comput. Mol. Sci. 2021, 11 (5), e1521.10.1002/wcms.1521. PubMed DOI PMC

Hamelberg D.; Mongan J.; McCammon J. A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J. Chem. Phys. 2004, 120 (24), 11919–11929. 10.1063/1.1755656. PubMed DOI

Kamiya M.; Sugita Y. Flexible Selection of the Solute Region in Replica Exchange with Solute Tempering: Application to Protein-Folding Simulations. J. Chem. Phys. 2018, 149 (7), 072304.10.1063/1.5016222. PubMed DOI

Stelzl L. S.; Hummer G. Kinetics from Replica Exchange Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13 (8), 3927–3935. 10.1021/acs.jctc.7b00372. PubMed DOI

Zhang Y.; Liu X.; Chen J. Re-Balancing Replica Exchange with Solute Tempering for Sampling Dynamic Protein Conformations. J. Chem. Theory Comput. 2023, 19 (5), 1602–1614. 10.1021/acs.jctc.2c01139. PubMed DOI PMC

Luitz M. P.; Zacharias M. Protein-Ligand Docking Using Hamiltonian Replica Exchange Simulations with Soft Core Potentials. J. Chem. Inf. Model. 2014, 54 (6), 1669–1675. 10.1021/ci500296f. PubMed DOI

Srivastava A.; Tama F.; Kohda D.; Miyashita O. Computational Investigation of the Conformational Dynamics in Tom20-Mitochondrial Presequence Tethered Complexes. Proteins Struct. Funct. Bioinforma. 2019, 87 (1), 81–90. 10.1002/prot.25625. PubMed DOI

Roe D. R.; Bergonzo C.; Cheatham T. E. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods. J. Phys. Chem. B 2014, 118 (13), 3543–3552. 10.1021/jp4125099. PubMed DOI PMC

Tarakanova A.; Yeo G. C.; Baldock C.; Weiss A. S.; Buehler M. J. Molecular Model of Human Tropoelastin and Implications of Associated Mutations. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (28), 7338–7343. 10.1073/pnas.1801205115. PubMed DOI PMC

Tarakanova A.; Yeo G. C.; Baldock C.; Weiss A. S.; Buehler M. J. Tropoelastin Is a Flexible Molecule That Retains Its Canonical Shape. Macromol. Biosci. 2019, 19 (3), 1800250.10.1002/mabi.201800250. PubMed DOI

Jung J.; Mori T.; Kobayashi C.; Matsunaga Y.; Yoda T.; Feig M.; Sugita Y. GENESIS: A Hybrid-Parallel and Multi-Scale Molecular Dynamics Simulator with Enhanced Sampling Algorithms for Biomolecular and Cellular Simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5 (4), 310–323. 10.1002/wcms.1220. PubMed DOI PMC

Nagai T.; Okamoto Y. Replica-Exchange Molecular Dynamics Simulation of a Lipid Bilayer System with a Coarse-Grained Model. Mol. Simul. 2012, 38 (5), 437–441. 10.1080/08927022.2011.564172. DOI

Huang K.; García A. E. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering. J. Chem. Theory Comput. 2014, 10 (10), 4264–4272. 10.1021/ct500305u. PubMed DOI PMC

Gupta C.; Sarkar D.; Tieleman D. P.; Singharoy A. The Ugly, Bad, and Good Stories of Large-Scale Biomolecular Simulations. Curr. Opin. Struct. Biol. 2022, 73, 102338.10.1016/j.sbi.2022.102338. PubMed DOI

Bussi G.; Gervasio F. L.; Laio A.; Parrinello M. Free-Energy Landscape for β Hairpin Folding from Combined Parallel Tempering and Metadynamics. J. Am. Chem. Soc. 2006, 128 (41), 13435–13441. 10.1021/ja062463w. PubMed DOI

Mlýnský V.; Janeček M.; Kührová P.; Fröhlking T.; Otyepka M.; Bussi G.; Banáš P.; Šponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J. Chem. Theory Comput. 2022, 18 (4), 2642–2656. 10.1021/acs.jctc.1c01222. PubMed DOI

Mehdi S.; Smith Z.; Herron L.; Zou Z.; Tiwary P. Enhanced Sampling with Machine Learning. Annu. Rev. Phys. Chem. 2024, 75 (1), 347.10.1146/annurev-physchem-083122-125941. PubMed DOI PMC

Jung H.; Covino R.; Arjun A.; Leitold C.; Dellago C.; Bolhuis P. G.; Hummer G. Machine-Guided Path Sampling to Discover Mechanisms of Molecular Self-Organization. Nat. Comput. Sci. 2023, 3 (4), 334–345. 10.1038/s43588-023-00428-z. PubMed DOI PMC

