Computational Methods for Modeling Lipid-Mediated Active Pharmaceutical Ingredient Delivery
Language English Country United States Media print-electronic
Document type Journal Article, Review
PubMed
39879096
PubMed Central
PMC11881150
DOI
10.1021/acs.molpharmaceut.4c00744
Knihovny.cz E-resources
- Keywords
- ionizable lipid, lipid nanocarrier, lipid nanoparticle, liposome, molecular simulation, vesicle,
- MeSH
- Pharmaceutical Preparations chemistry administration & dosage MeSH
- Drug Delivery Systems * methods MeSH
- Humans MeSH
- Lipids * chemistry MeSH
- Nanoparticles chemistry MeSH
- Drug Carriers * chemistry MeSH
- Computer Simulation MeSH
- Molecular Dynamics Simulation MeSH
- Machine Learning MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Pharmaceutical Preparations MeSH
- Lipids * MeSH
- Drug Carriers * MeSH
Lipid-mediated delivery of active pharmaceutical ingredients (API) opened new possibilities in advanced therapies. By encapsulating an API into a lipid nanocarrier (LNC), one can safely deliver APIs not soluble in water, those with otherwise strong adverse effects, or very fragile ones such as nucleic acids. However, for the rational design of LNCs, a detailed understanding of the composition-structure-function relationships is missing. This review presents currently available computational methods for LNC investigation, screening, and design. The state-of-the-art physics-based approaches are described, with the focus on molecular dynamics simulations in all-atom and coarse-grained resolution. Their strengths and weaknesses are discussed, highlighting the aspects necessary for obtaining reliable results in the simulations. Furthermore, a machine learning, i.e., data-based learning, approach to the design of lipid-mediated API delivery is introduced. The data produced by the experimental and theoretical approaches provide valuable insights. Processing these data can help optimize the design of LNCs for better performance. In the final section of this Review, state-of-the-art of computer simulations of LNCs are reviewed, specifically addressing the compatibility of experimental and computational insights.
mRNA Center of Excellence Sanofi 69280 Marcy l'Étoile France
mRNA Center of Excellence Sanofi Waltham Massachusetts 02451 United States
See more in PubMed
Manzari M. T.; Shamay Y.; Kiguchi H.; Rosen N.; Scaltriti M.; Heller D. A. Targeted Drug Delivery Strategies for Precision Medicines. Nat. Rev. Mater. 2021, 6 (4), 351–370. 10.1038/s41578-020-00269-6. PubMed DOI PMC
Rommasi F.; Esfandiari N. Liposomal Nanomedicine: Applications for Drug Delivery in Cancer Therapy. Nanoscale Res. Lett. 2021, 16 (1), 95.10.1186/s11671-021-03553-8. PubMed DOI PMC
Barenholz Y. Doxil® - The First FDA-Approved Nano-Drug: Lessons Learned. J. Controlled Release 2012, 160 (2), 117–134. 10.1016/j.jconrel.2012.03.020. PubMed DOI
Mitchell M. J.; Billingsley M. M.; Haley R. M.; Wechsler M. E.; Peppas N. A.; Langer R. Engineering Precision Nanoparticles for Drug Delivery. Nat. Rev. Drug Discovery 2021, 20 (2), 101–124. 10.1038/s41573-020-0090-8. PubMed DOI PMC
Duggan S. T.; Keating G. M. Pegylated Liposomal Doxorubicin. Drugs 2011, 71 (18), 2531–2558. 10.2165/11207510-000000000-00000. PubMed DOI
Allen T. M.; Cullis P. R. Liposomal Drug Delivery Systems: From Concept to Clinical Applications. Adv. Drug Delivery Rev. 2013, 65 (1), 36–48. 10.1016/j.addr.2012.09.037. PubMed DOI
Babadi D.; Dadashzadeh S.; Osouli M.; Abbasian Z.; Daryabari M. S.; Sadrai S.; Haeri A. Biopharmaceutical and Pharmacokinetic Aspects of Nanocarrier-Mediated Oral Delivery of Poorly Soluble Drugs. J. Drug Delivery Sci. Technol. 2021, 62, 102324.10.1016/j.jddst.2021.102324. DOI
Zhang Y. Q.; Guo R. R.; Chen Y. H.; Li T. C.; Du W. Z.; Xiang R. W.; Guan J.-B.; Li Y. P.; Huang Y. Y.; Yu Z. Q.; et al. Ionizable Drug Delivery Systems for Efficient and Selective Gene Therapy. Mil. Med. Res. 2023, 10 (1), 1–29. 10.1186/s40779-023-00445-z. PubMed DOI PMC
Sun D.; Lu Z.-R. Structure and Function of Cationic and Ionizable Lipids for Nucleic Acid Delivery. Pharm. Res. 2023, 40, 27.10.1007/s11095-022-03460-2. PubMed DOI PMC
Verbeke R.; Lentacker I.; De Smedt S. C.; Dewitte H. Three Decades of Messenger RNA Vaccine Development. Nano Today 2019, 28, 100766.10.1016/j.nantod.2019.100766. DOI
Samaridou E.; Heyes J.; Lutwyche P. Lipid Nanoparticles for Nucleic Acid Delivery: Current Perspectives. Adv. Drug Delivery Rev. 2020, 154–155, 37–63. 10.1016/j.addr.2020.06.002. PubMed DOI
Mulligan M. J.; Lyke K. E.; Kitchin N.; Absalon J.; Gurtman A.; Lockhart S.; Neuzil K.; Raabe V.; Bailey R.; Swanson K. A.; et al. Phase I/II Study of COVID-19 RNA Vaccine BNT162b1 in Adults. Nature 2020, 586 (7830), 589–593. 10.1038/s41586-020-2639-4. PubMed DOI
Goel R. R.; Painter M. M.; Apostolidis S. A.; Mathew D.; Meng W.; Rosenfeld A. M.; Lundgreen K. A.; Reynaldi A.; Khoury D. S.; Pattekar A.; et al. MRNA Vaccines Induce Durable Immune Memory to SARS-CoV-2 and Variants of Concern. Science 2021, 374 (6572), abm082.10.1126/science.abm0829. PubMed DOI PMC
Schoenmaker L.; Witzigmann D.; Kulkarni J. A.; Verbeke R.; Kersten G.; Jiskoot W.; Crommelin D. J. A. MRNA-Lipid Nanoparticle COVID-19 Vaccines: Structure and Stability. Int. J. Pharm. 2021, 601 (April), 120586.10.1016/j.ijpharm.2021.120586. PubMed DOI PMC
Hou X.; Zaks T.; Langer R.; Dong Y. Lipid Nanoparticles for MRNA Delivery. Nat. Rev. Mater. 2021, 6 (12), 1078–1094. 10.1038/s41578-021-00358-0. PubMed DOI PMC
Pardi N.; Hogan M. J.; Porter F. W.; Weissman D. MRNA Vaccines-a New Era in Vaccinology. Nat. Rev. Drug Discovery 2018, 17 (4), 261–279. 10.1038/nrd.2017.243. PubMed DOI PMC
Buschmann M. D.; Carrasco M. J.; Alishetty S.; Paige M.; Alameh M. G.; Weissman D. Nanomaterial Delivery Systems for Mrna Vaccines. Vaccines 2021, 9 (1), 65.10.3390/vaccines9010065. PubMed DOI PMC
Mehta M.; Bui T. A.; Yang X.; Aksoy Y.; Goldys E. M.; Deng W. Lipid-Based Nanoparticles for Drug/Gene Delivery: An Overview of the Production Techniques and Difficulties Encountered in Their Industrial Development. ACS Mater. Au 2023, 3 (6), 600–619. 10.1021/acsmaterialsau.3c00032. PubMed DOI PMC
Sasso J. M.; Ambrose B. J. B.; Tenchov R.; Datta R. S.; Basel M. T.; DeLong R. K.; Zhou Q. A. The Progress and Promise of RNA Medicine–An Arsenal of Targeted Treatments. J. Med. Chem. 2022, 65 (10), 6975–7015. 10.1021/acs.jmedchem.2c00024. PubMed DOI PMC
Tenchov R.; Bird R.; Curtze A. E.; Zhou Q. Lipid Nanoparticles–From Liposomes to MRNA Vaccine Delivery, a Landscape of Research Diversity and Advancement. ACS Nano 2021, 15 (11), 16982–17015. 10.1021/acsnano.1c04996. PubMed DOI
Chen L. H.; Hu J. N. Development of Nano-Delivery Systems for Loaded Bioactive Compounds: Using Molecular Dynamics Simulations. Crit. Rev. Food Sci. Nutr. 2024, 0 (0), 1–22. 10.1080/10408398.2023.2301427. PubMed DOI
Scioli Montoto S.; Muraca G.; Ruiz M. E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 1–24. 10.3389/fmolb.2020.587997. PubMed DOI PMC
Akbarzadeh A.; Rezaei-Sadabady R.; Davaran S.; Joo S. W.; Zarghami N.; Hanifehpour Y.; Samiei M.; Kouhi M.; Nejati-Koshki K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8 (1), 1.10.1186/1556-276X-8-102. PubMed DOI PMC
Freeman F.; Hayward J.; Chapman D. Permeability Studies on Liposomes Formed from Polymerisable Diacetylenic Phospholipids and Their Potential Applications as Drug Delivery Systems. Biochim. Biophys. Acta - Gen. Subj. 1987, 924 (2), 341–351. 10.1016/0304-4165(87)90032-8. PubMed DOI
Pattni B. S.; Chupin V. V.; Torchilin V. P. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115 (19), 10938–10966. 10.1021/acs.chemrev.5b00046. PubMed DOI
Saraf S.; Jain A.; Tiwari A.; Verma A.; Panda P. K.; Jain S. K. Advances in Liposomal Drug Delivery to Cancer: An Overview. J. Drug Delivery Sci. Technol. 2020, 56, 101549.10.1016/j.jddst.2020.101549. DOI
Zhang L.; Chan J. M.; Gu F. X.; Rhee J. W.; Wang A. Z.; Radovic-Moreno A. F.; Alexis F.; Langer R.; Farokhzad O. C. Self-Assembled Lipid-Polymer Hybrid Nanoparticles: A Robust Drug Delivery Platform. ACS Nano 2008, 2 (8), 1696–1702. 10.1021/nn800275r. PubMed DOI PMC
Almeida A. J.; Souto E. Solid Lipid Nanoparticles as a Drug Delivery System for Peptides and Proteins. Adv. Drug Delivery Rev. 2007, 59 (6), 478–490. 10.1016/j.addr.2007.04.007. PubMed DOI
Erdogan S. Liposomal Nanocarriers for Tumor Imaging. J. Biomed. Nanotechnol. 2009, 5 (2), 141–150. 10.1166/jbn.2009.1016. PubMed DOI
Gilbert J.; Sebastiani F.; Arteta M. Y.; Terry A.; Fornell A.; Russell R.; Mahmoudi N.; Nylander T. Evolution of the Structure of Lipid Nanoparticles for Nucleic Acid Delivery: From in Situ Studies of Formulation to Colloidal Stability. J. Colloid Interface Sci. 2024, 660, 66–76. 10.1016/j.jcis.2023.12.165. PubMed DOI
Yanez Arteta M.; Kjellman T.; Bartesaghi S.; Wallin S.; Wu X.; Kvist A. J.; Dabkowska A.; Székely N.; Radulescu A.; Bergenholtz J.; Lindfors L.; et al. Successful Reprogramming of Cellular Protein Production through MRNA Delivered by Functionalized Lipid Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (15), E3351–E3360. 10.1073/pnas.1720542115. PubMed DOI PMC
Ibrahim M.; Gilbert J.; Heinz M.; Nylander T.; Schwierz N. Structural Insights on Ionizable Dlin-MC3-DMA Lipids in DOPC Layers by Combining Accurate Atomistic Force Fields, Molecular Dynamics Simulations and Neutron Reflectivity. Nanoscale 2023, 15 (27), 11647–11656. 10.1039/D3NR00987D. PubMed DOI
Hammel M.; Fan Y.; Sarode A.; Byrnes A. E.; Zang N.; Kou P.; Nagapudi K.; Leung D.; Hoogenraad C. C.; Chen T.; et al. Correlating the Structure and Gene Silencing Activity of Oligonucleotide-Loaded Lipid Nanoparticles Using Small-Angle X-Ray Scattering. ACS Nano 2023, 17 (12), 11454–11465. 10.1021/acsnano.3c01186. PubMed DOI PMC
Szebeni J.; Kiss B.; Bozó T.; Turjeman K.; Levi-Kalisman Y.; Barenholz Y.; Kellermayer M. Insights into the Structure of Comirnaty Covid-19 Vaccine: A Theory on Soft, Partially Bilayer-Covered Nanoparticles with Hydrogen Bond-Stabilized MRNA-Lipid Complexes. ACS Nano 2023, 17 (14), 13147–13157. 10.1021/acsnano.2c11904. PubMed DOI PMC
Li S.; Hu Y.; Li A.; Lin J.; Hsieh K.; Schneiderman Z.; Zhang P.; Zhu Y.; Qiu C.; Kokkoli E. Payload Distribution and Capacity of mRNA Lipid Nanoparticles. Nat. Commun. 2022, 13 (1), 556110.1038/s41467-022-33157-4. PubMed DOI PMC
van der Meel R.; Chen S.; Zaifman J.; Kulkarni J. A.; Zhang X. R. S.; Tam Y. K.; Bally M. B.; Schiffelers R. M.; Ciufolini M. A.; Cullis P. R.; et al. Modular Lipid Nanoparticle Platform Technology for SiRNA and Lipophilic Prodrug Delivery. Small 2021, 17 (37), 1–12. 10.1002/smll.202103025. PubMed DOI
Cheng M. H. Y.; Leung J.; Zhang Y.; Strong C.; Basha G.; Momeni A.; Chen Y.; Jan E.; Abdolahzadeh A.; Wang X.; et al. Induction of Bleb Structures in Lipid Nanoparticle Formulations of MRNA Leads to Improved Transfection Potency. Adv. Mater. 2023, 35 (31), 1–11. 10.1002/adma.202303370. PubMed DOI
Leung A. K. K.; Tam Y. Y. C.; Chen S.; Hafez I. M.; Cullis P. R. Microfluidic Mixing: A General Method for Encapsulating Macromolecules in Lipid Nanoparticle Systems. J. Phys. Chem. B 2015, 119 (28), 8698–8706. 10.1021/acs.jpcb.5b02891. PubMed DOI
Simonsen J. B. A Perspective on Bleb and Empty LNP Structures. J. Controlled Release 2024, 373 (July), 952–961. 10.1016/j.jconrel.2024.07.046. PubMed DOI
Ramezanpour M.; Schmidt M. L.; Bodnariuc I.; Kulkarni J. A.; Leung S. S. W.; Cullis P. R.; Thewalt J. L.; Tieleman D. P. Ionizable Amino Lipid Interactions with POPC: Implications for Lipid Nanoparticle Function. Nanoscale 2019, 11 (30), 14141–14146. 10.1039/C9NR02297J. PubMed DOI
Kulkarni J. A.; Witzigmann D.; Leung J.; Van Der Meel R.; Zaifman J.; Darjuan M. M.; Grisch-Chan H. M.; Thöny B.; Tam Y. Y. C.; Cullis P. R. Fusion-Dependent Formation of Lipid Nanoparticles Containing Macromolecular Payloads. Nanoscale 2019, 11 (18), 9023–9031. 10.1039/C9NR02004G. PubMed DOI
Carrasco M. J.; Alishetty S.; Alameh M. G.; Said H.; Wright L.; Paige M.; Soliman O.; Weissman D.; Cleveland T. E.; Grishaev A.; et al. Ionization and Structural Properties of MRNA Lipid Nanoparticles Influence Expression in Intramuscular and Intravascular Administration. Commun. Biol. 2021, 4 (1), 1–15. 10.1038/s42003-021-02441-2. PubMed DOI PMC
An K.; Kurek D.; Mahadeo M.; Zhang Y.; Thewalt J. L.; Cullis P. R.; Kulkarni J. A. On the Influence of Nucleic Acid Backbone Modifications on Lipid Nanoparticle Morphology. Langmuir 2022, 38 (46), 14036–14043. 10.1021/acs.langmuir.2c01492. PubMed DOI
Zhang D.; Atochina-Vasserman E. N.; Lu J.; Maurya D. S.; Xiao Q.; Liu M.; Adamson J.; Ona N.; Reagan E. K.; Ni H.; et al. The Unexpected Importance of the Primary Structure of the Hydrophobic Part of One-Component Ionizable Amphiphilic Janus Dendrimers in Targeted MRNA Delivery Activity. J. Am. Chem. Soc. 2022, 144 (11), 4746–4753. 10.1021/jacs.2c00273. PubMed DOI
Felgner P. L.; Gadek T. R.; Holm M.; Roman R.; Chan H. W.; Wenz M.; Northrop J. P.; Ringold G. M.; Danielsen M. Lipofection: A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure. Proc. Natl. Acad. Sci. U. S. A. 1987, 84 (21), 7413–7417. 10.1073/pnas.84.21.7413. PubMed DOI PMC
Eloy J. O.; Claro de Souza M.; Petrilli R.; Barcellos J. P. A.; Lee R. J.; Marchetti J. M. Liposomes as Carriers of Hydrophilic Small Molecule Drugs: Strategies to Enhance Encapsulation and Delivery. Colloids Surfaces B Biointerfaces 2014, 123, 345–363. 10.1016/j.colsurfb.2014.09.029. PubMed DOI
Kulkarni J. A.; Witzigmann D.; Leung J.; Tam Y. Y. C.; Cullis P. R. On the Role of Helper Lipids in Lipid Nanoparticle Formulations of SiRNA. Nanoscale 2019, 11 (45), 21733–21739. 10.1039/C9NR09347H. PubMed DOI
Sych T.; Schlegel J.; Barriga H. M. G.; Ojansivu M.; Hanke L.; Weber F.; Beklem Bostancioglu R.; Ezzat K.; Stangl H.; Plochberger B.; et al. High-Throughput Measurement of the Content and Properties of Nano-Sized Bioparticles with Single-Particle Profiler. Nat. Biotechnol. 2024, 42, 587.10.1038/s41587-023-01825-5. PubMed DOI PMC
Han X.; Zhang H.; Butowska K.; Swingle K. L.; Alameh M.-G.; Weissman D.; Mitchell M. J. An Ionizable Lipid Toolbox for RNA Delivery. Nat. Commun. 2021, 12 (1), 8–13. 10.1038/s41467-021-27493-0. PubMed DOI PMC
Schlich M.; Palomba R.; Costabile G.; Mizrahy S.; Pannuzzo M.; Peer D.; Decuzzi P. Cytosolic Delivery of Nucleic Acids: The Case of Ionizable Lipid Nanoparticles. Bioeng. Transl. Med. 2021, 6, 1–16. 10.1002/btm2.10213. PubMed DOI PMC