Zhang J.; Chen D.; Xia Y.; Huang Y.-P.; Lin X.; Han X.; Ni N.; Wang Z.; Yu F.; Yang L.; et al. Artificial Intelligence Enhanced Molecular Simulations. J. Chem. Theory Comput. 2023, 19 (14), 4338–4350. 10.1021/acs.jctc.3c00214. PubMed DOI

Wang Y.; Lamim Ribeiro J. M.; Tiwary P. Machine Learning Approaches for Analyzing and Enhancing Molecular Dynamics Simulations. Curr. Opin. Struct. Biol. 2020, 61, 139–145. 10.1016/j.sbi.2019.12.016. PubMed DOI

Prašnikar E.; Ljubič M.; Perdih A.; Borišek J. Machine Learning Heralding a New Development Phase in Molecular Dynamics Simulations. Artif. Intell. Rev. 2024, 57 (4), 102.10.1007/s10462-024-10731-4. DOI

Schug A.; Weigt M.; Onuchic J. N.; Hwa T.; Szurmant H. High-Resolution Protein Complexes from Integrating Genomic Information with Molecular Simulation. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (52), 22124–22129. 10.1073/pnas.0912100106. PubMed DOI PMC

Colizzi F.; Orozco M. Probing Allosteric Regulations with Coevolution-Driven Molecular Simulations. Sci. Adv. 2021, 7 (37), 1–7. 10.1126/sciadv.abj0786. PubMed DOI PMC

Dos Santos R. N.; Morcos F.; Jana B.; Andricopulo A. D.; Onuchic J. N. Dimeric Interactions and Complex Formation Using Direct Coevolutionary Couplings. Sci. Rep. 2015, 5, 1–10. 10.1038/srep13652. PubMed DOI PMC

Dos Santos R. N.; Ferrari A. J. R.; De Jesus H. C. R.; Gozzo F. C.; Morcos F.; Martínez L. Enhancing Protein Fold Determination by Exploring the Complementary Information of Chemical Cross-Linking and Coevolutionary Signals. Bioinformatics 2018, 34 (13), 2201–2208. 10.1093/bioinformatics/bty074. PubMed DOI

dos Santos R. N.; Khan S.; Morcos F. Characterization of C-Ring Component Assembly in Flagellar Motors from Amino Acid Coevolution. R. Soc. Open Sci. 2018, 5 (5), 171854.10.1098/rsos.171854. PubMed DOI PMC

Fongang B.; Wadop Y. N.; Zhu Y.; Wagner E. J.; Kudlicki A.; Rowicka M. Coevolution Combined with Molecular Dynamics Simulations Provides Structural and Mechanistic Insights into the Interactions between the Integrator Complex Subunits. Comput. Struct. Biotechnol. J. 2023, 21, 5686–5697. 10.1016/j.csbj.2023.11.022. PubMed DOI PMC

Jumper J.; Hassabis D. Protein Structure Predictions to Atomic Accuracy with AlphaFold. Nat. Methods 2022, 19 (1), 11–12. 10.1038/s41592-021-01362-6. PubMed DOI

Martin-Barrios R.; Navas-Conyedo E.; Zhang X.; Chen Y.; Gulín-González J. An Overview about Neural Networks Potentials in Molecular Dynamics Simulation. Int. J. Quantum Chem. 2024, 124 (11), 1–27. 10.1002/qua.27389. DOI

Fedik N.; Zubatyuk R.; Kulichenko M.; Lubbers N.; Smith J. S.; Nebgen B.; Messerly R.; Li Y. W.; Boldyrev A. I.; Barros K.; et al. Extending Machine Learning beyond Interatomic Potentials for Predicting Molecular Properties. Nat. Rev. Chem. 2022, 6 (9), 653–672. 10.1038/s41570-022-00416-3. PubMed DOI

Pun G. P. P.; Batra R.; Ramprasad R.; Mishin Y. Physically Informed Artificial Neural Networks for Atomistic Modeling of Materials. Nat. Commun. 2019, 10 (1), 1–10. 10.1038/s41467-019-10343-5. PubMed DOI PMC

Omar S. I.; Keasar C.; Ben-Sasson A. J.; Haber E. Protein Design Using Physics Informed Neural Networks. Biomolecules 2023, 13 (3), 457.10.3390/biom13030457. PubMed DOI PMC

Hansch C.; Fujita T. P -σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86 (8), 1616–1626. 10.1021/ja01062a035. DOI

Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29 (6–7), 476–488. 10.1002/minf.201000061. PubMed DOI

Bishop C. M.Pattern Recognition and Machine Learning; Springer: New York, NY, 2006; Vol. 4.