Tesei G.; Hsiao Y.-W.; Dabkowska A.; Grönberg G.; Yanez Arteta M.; Ulkoski D.; Bray D. J.; Trulsson M.; Ulander J.; Lund M.; et al. Lipid Shape and Packing Are Key for Optimal Design of PH-Sensitive MRNA Lipid Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (2), 2017.10.1073/pnas.2311700120. PubMed DOI PMC
Jayaraman M.; Ansell S. M.; Mui B. L.; Tam Y. K.; Chen J.; Du X.; Butler D.; Eltepu L.; Matsuda S.; Narayanannair J. K.; et al. Maximizing the Potency of SiRNA Lipid Nanoparticles for Hepatic Gene Silencing in Vivo. Angew. Chemie - Int. Ed. 2012, 51 (34), 8529–8533. 10.1002/anie.201203263. PubMed DOI PMC
Dhumal D.; Lan W.; Ding L.; Jiang Y.; Lyu Z.; Laurini E.; Marson D.; Tintaru A.; Dusetti N.; Giorgio S.; et al. An Ionizable Supramolecular Dendrimer Nanosystem for Effective SiRNA Delivery with a Favorable Safety Profile. Nano Res. 2021, 14 (7), 2247–2254. 10.1007/s12274-020-3216-8. DOI
Li W.; Szoka F. C. Lipid-Based Nanoparticles for Nucleic Acid Delivery. Pharm. Res. 2007, 24 (3), 438–449. 10.1007/s11095-006-9180-5. PubMed DOI
Bozzuto G.; Molinari A. Liposomes as Nanomedical Devices. Int. J. Nanomedicine 2015, 10, 975–999. 10.2147/IJN.S68861. PubMed DOI PMC
Heyes J.; Hall K.; Tailor V.; Lenz R.; MacLachlan I. Synthesis and Characterization of Novel Poly(Ethylene Glycol)-Lipid Conjugates Suitable for Use in Drug Delivery. J. Controlled Release 2006, 112 (2), 280–290. 10.1016/j.jconrel.2006.02.012. PubMed DOI
Mohamed M.; Abu Lila A. S.; Shimizu T.; Alaaeldin E.; Hussein A.; Sarhan H. A.; Szebeni J.; Ishida T. PEGylated Liposomes: Immunological Responses. Sci. Technol. Adv. Mater. 2019, 20 (1), 710–724. 10.1080/14686996.2019.1627174. PubMed DOI PMC
Vargason A. M.; Anselmo A. C.; Mitragotri S. The Evolution of Commercial Drug Delivery Technologies. Nat. Biomed. Eng. 2021, 5 (9), 951–967. 10.1038/s41551-021-00698-w. PubMed DOI
Gjetting T.; Arildsen N. S.; Christensen C. L.; Poulsen T. T.; Roth J. A.; Handlos V. N.; Poulsen H. S. In Vitro and in Vivo Effects of Polyethylene Glycol (PEG)-Modified Lipid in DOTAP/Cholesterol-Mediated Gene Transfection. Int. J. Nanomed. 2010, 5 (1), 371–383. 10.2147/ijn.s10462. PubMed DOI PMC
Francia V.; Schiffelers R. M.; Cullis P. R.; Witzigmann D. The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy. Bioconjugate Chem. 2020, 31 (9), 2046–2059. 10.1021/acs.bioconjchem.0c00366. PubMed DOI
Suk J. S.; Xu Q.; Kim N.; Hanes J.; Ensign L. M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Delivery Rev. 2016, 99, 28–51. 10.1016/j.addr.2015.09.012. PubMed DOI PMC
Xu Q.; Ensign L. M.; Boylan N. J.; Schön A.; Gong X.; Yang J. C.; Lamb N. W.; Cai S.; Yu T.; Freire E.; et al. Impact of Surface Polyethylene Glycol (PEG) Density on Biodegradable Nanoparticle Transport in Mucus Ex Vivo and Distribution in Vivo. ACS Nano 2015, 9 (9), 9217–9227. 10.1021/acsnano.5b03876. PubMed DOI PMC
Zhao C.; Deng H.; Xu J.; Li S.; Zhong L.; Shao L.; Wu Y.; Liang X. J. Sheddable PEG-Lipid to Balance the Contradiction of PEGylation between Long Circulation and Poor Uptake. Nanoscale 2016, 8 (20), 10832–10842. 10.1039/C6NR02174C. PubMed DOI
Bunker A.; Magarkar A.; Viitala T. Rational Design of Liposomal Drug Delivery Systems, a Review: Combined Experimental and Computational Studies of Lipid Membranes, Liposomes and Their PEGylation. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (10), 2334–2352. 10.1016/j.bbamem.2016.02.025. PubMed DOI
Yatvin M.; Weinstein J.; Dennis W.; Blumenthal R. Design of Liposomes for Enhanced Local Release of Drugs by Hyperthermia. Science 1978, 202 (4374), 1290–1293. 10.1126/science.364652. PubMed DOI
Zhao Y.; Ye Z.; Song D.; Wich D.; Gao S.; Khirallah J.; Xu Q. Nanomechanical Action Opens Endo-Lysosomal Compartments. Nat. Commun. 2023, 14 (1), 6645.10.1038/s41467-023-42280-9. PubMed DOI PMC
Sabnis S.; Kumarasinghe E. S.; Salerno T.; Mihai C.; Ketova T.; Senn J. J.; Lynn A.; Bulychev A.; McFadyen I.; Chan J.; et al. A Novel Amino Lipid Series for MRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-Human Primates. Mol. Ther. 2018, 26 (6), 1509–1519. 10.1016/j.ymthe.2018.03.010. PubMed DOI PMC
Bailey A. L.; Cullis P. R. Modulation of Membrane Fusion by Asymmetric Transbilayer Distributions of Amino Lipids. Biochemistry 1994, 33 (42), 12573–12580. 10.1021/bi00208a007. PubMed DOI
Jörgensen A. M.; Wibel R.; Bernkop-Schnürch A. Biodegradable Cationic and Ionizable Cationic Lipids: A Roadmap for Safer Pharmaceutical Excipients. Small 2023, 10.1002/smll.202206968. PubMed DOI
Tilstra G.; Couture-Senécal J.; Lau Y. M. A.; Manning A. M.; Wong D. S. M.; Janaeska W. W.; Wuraola T. A.; Pang J.; Khan O. F. Iterative Design of Ionizable Lipids for Intramuscular MRNA Delivery. J. Am. Chem. Soc. 2023, 145 (4), 2294–2304. 10.1021/jacs.2c10670. PubMed DOI
Rajesh M.; Sen J.; Srujan M.; Mukherjee K.; Sreedhar B.; Chaudhuri A. Dramatic Influence of the Orientation of Linker between Hydrophilic and Hydrophobic Lipid Moiety in Liposomal Gene Delivery. J. Am. Chem. Soc. 2007, 129 (37), 11408–11420. 10.1021/ja0704683. PubMed DOI
Eygeris Y.; Patel S.; Jozic A.; Sahay G. Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery. Nano Lett. 2020, 20 (6), 4543–4549. 10.1021/acs.nanolett.0c01386. PubMed DOI
Dao H. M.; AboulFotouh K.; Hussain A. F.; Marras A. E.; Johnston K. P.; Cui Z.; Williams R. O. Characterization of MRNA Lipid Nanoparticles by Electron Density Mapping Reconstruction: X-Ray Scattering with Density from Solution Scattering (DENSS) Algorithm. Pharm. Res. 2024, 41 (3), 501–512. 10.1007/s11095-024-03671-9. PubMed DOI
Thelen J. L.; Leite W.; Urban V. S.; O’Neill H. M.; Grishaev A. V.; Curtis J. E.; Krueger S.; Castellanos M. M. Morphological Characterization of Self-Amplifying MRNA Lipid Nanoparticles. ACS Nano 2024, 18 (2), 1464–1476. 10.1021/acsnano.3c08014. PubMed DOI
Kulkarni J. A.; Darjuan M. M.; Mercer J. E.; Chen S.; Van Der Meel R.; Thewalt J. L.; Tam Y. Y. C.; Cullis P. R. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and SiRNA. ACS Nano 2018, 12 (5), 4787–4795. 10.1021/acsnano.8b01516. PubMed DOI
Zhao B.; Kamanzi A.; Zhang Y.; Chan K. Y. T.; Robertson M.; Leslie S.; Cullis P. R. Determination of the Interior PH of Lipid Nanoparticles Using a PH-Sensitive Fluorescent Dye-Based DNA Probe. Biosens. Bioelectron. 2024, 251, 116065.10.1016/j.bios.2024.116065. PubMed DOI
Guruge A. G.; Warren D. B.; Pouton C. W.; Chalmers D. K. Molecular Dynamics Simulation Studies of Bile, Bile Salts, Lipid-Based Drug Formulations, and MRNA-Lipid Nanoparticles: A Review. Mol. Pharmaceutics 2023, 20 (6), 2781–2800. 10.1021/acs.molpharmaceut.3c00049. PubMed DOI
Marrink S. J.; Corradi V.; Souza P. C. T.; Ingólfsson H. I.; Tieleman D. P.; Sansom M. S. P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019, 119, 6184.10.1021/acs.chemrev.8b00460. PubMed DOI PMC
Paquet E.; Viktor H. L. Molecular Dynamics, Monte Carlo Simulations, and Langevin Dynamics: A Computational Review. Biomed Res. Int. 2015, 2015, 1.10.1155/2015/183918. PubMed DOI PMC