Murphy K. P.Machine Learning: A Probabilistic Perspective; Springer Series in Statistics; The MIT Press: Cambridge, MA, 2012.

Hastie T.; Tibshirani R.; Friedman J.. The Elements of Statistical Learning; Springer Series in Statistics; Springer New York: New York, NY, 2009.

Fourches D.; Muratov E.; Tropsha A. Trust, but Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. J. Chem. Inf. Model. 2010, 50 (7), 1189–1204. 10.1021/ci100176x. PubMed DOI PMC

Fourches D.; Muratov E.; Tropsha A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model. 2016, 56 (7), 1243–1252. 10.1021/acs.jcim.6b00129. PubMed DOI PMC

Cheng L.; Zhu Y.; Ma J.; Aggarwal A.; Toh W. H.; Shin C.; Sangpachatanaruk W.; Weng G.; Kumar R.; Mao H.-Q.. Machine Learning Elucidates Design Features of Plasmid DNA Lipid Nanoparticles for Cell Type-Preferential Transfection. bioRxiv (Bioengineering), Dec. 8, 2023, 2023.12.07.570602. DOI: 10.1101/2023.12.07.570602. PubMed PMC

Harrison P. J.; Wieslander H.; Sabirsh A.; Karlsson J.; Malmsjö V.; Hellander A.; Wählby C.; Spjuth O. Deep-Learning Models for Lipid Nanoparticle-Based Drug Delivery. Nanomedicine 2021, 16 (13), 1097–1110. 10.2217/nnm-2020-0461. PubMed DOI

Ding D. Y.; Zhang Y.; Jia Y.; Sun J.. Machine Learning-Guided Lipid Nanoparticle Design for mRNA Delivery. arXiv (Biomolecules), August 29, 2023. DOI: 10.48550/arXiv.2308.01402(accessed 2024–11–22).

Ostro M. J.; Giacomoni D.; Lavelle D.; Paxton W.; Dray S. Evidence for Translation of Rabbit Globin MRNA after Liposomemediated Insertion into a Human Cell Line. Nature 1978, 274 (5674), 921–923. 10.1038/274921a0. PubMed DOI

Bao Z.; Yung F.; Hickman R. J.; Aspuru-Guzik A.; Bannigan P.; Allen C. Data-Driven Development of an Oral Lipid-Based Nanoparticle Formulation of a Hydrophobic Drug. Drug Delivery Transl. Res. 2024, 14, 1872.10.1007/s13346-023-01491-9. PubMed DOI

Xu Y.; Ma S.; Cui H.; Chen J.; Xu S.; Gong F.; Golubovic A.; Zhou M.; Wang K. C.; Varley A.; et al. AGILE Platform: A Deep Learning Powered Approach to Accelerate LNP Development for MRNA Delivery. Nat. Commun. 2024, 15 (1), 6305.10.1038/s41467-024-50619-z. PubMed DOI PMC

Moayedpour S.; Broadbent J.; Riahi S.; Bailey M.; V. Thu H.; Dobchev D.; Balsubramani A.; N. D. Santos R.; Kogler-Anele L.; Corrochano-Navarro A.; et al. Representations of Lipid Nanoparticles Using Large Language Models for Transfection Efficiency Prediction. Bioinformatics 2024, 40, btae342.10.1093/bioinformatics/btae342. PubMed DOI PMC

Reiser P.; Neubert M.; Eberhard A.; Torresi L.; Zhou C.; Shao C.; Metni H.; van Hoesel C.; Schopmans H.; Sommer T.; et al. Graph Neural Networks for Materials Science and Chemistry. Commun. Mater. 2022, 3 (1), 93.10.1038/s43246-022-00315-6. PubMed DOI PMC

Townshend R. J. L.; Eismann S.; Watkins A. M.; Rangan R.; Karelina M.; Das R.; Dror R. O. Geometric Deep Learning of RNA Structure. Science 2021, 373 (6558), 1047–1051. 10.1126/science.abe5650. PubMed DOI PMC

Wang Y.; Wang J.; Cao Z.; Barati Farimani A. Molecular Contrastive Learning of Representations via Graph Neural Networks. Nat. Mach. Intell. 2022, 4 (3), 279–287. 10.1038/s42256-022-00447-x. DOI

Wang W.; Feng S.; Ye Z.; Gao H.; Lin J.; Ouyang D. Prediction of Lipid Nanoparticles for MRNA Vaccines by the Machine Learning Algorithm. Acta Pharm. Sin. B 2022, 12 (6), 2950–2962. 10.1016/j.apsb.2021.11.021. PubMed DOI PMC