Leonard A. N.; Wang E.; Monje-Galvan V.; Klauda J. B. Developing and Testing of Lipid Force Fields with Applications to Modeling Cellular Membranes. Chem. Rev. 2019, 119 (9), 6227–6269. 10.1021/acs.chemrev.8b00384. PubMed DOI
Kleinschmidt A. T.; Chen A. X.; Pascal T. A.; Lipomi D. J. Computational Modeling of Molecular Mechanics for the Experimentally Inclined. Chem. Mater. 2022, 34, 7620.10.1021/acs.chemmater.2c00292. DOI
Neale C.; Pomès R. Sampling Errors in Free Energy Simulations of Small Molecules in Lipid Bilayers. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (10), 2539–2548. 10.1016/j.bbamem.2016.03.006. PubMed DOI
Di Meo F.; Fabre G.; Berka K.; Ossman T.; Chantemargue B.; Paloncýová M.; Marquet P.; Otyepka M.; Trouillas P. In Silico Pharmacology: Drug Membrane Partitioning and Crossing. Pharmacol. Res. 2016, 111, 471–486. 10.1016/j.phrs.2016.06.030. PubMed DOI
Stevens J. A.; Grunewald F.; van Tilburg P. A. M.; Konig M.; Gilbert B. R.; Brier T. A.; Thornburg Z. R.; Luthey-Schulten Z.; Marrink S. J. Molecular Dynamics Simulation of an Entire Cell. Front. Chem. 2023, 11, 1106495.10.3389/fchem.2023.1106495. PubMed DOI PMC
Hadden J. A.; Perilla J. R. All-Atom Virus Simulations. Curr. Opin. Virol. 2018, 31, 82–91. 10.1016/j.coviro.2018.08.007. PubMed DOI PMC
Bunker A.; Róg T. Mechanistic Understanding From Molecular Dynamics Simulation in Pharmaceutical Research 1: Drug Delivery. Front. Mol. Biosci. 2020, 7, 604770.10.3389/fmolb.2020.604770. PubMed DOI PMC
Schmid N.; Eichenberger A. P.; Choutko A.; Riniker S.; Winger M.; Mark A. E.; Van Gunsteren W. F. Definition and Testing of the GROMOS Force-Field Versions 54A7 and 54B7. Eur. Biophys. J. 2011, 40 (7), 843–856. 10.1007/s00249-011-0700-9. PubMed DOI
Marzuoli I.; Margreitter C.; Fraternali F. Lipid Head Group Parameterization for GROMOS 54A8: A Consistent Approach with Protein Force Field Description. J. Chem. Theory Comput. 2019, 15 (10), 5175–5193. 10.1021/acs.jctc.9b00509. PubMed DOI PMC
Poger D.; Van Gunsteren W. F.; Mark A. E. A New Force Field for Simulating Phosphatidylcholine Bilayers. J. Comput. Chem. 2010, 31 (6), 1117–1125. 10.1002/jcc.21396. PubMed DOI
Skjevik Å. A.; Madej B. D.; Walker R. C.; Teigen K. LIPID11: A Modular Framework for Lipid Simulations Using Amber. J. Phys. Chem. B 2012, 116 (36), 11124–11136. 10.1021/jp3059992. PubMed DOI PMC
Dickson C. J.; Rosso L.; Betz R. M.; Walker R. C.; Gould I. R. GAFFlipid: A General Amber Force Field for the Accurate Molecular Dynamics Simulation of Phospholipid. Soft Matter 2012, 8 (37), 9617–9627. 10.1039/c2sm26007g. DOI
Dickson C. J.; Madej B. D.; Skjevik Å. A.; Betz R. M.; Teigen K.; Gould I. R.; Walker R. C. Lipid14: The Amber Lipid Force Field. J. Chem. Theory Comput. 2014, 10 (2), 865–879. 10.1021/ct4010307. PubMed DOI PMC
Case D. A.; Cerutti D. S.; T.E. Cheatham I.; Darden T. A.; Duke R. E.; Giese T. J.; Gohlke H.; Goetz A. W.; Greene D.; Homeyer N.. et al.AMBER 2017; University of California: San Francisco, 2017.
Dickson C. J.; Walker R. C.; Gould I. R. Lipid21: Complex Lipid Membrane Simulations with AMBER. J. Chem. Theory Comput. 2022, 18 (3), 1726–1736. 10.1021/acs.jctc.1c01217. PubMed DOI PMC
Jämbeck J. P. M.; Lyubartsev A. P. Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids. J. Phys. Chem. B 2012, 116 (10), 3164–3179. 10.1021/jp212503e. PubMed DOI PMC
Jämbeck J. P. M.; Lyubartsev A. P. An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. J. Chem. Theory Comput. 2012, 8 (8), 2938–2948. 10.1021/ct300342n. PubMed DOI
Jämbeck J. P. M.; Lyubartsev A. P. Another Piece of the Membrane Puzzle: Extending Slipids Further. J. Chem. Theory Comput. 2013, 9 (1), 774–784. 10.1021/ct300777p. PubMed DOI
Grote F.; Lyubartsev A. P. Optimization of Slipids Force Field Parameters Describing Headgroups of Phospholipids. J. Phys. Chem. B 2020, 124 (40), 8784–8793. 10.1021/acs.jpcb.0c06386. PubMed DOI PMC
Ermilova I.; Swenson J. DOPC: Versus DOPE as a Helper Lipid for Gene-Therapies: Molecular Dynamics Simulations with DLin-MC3-DMA. Phys. Chem. Chem. Phys. 2020, 22 (48), 28256–28268. 10.1039/D0CP05111J. PubMed DOI
Ermilova I.; Swenson J. Ionizable Lipids Penetrate Phospholipid Bilayers with High Phase Transition Temperatures: Perspectives from Free Energy Calculations. Chem. Phys. Lipids 2023, 253, 105294.10.1016/j.chemphyslip.2023.105294. PubMed DOI
Schlenkrich M.; Brickmann J.; MacKerell A. D.; Karplus M.. An Empirical Potential Energy Function for Phospholipids: Criteria for Parameter Optimization and Applications. In Biological Membranes; Merz K. M.; Roux B., Eds.; Birkhäuser Boston: Boston, MA, 1996; pp 31–81.
Feller S. E.; Yin D.; Pastor R. W.; MacKerell A. D. Molecular Dynamics Simulation of Unsaturated Lipid Bilayers at Low Hydration: Parameterization and Comparison with Diffraction Studies. Biophys. J. 1997, 73 (5), 2269–2279. 10.1016/S0006-3495(97)78259-6. PubMed DOI PMC
Feller S. E.; MacKerell A. D. An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids. J. Phys. Chem. B 2000, 104 (31), 7510–7515. 10.1021/jp0007843. DOI
Klauda J. B.; Brooks B. R.; MacKerell A. D.; Venable R. M.; Pastor R. W. An Ab Initio Study on the Torsional Surface of Alkanes and Its Effect on Molecular Simulations of Alkanes and a DPPC Bilayer. J. Phys. Chem. B 2005, 109 (11), 5300–5311. 10.1021/jp0468096. PubMed DOI
Klauda J. B.; Venable R. M.; Freites J. A.; O’Connor J. W.; Tobias D. J.; Mondragon-Ramirez C.; Vorobyov I.; MacKerell A. D.; Pastor R. W. Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114 (23), 7830–7843. 10.1021/jp101759q. PubMed DOI PMC
Lim J. B.; Rogaski B.; Klauda J. B. Update of the Cholesterol Force Field Parameters in CHARMM. J. Phys. Chem. B 2012, 116 (1), 203–210. 10.1021/jp207925m. PubMed DOI
Wu E. L.; Cheng X.; Jo S.; Rui H.; Song K. C.; Dávila-Contreras E. M.; Qi Y.; Lee J.; Monje-Galvan V.; Venable R. M.; et al. CHARMM-GUI Membrane Builder toward Realistic Biological Membrane Simulations. J. Comput. Chem. 2014, 35 (27), 1997–2004. 10.1002/jcc.23702. PubMed DOI PMC
Lee J.; Cheng X.; Swails J. M.; Yeom M. S.; Eastman P. K.; Lemkul J. A.; Wei S.; Buckner J.; Jeong J. C.; Qi Y.; et al. CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field. J. Chem. Theory Comput. 2016, 12 (1), 405–413. 10.1021/acs.jctc.5b00935. PubMed DOI PMC
Lee J.; Patel D. S.; Ståhle J.; Park S. J.; Kern N. R.; Kim S.; Lee J.; Cheng X.; Valvano M. A.; Holst O.; et al. CHARMM-GUI Membrane Builder for Complex Biological Membrane Simulations with Glycolipids and Lipoglycans. J. Chem. Theory Comput. 2019, 15 (1), 775–786. 10.1021/acs.jctc.8b01066. PubMed DOI
Park S.; Choi Y. K.; Kim S.; Lee J.; Im W. CHARMM-GUI Membrane Builder for Lipid Nanoparticles with Ionizable Cationic Lipids and PEGylated Lipids. J. Chem. Inf. Model. 2021, 61 (10), 5192–5202. 10.1021/acs.jcim.1c00770. PubMed DOI PMC
Pogozheva I. D.; Armstrong G. A.; Kong L.; Hartnagel T. J.; Carpino C. A.; Gee S. E.; Picarello D. M.; Rubin A. S.; Lee J.; Park S.; et al. Comparative Molecular Dynamics Simulation Studies of Realistic Eukaryotic, Prokaryotic, and Archaeal Membranes. J. Chem. Inf. Model. 2022, 62 (4), 1036–1051. 10.1021/acs.jcim.1c01514. PubMed DOI
Maciejewski A.; Pasenkiewicz-Gierula M.; Cramariuc O.; Vattulainen I.; Rog T. Refined OPLS All-Atom Force Field for Saturated Phosphatidylcholine Bilayers at Full Hydration. J. Phys. Chem. B 2014, 118 (17), 4571–4581. 10.1021/jp5016627. PubMed DOI