Rogers D.; Hahn M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50 (5), 742–754. 10.1021/ci100050t. PubMed DOI

Ke G.; Meng Q.; Finley T.; Wang T.; Chen W.; Ma W.; Ye Q.; Liu T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Proc. 31st Int. Conf. Neural Inf. Process. Syst. 2017, 3149–3157. 10.5555/3294996.3295074. DOI

Maharjan R.; Hada S.; Lee J. E.; Han H. K.; Kim K. H.; Seo H. J.; Foged C.; Jeong S. H. Comparative Study of Lipid Nanoparticle-Based MRNA Vaccine Bioprocess with Machine Learning and Combinatorial Artificial Neural Network-Design of Experiment Approach. Int. J. Pharm. 2023, 640 (April), 123012.10.1016/j.ijpharm.2023.123012. PubMed DOI

Benson S. P.; Pleiss J. Molecular Dynamics Simulations of Self-Emulsifying Drug-Delivery Systems (SEDDS): Influence of Excipients on Droplet Nanostructure and Drug Localization. Langmuir 2014, 30 (28), 8471–8480. 10.1021/la501143z. PubMed DOI

Balouch M.; Šrejber M.; Šoltys M.; Janská P.; Štěpánek F.; Berka K. In Silico Screening of Drug Candidates for Thermoresponsive Liposome Formulations. Mol. Syst. Des. Eng. 2021, 6 (5), 368–380. 10.1039/D0ME00160K. DOI

Venable R. M.; Krämer A.; Pastor R. W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119 (9), 5954–5997. 10.1021/acs.chemrev.8b00486. PubMed DOI PMC

Eid J.; Jraij A.; Greige-Gerges H.; Monticelli L. Effect of Quercetin on Lipid Membrane Rigidity: Assessment by Atomic Force Microscopy and Molecular Dynamics Simulations. BBA Adv. 2021, 1, 100018.10.1016/j.bbadva.2021.100018. PubMed DOI PMC

Siani P.; Donadoni E.; Ferraro L.; Re F.; Di Valentin C. Molecular Dynamics Simulations of Doxorubicin in Sphingomyelin-Based Lipid Membranes. Biochim. Biophys. Acta - Biomembr. 2022, 1864 (1), 183763.10.1016/j.bbamem.2021.183763. PubMed DOI

Róg T.; Girych M.; Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14 (10), 1062.10.3390/ph14101062. PubMed DOI PMC

Hamal P.; Nguyenhuu H.; Subasinghege Don V.; Kumal R. R.; Kumar R.; McCarley R. L.; Haber L. H. Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy. J. Phys. Chem. B 2019, 123 (36), 7722–7730. 10.1021/acs.jpcb.9b05954. PubMed DOI

Konig M.; Vries R. de; Grunewald F.; Marrink S.-J.; Pezeshkian W.. Curvature-Induced Lipid Sorting beyond the Critical Packing Parameter. bioXriv (Biophysics), December 15, 2023, 2023.12.15.571845. DOI: 10.1101/2023.12.15.571845(accessed 2024–11–22).

Xiang T.-X.; Anderson B. D. Liposomal Drug Transport: A Molecular Perspective from Molecular Dynamics Simulations in Lipid Bilayers. Adv. Drug Delivery Rev. 2006, 58 (12–13), 1357–1378. 10.1016/j.addr.2006.09.002. PubMed DOI

Salahshoori I.; Golriz M.; Nobre M. A. L.; Mahdavi S.; Eshaghi Malekshah R.; Javdani-Mallak A.; Namayandeh Jorabchi M.; Ali Khonakdar H.; Wang Q.; Mohammadi A. H.; et al. Simulation-Based Approaches for Drug Delivery Systems: Navigating Advancements, Opportunities, and Challenges. J. Mol. Liq. 2024, 395, 123888.10.1016/j.molliq.2023.123888. DOI

Santos D. E. S.; De Nicola A.; dos Santos V. F.; Milano G.; Soares T. A. Exploring the Molecular Dynamics of a Lipid-A Vesicle at the Atom Level: Morphology and Permeation Mechanism. J. Phys. Chem. B 2023, 127 (30), 6694–6702. 10.1021/acs.jpcb.3c02848. PubMed DOI PMC

Santos D. E. S.; De Nicola A.; dos Santos V. F.; Milano G.; Soares T. A. Exploring the Molecular Dynamics of a Lipid-A Vesicle at the Atom Level: Morphology and Permeation Mechanism. J. Phys. Chem. B 2023, 127 (30), 6694–6702. 10.1021/acs.jpcb.3c02848. PubMed DOI PMC

Man V. H.; Li M. S.; Derreumaux P.; Wang J.; Nguyen P. H. Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. Langmuir 2021, 37 (26), 7945–7954. 10.1021/acs.langmuir.1c00555. PubMed DOI

Vetta M. De; González L.; Nogueira J. J. Hydrogen Bonding Regulates the Rigidity of Liposome-Encapsulated Chlorin Photosensitizers. ChemistryOpen 2018, 7 (6), 475–483. 10.1002/open.201800050. PubMed DOI PMC

Knecht V.; Marrink S. J. Molecular Dynamics Simulations of Lipid Vesicle Fusion in Atomic Detail. Biophys. J. 2007, 92 (12), 4254–4261. 10.1529/biophysj.106.103572. PubMed DOI PMC

De Vries A. H.; Mark A. E.; Marrink S. J. Molecular Dynamics Simulation of the Spontaneous Formation of a Small DPPC Vesicle in Water in Atomistic Detail. J. Am. Chem. Soc. 2004, 126 (14), 4488–4489. 10.1021/ja0398417. PubMed DOI

Wu S.; Guo H. Dissipative Particle Dynamics Simulation Study of the Bilayer-Vesicle Transition. Sci. China, Ser. B Chem. 2008, 51 (8), 743–750. 10.1007/s11426-008-0077-5. DOI

Kacar G. Structural and Energetic Properties of Lecithin Liposomes Encapsulating Coenzyme Q10 from Coarse-Grained Simulations. Chem. Pap. 2024, 78 (7), 4551–4565. 10.1007/s11696-024-03417-2. DOI

Parchekani J.; Allahverdi A.; Taghdir M.; Naderi-Manesh H. Design and Simulation of the Liposomal Model by Using a Coarse-Grained Molecular Dynamics Approach towards Drug Delivery Goals. Sci. Rep. 2022, 12 (1), 1–15. 10.1038/s41598-022-06380-8. PubMed DOI PMC

Markvoort A. J.; Pieterse K.; Steijaert M. N.; Spijker P.; Hilbers P. A. J. The Bilayer-Vesicle Transition Is Entropy Driven. J. Phys. Chem. B 2005, 109 (47), 22649–22654. 10.1021/jp053038c. PubMed DOI

Shinoda W.; DeVane R.; Klein M. L. Computer Simulation Studies of Self-Assembling Macromolecules. Curr. Opin. Struct. Biol. 2012, 22 (2), 175–186. 10.1016/j.sbi.2012.01.011. PubMed DOI

Dwiastuti R.; Radifar M.; Marchaban; Noegrohati S.; Istyastono E. P. Molecular Dynamics Simulations and Empirical Observations on Soy Lecithin Liposome Preparation. Indones. J. Chem. 2016, 16 (2), 222–228. 10.22146/ijc.21167. DOI

Winter N. D.; Murphy R. K. J.; O’Halloran T. V.; Schatz G. C. Development and Modeling of Arsenic-Trioxide-Loaded Thermosensitive Liposomes for Anticancer Drug Delivery. J. Liposome Res. 2011, 21 (2), 106–115. 10.3109/08982104.2010.483597. PubMed DOI PMC

Lee H.; Kim H. R.; Larson R. G.; Park J. C. Effects of the Size, Shape, and Structural Transition of Thermosensitive Polypeptides on the Stability of Lipid Bilayers and Liposomes. Macromolecules 2012, 45 (17), 7304–7312. 10.1021/ma301327j. DOI

Shillcock J. C. Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics. Langmuir 2012, 28 (1), 541–547. 10.1021/la2033803. PubMed DOI

Markvoort A. J.; Van Santen R. A.; Hilbers P. A. J. Vesicle Shapes from Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110 (45), 22780–22785. 10.1021/jp064888a. PubMed DOI

Wu H.-L.; Sheng Y.-J.; Tsao H.-K. Phase Behaviors and Membrane Properties of Model Liposomes: Temperature Effect. J. Chem. Phys. 2014, 141 (12), 124906.10.1063/1.4896382. PubMed DOI

Chng C. P. Effect of Simulation Temperature on Phospholipid Bilayer-Vesicle Transition Studied by Coarse-Grained Molecular Dynamics Simulations. Soft Matter 2013, 9 (30), 7294–7301. 10.1039/c3sm51038g. DOI

Koshiyama K.; Nakata K. Effects of Lipid Saturation on Bicelle to Vesicle Transition of a Binary Phospholipid Mixture: A Molecular Dynamics Simulation Study. Soft Matter 2023, 19 (39), 7655–7662. 10.1039/D3SM00904A. PubMed DOI