Kulig W.; Pasenkiewicz-Gierula M.; Róg T. Cis and Trans Unsaturated Phosphatidylcholine Bilayers: A Molecular Dynamics Simulation Study. Chem. Phys. Lipids 2016, 195, 12–20. 10.1016/j.chemphyslip.2015.07.002. PubMed DOI
Kulig W.; Pasenkiewicz-Gierula M.; Róg T. Topologies, Structures and Parameter Files for Lipid Simulations in GROMACS with the OPLS-Aa Force Field: DPPC, POPC, DOPC, PEPC, and Cholesterol. Data Br. 2015, 5, 333–336. 10.1016/j.dib.2015.09.013. PubMed DOI PMC
Stepniewski M.; Pasenkiewicz-Gierula M.; Rog T.; Danne R.; Orlowski A.; Karttunen M.; Urtti A.; Yliperttula M.; Vuorimaa E.; Bunker A. Study of PEGylated Lipid Layers as a Model for PEGylated Liposome Surfaces: Molecular Dynamics Simulation and Langmuir Monolayer Studies. Langmuir 2011, 27 (12), 7788–7798. 10.1021/la200003n. PubMed DOI
Magarkar A.; Róg T.; Bunker A. Molecular Dynamics Simulation of PEGylated Membranes with Cholesterol: Building toward the DOXIL Formulation. J. Phys. Chem. C 2014, 118 (28), 15541–15549. 10.1021/jp504962m. DOI
Rog T.; Koivuniemi A. The Biophysical Properties of Ethanolamine Plasmalogens Revealed by Atomistic Molecular Dynamics Simulations. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (1), 97–103. 10.1016/j.bbamem.2015.10.023. PubMed DOI PMC
Róg T.; Orłowski A.; Llorente A.; Skotland T.; Sylvänne T.; Kauhanen D.; Ekroos K.; Sandvig K.; Vattulainen I. Interdigitation of Long-Chain Sphingomyelin Induces Coupling of Membrane Leaflets in a Cholesterol Dependent Manner. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (2), 281–288. 10.1016/j.bbamem.2015.12.003. PubMed DOI
Kurki M.; Poso A.; Bartos P.; Miettinen M. S. Structure of POPC Lipid Bilayers in OPLS3e Force Field. J. Chem. Inf. Model. 2022, 62 (24), 6462–6474. 10.1021/acs.jcim.2c00395. PubMed DOI PMC
Harder E.; Damm W.; Maple J.; Wu C.; Reboul M.; Xiang J. Y.; Wang L.; Lupyan D.; Dahlgren M. K.; Knight J. L.; et al. OPLS3: A Force Field Providing Broad Coverage of Drug-like Small Molecules and Proteins. J. Chem. Theory Comput. 2016, 12 (1), 281–296. 10.1021/acs.jctc.5b00864. PubMed DOI
Mahmoudzadeh M.; Magarkar A.; Koivuniemi A.; Róg T.; Bunker A. Mechanistic Insight into How PEGylation Reduces the Efficacy of PH-Sensitive Liposomes from Molecular Dynamics Simulations. Mol. Pharmaceutics 2021, 18 (7), 2612–2621. 10.1021/acs.molpharmaceut.1c00122. PubMed DOI PMC
Jorgensen W. L.; Ghahremanpour M. M.; Saar A.; Tirado-Rives J. OPLS/2020 Force Field for Unsaturated Hydrocarbons, Alcohols, and Ethers. J. Phys. Chem. B 2024, 128 (1), 250–262. 10.1021/acs.jpcb.3c06602. PubMed DOI
Lu C.; Wu C.; Ghoreishi D.; Chen W.; Wang L.; Damm W.; Ross G. A.; Dahlgren M. K.; Russell E.; Von Bargen C. D.; et al. OPLS4: Improving Force Field Accuracy on Challenging Regimes of Chemical Space. J. Chem. Theory Comput. 2021, 17 (7), 4291–4300. 10.1021/acs.jctc.1c00302. PubMed DOI
Case D. A.; Cheatham T. E.; Darden T.; Gohlke H.; Luo R.; Merz K. M.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26 (16), 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC
Weiner S. J.; Kollman P. A.; Case D. A.; Singh U. C.; Ghio C.; Alagona G.; Profeta S.; Weiner P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106 (17), 765–784. 10.1021/ja00315a051. DOI
Wang J.; Cieplak P.; Kollman P. A. How Well Does a Restrained Electrostatic Potential (RESP) Model Perform in Calculating Conformational Energies of Organic and Biological Molecules?. J. Comput. Chem. 2000, 21 (12), 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Tian C.; Kasavajhala K.; Belfon K. A. A.; Raguette L.; Huang H.; Migues A. N.; Bickel J.; Wang Y.; Pincay J.; Wu Q.; et al. Ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16 (1), 528–552. 10.1021/acs.jctc.9b00591. PubMed DOI
Kirschner K. N.; Yongye A. B.; Tschampel S. M.; González-Outeiriño J.; Daniels C. R.; Foley B. L.; Woods R. J. GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 2008, 29 (4), 622–655. 10.1002/jcc.20820. PubMed DOI PMC
Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; et al. Parmbsc1: A Refined Force Field for DNA Simulations. Nat. Methods 2016, 13 (1), 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11 (12), 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbová M.; Šponer J.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17 (10), 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI
Liebl K.; Zacharias M. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J. Chem. Theory Comput. 2021, 17 (11), 7096–7105. 10.1021/acs.jctc.1c00682. PubMed DOI
Love O.; Galindo-Murillo R.; Zgarbová M.; Šponer J.; Jurečka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA–2023 Edition. J. Chem. Theory Comput. 2023, 19 (13), 4299–4307. 10.1021/acs.jctc.3c00233. PubMed DOI PMC
Banáš P.; Hollas D.; Zgarbová M.; Jurečka P.; Orozco M.; Cheatham T. E.; Šponer J.; Otyepka M. Performance of Molecular Mechanics Force Fields for RNA Simulations: Stability of UUCG and GNRA Hairpins. J. Chem. Theory Comput. 2010, 6 (12), 3836–3849. 10.1021/ct100481h. PubMed DOI PMC
Zgarbová M.; Otyepka M.; Šponer J.; Mládek A.; Banáš P.; Cheatham T. E.; Jurečka P. Refinement of the Cornell et Al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7 (9), 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Yildirim I.; Kennedy S. D.; Stern H. A.; Hart J. M.; Kierzek R.; Turner D. H. Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and IGiC Base Pairs. J. Chem. Theory Comput. 2012, 8 (1), 172–181. 10.1021/ct200557r. PubMed DOI PMC
Tan D.; Piana S.; Dirks R. M.; Shaw D. E. RNA Force Field with Accuracy Comparable to State-of-the-Art Protein Force Fields. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (7), E1346-E135510.1073/pnas.1713027115. PubMed DOI PMC
Chen A. A.; Garcia A. E. High-Resolution Reversible Folding of Hyperstable RNA Tetraloops Using Molecular Dynamics Simulations. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (42), 16820–16825. 10.1073/pnas.1309392110. PubMed DOI PMC
Sponer J.; Bussi G.; Krepl M.; Banas P.; Bottaro S.; Cunha R. A.; Gil-Ley A.; Pinamonti G.; Poblete S.; Jurečka P.; et al. RNA Structural Dynamics as Captured by Molecular Simulations: A Comprehensive Overview. Chem. Rev. 2018, 118 (8), 4177–4338. 10.1021/acs.chemrev.7b00427. PubMed DOI PMC
Grotz K. K.; Nueesch M. F.; Holmstrom E. D.; Heinz M.; Stelzl L. S.; Schuler B.; Hummer G. Dispersion Correction Alleviates Dye Stacking of Single-Stranded DNA and RNA in Simulations of Single-Molecule Fluorescence Experiments. J. Phys. Chem. B 2018, 122 (49), 11626–11639. 10.1021/acs.jpcb.8b07537. PubMed DOI
Mlýnský V.; Kührová P.; Kühr T.; Otyepka M.; Bussi G.; Banáš P.; Šponer J. Fine-Tuning of the AMBER RNA Force Field with a New Term Adjusting Interactions of Terminal Nucleotides. J. Chem. Theory Comput. 2020, 16 (6), 3936–3946. 10.1021/acs.jctc.0c00228. PubMed DOI
Fröhlking T.; Mlýnský V.; Janeček M.; Kührová P.; Krepl M.; Banáš P.; Šponer J.; Bussi G. Automatic Learning of Hydrogen-Bond Fixes in an AMBER RNA Force Field. J. Chem. Theory Comput. 2022, 18 (7), 4490–4502. 10.1021/acs.jctc.2c00200. PubMed DOI PMC
Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Šponer J.; Mládek A.; Šponer J. E.; Svozil D.; Zgarbová M.; Banáš P.; Jurečka P.; Otyepka M. The DNA and RNA Sugar-Phosphate Backbone Emerges as the Key Player. An Overview of Quantum-Chemical, Structural Biology and Simulation Studies. Phys. Chem. Chem. Phys. 2012, 14 (44), 15257.10.1039/c2cp41987d. PubMed DOI
Kührová P.; Mlýnský V.; Zgarbová M.; Krepl M.; Bussi G.; Best R. B.; Otyepka M.; Šponer J.; Banáš P. Improving the Performance of the Amber RNA Force Field by Tuning the Hydrogen-Bonding Interactions. J. Chem. Theory Comput. 2019, 15 (5), 3288–3305. 10.1021/acs.jctc.8b00955. PubMed DOI PMC
Bergonzo C.; Henriksen N. M.; Roe D. R.; Cheatham T. E. Highly Sampled Tetranucleotide and Tetraloop Motifs Enable Evaluation of Common RNA Force Fields. RNA 2015, 21 (9), 1578–1590. 10.1261/rna.051102.115. PubMed DOI PMC
Kührová P.; Best R. B.; Bottaro S.; Bussi G.; Šponer J.; Otyepka M.; Banáš P. Computer Folding of RNA Tetraloops: Identification of Key Force Field Deficiencies. J. Chem. Theory Comput. 2016, 12 (9), 4534–4548. 10.1021/acs.jctc.6b00300. PubMed DOI PMC
Havrila M.; Zgarbová M.; Jurečka P.; Banáš P.; Krepl M.; Otyepka M.; Šponer J. Microsecond-Scale MD Simulations of HIV-1 DIS Kissing-Loop Complexes Predict Bulged-In Conformation of the Bulged Bases and Reveal Interesting Differences between Available Variants of the AMBER RNA Force Fields. J. Phys. Chem. B 2015, 119 (49), 15176–15190. 10.1021/acs.jpcb.5b08876. PubMed DOI
He X.; Man V. H.; Yang W.; Lee T. S.; Wang J. A Fast and High-Quality Charge Model for the next Generation General AMBER Force Field. J. Chem. Phys. 2020, 153 (11), 11450210.1063/5.0019056. PubMed DOI PMC
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI
Li P.; Merz K. M. MCPB.Py: A Python Based Metal Center Parameter Builder. J. Chem. Inf. Model. 2016, 56 (4), 599–604. 10.1021/acs.jcim.5b00674. PubMed DOI
Paloncýová M.; Fabre G.; Devane R. H.; Trouillas P.; Berka K.; Otyepka M. Benchmarking of Force Fields for Molecule - Membrane Interactions. J. Chem. Theory Comput. 2014, 10 (9), 4143–4151. 10.1021/ct500419b. PubMed DOI
Brooks B. R.; Brooks C. L.; Mackerell A. D.; Nilsson L.; Petrella R. J.; Roux B.; Won Y.; Archontis G.; Bartels C.; Boresch S.; et al. CHARMM: The Biomolecular Simulation Program. J. Comput. Chem. 2009, 30 (10), 1545–1614. 10.1002/jcc.21287. PubMed DOI PMC
Vanommeslaeghe K.; Hatcher E.; Acharya C.; Kundu S.; Zhong S.; Shim J.; Darian E.; Guvench O.; Lopes P.; Vorobyov I.; et al. CHARMM General Force Field: A Force Field for Drug-like Molecules Compatible with the CHARMM All-atom Additive Biological Force Fields. J. Comput. Chem. 2010, 31 (4), 671–690. 10.1002/jcc.21367. PubMed DOI PMC
Zhu X.; Lopes P. E. M.; Mackerell A. D. Recent Developments and Applications of the CHARMM Force Fields. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 167–185. 10.1002/wcms.74. PubMed DOI PMC
Feng S.; Park S.; Choi Y. K.; Im W. CHARMM-GUI Membrane Builder: Past, Current, and Future Developments and Applications. J. Chem. Theory Comput. 2023, 19 (8), 2161–2185. 10.1021/acs.jctc.2c01246. PubMed DOI PMC
MacKerell A. D.; Wiorkiewicz-Kuczera J.; Karplus M. An All-Atom Empirical Energy Function for the Simulation of Nucleic Acids. J. Am. Chem. Soc. 1995, 117 (48), 11946–11975. 10.1021/ja00153a017. DOI
MacKerell A.; Banavali N. All-Atom Empirical Force Field for Nucleic Acids: II. Application to Molecular Dynamics Simulations of DNA and RNA in Solution. J. Comput. Chem. 2000, 21, 105–120. 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P. DOI
Hart K.; Foloppe N.; Baker C. M.; Denning E. J.; Nilsson L.; MacKerell A. D. Optimization of the CHARMM Additive Force Field for DNA: Improved Treatment of the BI/BII Conformational Equilibrium. J. Chem. Theory Comput. 2012, 8 (1), 348–362. 10.1021/ct200723y. PubMed DOI PMC
Galindo-Murillo R.; Robertson J. C.; Zgarbová M.; Šponer J.; Otyepka M.; Jurečka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12 (8), 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC
Minhas V.; Sun T.; Mirzoev A.; Korolev N.; Lyubartsev A. P.; Nordenskiöld L. Modeling DNA Flexibility: Comparison of Force Fields from Atomistic to Multiscale Levels. J. Phys. Chem. B 2020, 124 (1), 38–49. 10.1021/acs.jpcb.9b09106. PubMed DOI
Fadrná E.; Špačková N.; Sarzyñska J.; Koča J.; Orozco M.; Cheatham T. E.; Kulinski T.; Šponer J. Single Stranded Loops of Quadruplex DNA as Key Benchmark for Testing Nucleic Acids Force Fields. J. Chem. Theory Comput. 2009, 5 (9), 2514–2530. 10.1021/ct900200k. PubMed DOI
Lemkul J. A. Same Fold, Different Properties: Polarizable Molecular Dynamics Simulations of Telomeric and TERRA G-Quadruplexes. Nucleic Acids Res. 2020, 48 (2), 561–575. 10.1093/nar/gkz1154. PubMed DOI PMC
Beššeová I.; Banáš P.; Kührová P.; Košinová P.; Otyepka M.; Šponer J. Simulations of A-RNA Duplexes. The Effect of Sequence, Solute Force Field, Water Model, and Salt Concentration. J. Phys. Chem. B 2012, 116 (33), 9899–9916. 10.1021/jp3014817. PubMed DOI
Vanommeslaeghe K.; Raman E. P.; MacKerell A. D. Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. J. Chem. Inf. Model. 2012, 52 (12), 3155–3168. 10.1021/ci3003649. PubMed DOI PMC
MacKerell A. D.; Bashford D.; Bellott M.; Dunbrack R. L.; Evanseck J. D.; Field M. J.; Fischer S.; Gao J.; Guo H.; Ha S.; et al. All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins †. J. Phys. Chem. B 1998, 102 (18), 3586–3616. 10.1021/jp973084f. PubMed DOI
Jorgensen W. L.; Tirado-Rives J. The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. J. Am. Chem. Soc. 1988, 110 (6), 1657–1666. 10.1021/ja00214a001. PubMed DOI
Magarkar A.; Róg T.; Bunker A. A Computational Study Suggests That Replacing PEG with PMOZ May Increase Exposure of Hydrophobic Targeting Moiety. Eur. J. Pharm. Sci. 2017, 103, 128–135. 10.1016/j.ejps.2017.03.008. PubMed DOI
Dzieciuch-Rojek M.; Poojari C.; Bednar J.; Bunker A.; Kozik B.; Nowakowska M.; Vattulainen I.; Wydro P.; Kepczynski M.; Roǵ T. Effects of Membrane PEGylation on Entry and Location of Antifungal Drug Itraconazole and Their Pharmacological Implications. Mol. Pharmaceutics 2017, 14 (4), 1057–1070. 10.1021/acs.molpharmaceut.6b00969. PubMed DOI
Mastrotto F.; Brazzale C.; Bellato F.; De Martin S.; Grange G.; Mahmoudzadeh M.; Magarkar A.; Bunker A.; Salmaso S.; Caliceti P. In Vitro and in Vivo Behavior of Liposomes Decorated with PEGs with Different Chemical Features. Mol. Pharmaceutics 2020, 17 (2), 472–487. 10.1021/acs.molpharmaceut.9b00887. PubMed DOI
Dzieciuch M.; Rissanen S.; Szydłowska N.; Bunker A.; Kumorek M.; Jamróz D.; Vattulainen I.; Nowakowska M.; Róg T.; Kepczynski M. Pegylated Liposomes as Carriers of Hydrophobic Porphyrins. J. Phys. Chem. B 2015, 119 (22), 6646–6657. 10.1021/acs.jpcb.5b01351. PubMed DOI
Hu W.; Mao A.; Wong P.; Larsen A.; Yazaki P. J.; Wong J. Y. C.; Shively J. E. Characterization of 1,2-Distearoyl-Sn-Glycero-3-Phosphoethanolamine-N-[Methoxy(Polyethylene Glycerol)-2000] and Its Complex with Doxorubicin Using Nuclear Magnetic Resonance Spectroscopy and Molecular Dynamics. Bioconjugate Chem. 2017, 28 (6), 1777–1790. 10.1021/acs.bioconjchem.7b00238. PubMed DOI PMC