Durrant J. D.; Amaro R. E. LipidWrapper: An Algorithm for Generating Large-Scale Membrane Models of Arbitrary Geometry. PLoS Comput. Biol. 2014, 10 (7), e1003720.10.1371/journal.pcbi.1003720. PubMed DOI PMC

Risselada H. J.; Mark A. E.; Marrink S. J. Application of Mean Field Boundary Potentials in Simulations of Lipid Vesicles. J. Phys. Chem. B 2008, 112 (25), 7438–7447. 10.1021/jp0758519. PubMed DOI

Hashemzadeh H.; Javadi H.; Darvishi M. H. Study of Structural Stability and Formation Mechanisms in DSPC and DPSM Liposomes: A Coarse-Grained Molecular Dynamics Simulation. Sci. Rep. 2020, 10 (1), 1–10. 10.1038/s41598-020-58730-z. PubMed DOI PMC

Tamai H.; Okutsu N.; Tokuyama Y.; Shimizu E.; Miyagi S.; Shulga S.; Danilov V. I.; Kurita N. A Coarse Grained Molecular Dynamics Study on the Structure and Stability of Small-Sized Liposomes. Mol. Simul. 2016, 42 (2), 122–130. 10.1080/08927022.2015.1020487. DOI

Aydin F.; Ludford P.; Dutt M. Phase Segregation in Bio-Inspired Multi-Component Vesicles Encompassing Double Tail Phospholipid Species. Soft Matter 2014, 10 (32), 6096–6108. 10.1039/C4SM00998C. PubMed DOI

Risselada H. J.; Marrink S. J. Curvature Effects on Lipid Packing and Dynamics in Liposomes Revealed by Coarse Grained Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2009, 11 (12), 2056–2067. 10.1039/b818782g. PubMed DOI

Wang C. W.; Lin M. H.; Fischer W. B. Cholesterol Affected Dynamics of Lipids in Tailor-Made Vesicles by ArcVes Software during Multi Micro Second Coarse Grained Molecular Dynamics Simulations. AIMS Biophys. 2023, 10 (4), 482–502. 10.3934/biophy.2023027. DOI

Risselada H. J.; Marrink S. J. The Freezing Process of Small Lipid Vesicles at Molecular Resolution. Soft Matter 2009, 5 (22), 4531–4541. 10.1039/b913210d. DOI

Shinoda W.; Nakamura T.; Nielsen S. O. Free Energy Analysis of Vesicle-to-Bicelle Transformation. Soft Matter 2011, 7 (19), 9012.10.1039/c1sm05404j. DOI

Duran T.; P. Costa A.; Kneski J.; Xu X.; J. Burgess D.; Mohammadiarani H.; Chaudhuri B. Manufacturing Process of Liposomal Formation: A Coarse-Grained Molecular Dynamics Simulation. Int. J. Pharm. 2024, 659, 124288.10.1016/j.ijpharm.2024.124288. PubMed DOI

Zhu J.; Xu L.; Wang W.; Xiao M.; Li J.; Wang L.; Jiang X. Molecular Dynamics Simulations Reveal Octanoylated Hyaluronic Acid Enhances Liposome Stability, Stealth and Targeting. ACS Omega 2024, 9 (31), 33833–33844. 10.1021/acsomega.4c03526. PubMed DOI PMC

Lin C.-M.; Wu D. T.; Tsao H.-K.; Sheng Y.-J. Membrane Properties of Swollen Vesicles: Growth, Rupture, and Fusion. Soft Matter 2012, 8 (22), 6139.10.1039/c2sm25518a. DOI

Markvoort A. J.; Spijker P.; Smeijers A. F.; Pieterse K.; VanSanten R. A.; Hilbers P. A. J. Vesicle Deformation by Draining: Geometrical and Topological Shape Changes. J. Phys. Chem. B 2009, 113 (25), 8731–8737. 10.1021/jp901277h. PubMed DOI

Li Z.; Zhang Y.; Ma J.; Meng Q.; Fan J. Modeling Interactions between Liposomes and Hydrophobic Nanosheets. Small 2019, 15 (6), 1–10. 10.1002/smll.201804992. PubMed DOI

Blasco S.; Sukeník L.; Vácha R. Nanoparticle Induced Fusion of Lipid Membranes. Nanoscale 2024, 16 (21), 10221–10229. 10.1039/D4NR00591K. PubMed DOI PMC

Jämbeck J. P. M.; Eriksson E. S. E.; Laaksonen A.; Lyubartsev A. P.; Eriksson L. A. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model. J. Chem. Theory Comput. 2014, 10 (1), 5–13. 10.1021/ct400466m. PubMed DOI

Pickholz M.; Giupponi G. Coarse Grained Simulations of Local Anesthetics Encapsulated into a Liposome. J. Phys. Chem. B 2010, 114 (20), 7009–7015. 10.1021/jp909148n. PubMed DOI

Genheden S.; Eriksson L. A. Estimation of Liposome Penetration Barriers of Drug Molecules with All-Atom and Coarse-Grained Models. J. Chem. Theory Comput. 2016, 12 (9), 4651–4661. 10.1021/acs.jctc.6b00557. PubMed DOI

Smeijers A. F.; Markvoort A. J.; Pieterse K.; Hilbers P. A. J. A Detailed Look at Vesicle Fusion. J. Phys. Chem. B 2006, 110 (26), 13212–13219. 10.1021/jp060824o. PubMed DOI

Stevens M. J.; Hoh J. H.; Woolf T. B. Insights into the Molecular Mechanism of Membrane Fusion from Simulation: Evidence for the Association of Splayed Tails. Phys. Rev. Lett. 2003, 91 (18), 1–4. 10.1103/PhysRevLett.91.188102. PubMed DOI

Mirjanian D.; Dickey A. N.; Hoh J. H.; Woolf T. B.; Stevens M. J. Splaying of Aliphatic Tails Plays a Central Role in Barrier Crossing during Liposome Fusion. J. Phys. Chem. B 2010, 114 (34), 11061–11068. 10.1021/jp1055182. PubMed DOI PMC

Noguchi H.; Takasu M. Fusion Pathways of Vesicles: A Brownian Dynamics Simulation. J. Chem. Phys. 2001, 115 (20), 9547–9551. 10.1063/1.1414314. DOI

Marrink S. J.; Mark A. E. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. Am. Chem. Soc. 2003, 125 (37), 11144–11145. 10.1021/ja036138+. PubMed DOI

Chen L.; Wu Z.; Wu X.; Liao Y.; Dai X.; Shi X. The Application of Coarse-Grained Molecular Dynamics to the Evaluation of Liposome Physical Stability. AAPS PharmSciTech 2020, 21 (5), 1–8. 10.1208/s12249-020-01680-6. PubMed DOI

Lin C.-M.; Li C.-S.; Sheng Y.-J.; Wu D. T.; Tsao H.-K. Size-Dependent Properties of Small Unilamellar Vesicles Formed by Model Lipids. Langmuir 2012, 28 (1), 689–700. 10.1021/la203755v. PubMed DOI

Kasson P. M.; Pande V. S. Control of Membrane Fusion Mechanism by Lipid Composition: Predictions from Ensemble Molecular Dynamics. PLoS Comput. Biol. 2007, 3 (11), e22010.1371/journal.pcbi.0030220. PubMed DOI PMC

Kasson P. M.; Kelley N. W.; Singhal N.; Vrljic M.; Brunger A. T.; Pande V. S. Ensemble Molecular Dynamics Yields Submillisecond Kinetics and Intermediates of Membrane Fusion. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (32), 11916–11921. 10.1073/pnas.0601597103. PubMed DOI PMC

Kawamoto S.; Klein M. L.; Shinoda W. Coarse-Grained Molecular Dynamics Study of Membrane Fusion: Curvature Effects on Free Energy Barriers along the Stalk Mechanism. J. Chem. Phys. 2015, 143 (24), 243112.10.1063/1.4933087. PubMed DOI

Chng C. P.; Hsia K. J.; Huang C. Modulation of Lipid Vesicle-Membrane Interactions by Cholesterol. Soft Matter 2022, 18 (40), 7752–7761. 10.1039/D2SM00693F. PubMed DOI

Shen Z.; Ye H.; Kröger M.; Tang S.; Li Y. Interplay between Ligand Mobility and Nanoparticle Geometry during Cellular Uptake of PEGylated Liposomes and Bicelles. Nanoscale 2019, 11 (34), 15971–15983. 10.1039/C9NR02408E. PubMed DOI

Settanni G. Computational Approaches to Lipid-Based Nucleic Acid Delivery Systems. Eur. Phys. J. E 2023, 46 (12), 1–13. 10.1140/epje/s10189-023-00385-5. PubMed DOI PMC

Paloncýová M.; Čechová P.; Šrejber M.; Kührová P.; Otyepka M. Role of Ionizable Lipids in SARS-CoV-2 Vaccines As Revealed by Molecular Dynamics Simulations: From Membrane Structure to Interaction with MRNA Fragments. J. Phys. Chem. Lett. 2021, 12 (45), 11199–11205. 10.1021/acs.jpclett.1c03109. PubMed DOI