Robertson M. J.; Tirado-Rives J.; Jorgensen W. L. Improved Treatment of Nucleosides and Nucleotides in the OPLS-AA Force Field. Chem. Phys. Lett. 2017, 683, 276–280. 10.1016/j.cplett.2017.02.049. PubMed DOI PMC
Robertson M. J.; Qian Y.; Robinson M. C.; Tirado-Rives J.; Jorgensen W. L. Development and Testing of the OPLS-AA/M Force Field for RNA. J. Chem. Theory Comput. 2019, 15 (4), 2734–2742. 10.1021/acs.jctc.9b00054. PubMed DOI PMC
Cornebise M.; Narayanan E.; Xia Y.; Acosta E.; Ci L.; Koch H.; Milton J.; Sabnis S.; Salerno T.; Benenato K. E. Discovery of a Novel Amino Lipid That Improves Lipid Nanoparticle Performance through Specific Interactions with MRNA. Adv. Funct. Mater. 2022, 32 (8), 2106727.10.1002/adfm.202106727. DOI
Dodda L. S.; Cabeza de Vaca I.; Tirado-Rives J.; Jorgensen W. L. LigParGen Web Server: An Automatic OPLS-AA Parameter Generator for Organic Ligands. Nucleic Acids Res. 2017, 45 (W1), W331–W336. 10.1093/nar/gkx312. PubMed DOI PMC
Lemkul J. A.; Huang J.; Roux B.; MacKerell A. D. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications. Chem. Rev. 2016, 116 (9), 4983–5013. 10.1021/acs.chemrev.5b00505. PubMed DOI PMC
Ponder J. W.; Wu C.; Ren P.; Pande V. S.; Chodera J. D.; Schnieders M. J.; Haque I.; Mobley D. L.; Lambrecht D. S.; Distasio R. a.; et al. Current Status of the AMOEBA Polarizable Force Field. J. Phys. Chem. B 2010, 114, 2549–2564. 10.1021/jp910674d. PubMed DOI PMC
Gao X. C.; Hao Q.; Wang C. S. Improved Polarizable Dipole-Dipole Interaction Model for Hydrogen Bonding, Stacking, T-Shaped, and X-H···φ Interactions. J. Chem. Theory Comput. 2017, 13 (6), 2730–2741. 10.1021/acs.jctc.6b00936. PubMed DOI
Gkionis K.; Kruse H.; Platts J. A.; Mládek A.; Koča J.; Šponer J. Ion Binding to Quadruplex DNA Stems. Comparison of MM and QM Descriptions Reveals Sizable Polarization Effects Not Included in Contemporary Simulations. J. Chem. Theory Comput. 2014, 10 (3), 1326–1340. 10.1021/ct4009969. PubMed DOI
Duboué-Dijon E.; Javanainen M.; Delcroix P.; Jungwirth P.; Martinez-Seara H. A Practical Guide to Biologically Relevant Molecular Simulations with Charge Scaling for Electronic Polarization. J. Chem. Phys. 2020, 153 (5), 05090110.1063/5.0017775. PubMed DOI
Ren P.; Wu C.; Ponder J. W. Polarizable Atomic Multipole-Based Molecular Mechanics for Organic Molecules. J. Chem. Theory Comput. 2011, 7 (10), 3143–3161. 10.1021/ct200304d. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Polarizable Force Field for RNA Based on the Classical Drude Oscillator. J. Comput. Chem. 2018, 39 (32), 2624–2646. 10.1002/jcc.25709. PubMed DOI PMC
Chowdhary J.; Harder E.; Lopes P. E. M.; Huang L.; MacKerell A. D.; Roux B. B. A Polarizable Force Field of Dipalmitoylphosphatidylcholine Based on the Classical Drude Model for Molecular Dynamics Simulations of Lipids. J. Phys. Chem. B 2013, 117 (31), 9142–9160. 10.1021/jp402860e. PubMed DOI PMC
Patel S.; Mackerell A. D.; Brooks C. L. CHARMM Fluctuating Charge Force Field for Proteins: II Protein/Solvent Properties from Molecular Dynamics Simulations Using a Nonadditive Electrostatic Model. J. Comput. Chem. 2004, 25 (12), 1504–1514. 10.1002/jcc.20077. PubMed DOI
Lin Y. C.; Ren P.; Webb L. J. AMOEBA Force Field Trajectories Improve Predictions of Accurate p KaValues of the GFP Fluorophore: The Importance of Polarizability and Water Interactions. J. Phys. Chem. B 2022, 126 (40), 7806–7817. 10.1021/acs.jpcb.2c03642. PubMed DOI PMC
Shi Y.; Xia Z.; Zhang J.; Best R.; Wu C.; Ponder J. W.; Ren P. Polarizable Atomic Multipole-Based AMOEBA Force Field for Proteins. J. Chem. Theory Comput. 2013, 9 (9), 4046–4063. 10.1021/ct4003702. PubMed DOI PMC
Adjoua O.; Lagardère L.; Jolly L. H.; Durocher A.; Very T.; Dupays I.; Wang Z.; Inizan T. J.; Célerse F.; Ren P.; et al. Tinker-HP: Accelerating Molecular Dynamics Simulations of Large Complex Systems with Advanced Point Dipole Polarizable Force Fields Using GPUs and Multi-GPU Systems. J. Chem. Theory Comput. 2021, 17 (4), 2034–2053. 10.1021/acs.jctc.0c01164. PubMed DOI PMC
Eastman P.; Swails J.; Chodera J. D.; McGibbon R. T.; Zhao Y.; Beauchamp K. A.; Wang L. P.; Simmonett A. C.; Harrigan M. P.; Stern C. D.; et al. OpenMM 7: Rapid Development of High Performance Algorithms for Molecular Dynamics. PLoS Comput. Biol. 2017, 13 (7), e1005659.10.1371/journal.pcbi.1005659. PubMed DOI PMC
Yu Y.; Venable R. M.; Thirman J.; Chatterjee P.; Kumar A.; Pastor R. W.; Roux B.; MacKerell A. D.; Klauda J. B. Drude Polarizable Lipid Force Field with Explicit Treatment of Long-Range Dispersion: Parametrization and Validation for Saturated and Monounsaturated Zwitterionic Lipids. J. Chem. Theory Comput. 2023, 19 (9), 2590–2605. 10.1021/acs.jctc.3c00203. PubMed DOI PMC
Jing Z.; Liu C.; Cheng S. Y.; Qi R.; Walker B. D.; Piquemal J.-P.; Ren P. Polarizable Force Fields for Biomolecular Simulations: Recent Advances and Applications. Annu. Rev. Biophys. 2019, 48 (1), 371–394. 10.1146/annurev-biophys-070317-033349. PubMed DOI PMC
Levitt M.; Warshel A. Computer Simulation of Protein Folding. Nature 1975, 253 (5494), 694–698. 10.1038/253694a0. PubMed DOI
Jin J.; Pak A. J.; Durumeric A. E. P.; Loose T. D.; Voth G. A. Bottom-up Coarse-Graining: Principles and Perspectives. J. Chem. Theory Comput. 2022, 18 (10), 5759–5791. 10.1021/acs.jctc.2c00643. PubMed DOI PMC
Goetz R.; Gompper G.; Lipowsky R. Mobility and Elasticity of Self-Assembled Membranes. Phys. Rev. Lett. 1999, 82 (1), 221–224. 10.1103/PhysRevLett.82.221. DOI
Tolpekina T. V.; Den Otter W. K.; Briels W. J. Simulations of Stable Pores in Membranes: System Size Dependence and Line Tension. J. Chem. Phys. 2004, 121 (16), 8014–8020. 10.1063/1.1796254. PubMed DOI
Noguchi H.; Takasu M. Self-Assembly of Amphiphiles into Vesicles: A Brownian Dynamics Simulation. Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat. Interdiscip. Top. 2001, 64 (4), 7.10.1103/PhysRevE.64.041913. PubMed DOI
Von Gottberg F. K.; Smith K. A.; Hatton T. A. Stochastic Dynamics Simulation of Surfactant Self-Assembly. J. Chem. Phys. 1997, 106 (23), 9850–9857. 10.1063/1.473873. DOI
Marrink S. J.; Corradi V.; Souza P. C. T.; Ingólfsson H. I.; Tieleman D. P.; Sansom M. S. P. Computational Modeling of Realistic Cell Membranes. Chem. Rev. 2019, 119 (9), 6184–6226. 10.1021/acs.chemrev.8b00460. PubMed DOI PMC
Noid W. G. Perspective: Advances, Challenges, and Insight for Predictive Coarse-Grained Models. J. Phys. Chem. B 2023, 127 (19), 4174–4207. 10.1021/acs.jpcb.2c08731. PubMed DOI
Borges-Araújo L.; Patmanidis I.; Singh A. P.; Santos L. H. S.; Sieradzan A. K.; Vanni S.; Czaplewski C.; Pantano S.; Shinoda W.; Monticelli L.; et al. Pragmatic Coarse-Graining of Proteins: Models and Applications. J. Chem. Theory Comput. 2023, 19 (20), 7112–7135. 10.1021/acs.jctc.3c00733. PubMed DOI
Noid W. G.; Chu J. W.; Ayton G. S.; Krishna V.; Izvekov S.; Voth G. A.; Das A.; Andersen H. C. The Multiscale Coarse-Graining Method. I. A Rigorous Bridge between Atomistic and Coarse-Grained Models. J. Chem. Phys. 2008, 128 (24), 24411410.1063/1.2938860. PubMed DOI PMC
Izvekov S.; Voth G. A. A Multiscale Coarse-Graining Method for Biomolecular Systems. J. Phys. Chem. B 2005, 109 (7), 2469–2473. 10.1021/jp044629q. PubMed DOI