Dehghani-Ghahnaviyeh S.; Smith M.; Xia Y.; Dousis A.; Grossfield A.; Sur S. Ionizable Amino Lipids Distribution and Effects on DSPC/Cholesterol Membranes: Implications for Lipid Nanoparticle Structure. J. Phys. Chem. B 2023, 127, 6928.10.1021/acs.jpcb.3c01296. PubMed DOI PMC

Ramezanpour M.; Tieleman D. P. Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release. Langmuir 2022, 38 (24), 7462–7471. 10.1021/acs.langmuir.2c00430. PubMed DOI PMC

Bruininks B. M. H.; Souza P. C. T.; Ingolfsson H.; Marrink S. J. A Molecular View on the Escape of Lipoplexed DNA from the Endosome. Elife 2020, 9, 1–16. 10.7554/eLife.52012. PubMed DOI PMC

Farago O.; Grønbech-Jensen N.; Pincus P. Mesoscale Computer Modeling of Lipid-DNA Complexes for Gene Therapy. Phys. Rev. Lett. 2006, 96 (1), 1–4. 10.1103/PhysRevLett.96.018102. PubMed DOI

Khalid S.; Bond P. J.; Holyoake J.; Hawtin R. W.; Sansom M. S. P. DNA and Lipid Bilayers: Self-Assembly and Insertion. J. R. Soc. Interface 2008, 5, 241–250. 10.1098/rsif.2008.0239.focus. PubMed DOI PMC

Corsi J.; Hawtin R. W.; Ces O.; Attard G. S.; Khalid S. DNA Lipoplexes: Formation of the Inverse Hexagonal Phase Observed by Coarse-Grained Molecular Dynamics Simulation. Langmuir 2010, 26 (14), 12119–12125. 10.1021/la101448m. PubMed DOI

Leung A. K. K.; Hafez I. M.; Baoukina S.; Belliveau N. M.; Zhigaltsev I. V.; Afshinmanesh E.; Tieleman D. P.; Hansen C. L.; Hope M. J.; Cullis P. R. Lipid Nanoparticles Containing SiRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core. J. Phys. Chem. C 2012, 116 (34), 18440–18450. 10.1021/jp303267y. PubMed DOI PMC

Casey J. R.; Grinstein S.; Orlowski J. Sensors and Regulators of Intracellular PH. Nat. Rev. Mol. Cell Biol. 2010, 11 (1), 50–61. 10.1038/nrm2820. PubMed DOI

Brader M. L.; Williams S. J.; Banks J. M.; Hui W. H.; Zhou Z. H.; Jin L. Encapsulation State of Messenger RNA inside Lipid Nanoparticles. Biophys. J. 2021, 120 (14), 2766–2770. 10.1016/j.bpj.2021.03.012. PubMed DOI PMC

Garaizar A.; Díaz-Oviedo D.; Zablowsky N.; Rissanen S.; Köbberling J.; Sun J.; Steiger C.; Steigemann P.; Mann F. A.; Meier K. Toward Understanding Lipid Reorganization in RNA Lipid Nanoparticles in Acidic Environments. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (45), e240455512110.1073/pnas.2404555121. PubMed DOI PMC

Dane E. L.; Belessiotis-Richards A.; Backlund C.; Wang J.; Hidaka K.; Milling L. E.; Bhagchandani S.; Melo M. B.; Wu S.; Li N.; et al. STING Agonist Delivery by Tumour-Penetrating PEG-Lipid Nanodiscs Primes Robust Anticancer Immunity. Nat. Mater. 2022, 21 (6), 710–720. 10.1038/s41563-022-01251-z. PubMed DOI PMC

Machado N.; Bruininks B. M. H.; Singh P.; dos Santos L.; Dal Pizzol C.; Dieamant G. D. C.; Kruger O.; Martin A. A.; Marrink S. J.; Souza P. C. T.; et al. Complex Nanoemulsion for Vitamin Delivery: Droplet Organization and Interaction with Skin Membranes. Nanoscale 2022, 14 (2), 506–514. 10.1039/D1NR04610A. PubMed DOI

Khalkhali M.; Mohammadinejad S.; Khoeini F.; Rostamizadeh K. Vesicle-like Structure of Lipid-Based Nanoparticles as Drug Delivery System Revealed by Molecular Dynamics Simulations. Int. J. Pharm. 2019, 559, 173–181. 10.1016/j.ijpharm.2019.01.036. PubMed DOI

Quemener E.; Corvellec M. SIDUS–the Solution for Extreme Deduplication of an Operating System. Linux J. 2013, 2013 (235), 3.10.5555/2555789.2555792. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...