Reith D.; Pütz M.; Müller-Plathe F. Deriving Effective Mesoscale Potentials from Atomistic Simulations. J. Comput. Chem. 2003, 24 (13), 1624–1636. 10.1002/jcc.10307. PubMed DOI
Webb M. A.; Delannoy J. Y.; De Pablo J. J. Graph-Based Approach to Systematic Molecular Coarse-Graining. J. Chem. Theory Comput. 2019, 15 (2), 1199–1208. 10.1021/acs.jctc.8b00920. PubMed DOI
Walther J.; Dans P. D.; Balaceanu A.; Hospital A.; Bayarri G.; Orozco M. A Multi-Modal Coarse Grained Model of DNA Flexibility Mappable to the Atomistic Level. Nucleic Acids Res. 2020, 48 (5), e29.10.1093/nar/gkaa015. PubMed DOI PMC
Knotts T. A.; Rathore N.; Schwartz D. C.; De Pablo J. J. A Coarse Grain Model for DNA. J. Chem. Phys. 2007, 126 (8), 08490110.1063/1.2431804. PubMed DOI
Sun T.; Minhas V.; Korolev N.; Mirzoev A.; Lyubartsev A. P.; Nordenskiöld L. Bottom-Up Coarse-Grained Modeling of DNA. Front. Mol. Biosci. 2021, 8 (March), 1–17. 10.3389/fmolb.2021.645527. PubMed DOI PMC
Ayton G. S.; Voth G. A. Hybrid Coarse-Graining Approach for Lipid Bilayers at Large Length and Time Scales. J. Phys. Chem. B 2009, 113 (13), 4413–4424. 10.1021/jp8087868. PubMed DOI PMC
Lu L.; Voth G. A. Systematic Coarse-Graining of a Multicomponent Lipid Bilayer. J. Phys. Chem. B 2009, 113 (5), 1501–1510. 10.1021/jp809604k. PubMed DOI PMC
Grzetic D. J.; Hamilton N. B.; Shelley J. C. Coarse-Grained Simulation of MRNA-Loaded Lipid Nanoparticle Self-Assembly. Mol. Pharmaceutics 2024, 21 (9), 4747–4753. 10.1021/acs.molpharmaceut.4c00216. PubMed DOI
Marrink S. J.; De Vries A. H.; Mark A. E. Coarse Grained Model for Semiquantitative Lipid Simulations. J. Phys. Chem. B 2004, 108 (2), 750–760. 10.1021/jp036508g. DOI
Marrink S. J.; Risselada H. J.; Yefimov S.; Tieleman D. P.; de Vries A. H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111 (27), 7812–7824. 10.1021/jp071097f. PubMed DOI
Dahlberg M. Polymorphic Phase Behavior of Cardiolipin Derivatives Studied by Coarse-Grained Molecular Dynamics. J. Phys. Chem. B 2007, 111 (25), 7194–7200. 10.1021/jp071954f. PubMed DOI
Lee H.; Pastor R. W. Coarse-Grained Model for Pegylated Lipids: Effect of Pegylation on the Size and Shape of Self-Assembled Structures. J. Phys. Chem. B 2011, 115 (24), 7830–7837. 10.1021/jp2020148. PubMed DOI PMC
López C. A.; Sovova Z.; Van Eerden F. J.; De Vries A. H.; Marrink S. J. Martini Force Field Parameters for Glycolipids. J. Chem. Theory Comput. 2013, 9 (3), 1694–1708. 10.1021/ct3009655. PubMed DOI
Wassenaar T. A.; Ingólfsson H. I.; Böckmann R. A.; Tieleman D. P.; Marrink S. J. Computational Lipidomics with Insane: A Versatile Tool for Generating Custom Membranes for Molecular Simulations. J. Chem. Theory Comput. 2015, 11 (5), 2144–2155. 10.1021/acs.jctc.5b00209. PubMed DOI
Melo M. N.; Ingólfsson H. I.; Marrink S. J. Parameters for Martini Sterols and Hopanoids Based on a Virtual-Site Description. J. Chem. Phys. 2015, 143 (24), 243152.10.1063/1.4937783. PubMed DOI
Van Oosten B.; Harroun T. A. A MARTINI Extension for Pseudomonas Aeruginosa PAO1 Lipopolysaccharide. J. Mol. Graph. Model. 2016, 63, 125–133. 10.1016/j.jmgm.2015.12.002. PubMed DOI
Hsu P.-C.; Jefferies D.; Khalid S. Molecular Dynamics Simulations Predict the Pathways via Which Pristine Fullerenes Penetrate Bacterial Membranes. J. Phys. Chem. B 2016, 120 (43), 11170–11179. 10.1021/acs.jpcb.6b06615. PubMed DOI
Ma H.; Cummins D. D.; Edelstein N. B.; Gomez J.; Khan A.; Llewellyn M. D.; Picudella T.; Willsey S. R.; Nangia S. Modeling Diversity in Structures of Bacterial Outer Membrane Lipids. J. Chem. Theory Comput. 2017, 13, 811.10.1021/acs.jctc.6b00856. PubMed DOI
Gu R. X.; Ingólfsson H. I.; De Vries A. H.; Marrink S. J.; Tieleman D. P. Ganglioside-Lipid and Ganglioside-Protein Interactions Revealed by Coarse-Grained and Atomistic Molecular Dynamics Simulations. J. Phys. Chem. B 2017, 121 (15), 3262–3275. 10.1021/acs.jpcb.6b07142. PubMed DOI PMC
Carpenter T. S.; López C. A.; Neale C.; Montour C.; Ingólfsson H. I.; Di Natale F.; Lightstone F. C.; Gnanakaran S. Capturing Phase Behavior of Ternary Lipid Mixtures with a Refined Martini Coarse-Grained Force Field. J. Chem. Theory Comput. 2018, 14 (11), 6050–6062. 10.1021/acs.jctc.8b00496. PubMed DOI
Grunewald F.; Rossi G.; De Vries A. H.; Marrink S. J.; Monticelli L. Transferable MARTINI Model of Poly(Ethylene Oxide). J. Phys. Chem. B 2018, 122 (29), 7436–7449. 10.1021/acs.jpcb.8b04760. PubMed DOI
Souza P. C. T.; Alessandri R.; Barnoud J.; Thallmair S.; Faustino I.; Grunewald F.; Patmanidis I.; Abdizadeh H.; Bruininks B. M. H.; Wassenaar T. A.; et al. Martini 3: A General Purpose Force Field for Coarse-Grained Molecular Dynamics. Nat. Methods 2021, 18 (4), 382–388. 10.1038/s41592-021-01098-3. PubMed DOI
Borges-Araújo L.; Souza P. C. T.; Fernandes F.; Melo M. N. Improved Parameterization of Phosphatidylinositide Lipid Headgroups for the Martini 3 Coarse-Grain Force Field. J. Chem. Theory Comput. 2022, 18 (1), 357–373. 10.1021/acs.jctc.1c00615. PubMed DOI
Grünewald F.; Punt M. H.; Jefferys E. E.; Vainikka P. A.; König M.; Virtanen V.; Meyer T. A.; Pezeshkian W.; Gormley A. J.; Karonen M.; et al. Martini 3 Coarse-Grained Force Field for Carbohydrates. J. Chem. Theory Comput. 2022, 18, 7555.10.1021/acs.jctc.2c00757. PubMed DOI PMC
Borges-Araújo L.; Borges-Araújo A. C.; Ozturk T. N.; Ramirez-Echemendia D. P.; Fábián B.; Carpenter T. S.; Thallmair S.; Barnoud J.; Ingólfsson H. I.; Hummer G.; et al. Martini 3 Coarse-Grained Force Field for Cholesterol. J. Chem. Theory Comput. 2023, 19 (20), 7387–7404. 10.1021/acs.jctc.3c00547. PubMed DOI
Vaiwala R.; Ayappa K. G. Martini-3 Coarse-Grained Models for the Bacterial Lipopolysaccharide Outer Membrane of Escherichia Coli. J. Chem. Theory Comput. 2024, 20 (4), 1704–1716. 10.1021/acs.jctc.3c00471. PubMed DOI
Brandner A. F.; Prakaash D.; Blanco González A.; Waterhouse F.; Khalid S. Faster but Not Sweeter: A Model of Escherichia Coli Re-Level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics. J. Chem. Theory Comput. 2024, 20, 6890.10.1021/acs.jctc.4c00374. PubMed DOI PMC
Kjølbye L. R.; Valério M.; Paloncýová M.; Borges-Araújo L.; Pestana-Nobles R.; Grünewald F.; Bruininks B. H. M.; Araya-Osorio R.; Šrejber M.; Mera-Adasme R.. Martini 3 Building Blocks for Lipid Nanoparticle Design. ChemRxiv (Biological and Medicinal Chemistry), January 02, 2025, version 2. DOI: 10.26434/chemrxiv-2024-bf4n8-v2. (accessed 2025–01–04)
Pedersen K. B.; Ingólfsson H. I.; Ramirez-Echemendia D. P.; Borges-Araújo L.; Andreasen M. D.; Empereur-mot C.; Melcr J.; Ozturk T. N.; Bennett D. W. F.; Kjølbye L. R., et al.The Martini 3 Lipidome: Expanded and Refined Parameters Improve Lipid Phase Behavior. ChemRxiv, 2024, DOI: 10.26434/chemrxiv-2024-8bjrr. (accessed 2025–01–02).
Shinoda W.; DeVane R.; Klein M. L. Zwitterionic Lipid Assemblies: Molecular Dynamics Studies of Monolayers, Bilayers, and Vesicles Using a New Coarse Grain Force Field. J. Phys. Chem. B 2010, 114 (20), 6836–6849. 10.1021/jp9107206. PubMed DOI PMC
MacDermaid C. M.; Kashyap H. K.; DeVane R. H.; Shinoda W.; Klauda J. B.; Klein M. L.; Fiorin G. Molecular Dynamics Simulations of Cholesterol-Rich Membranes Using a Coarse-Grained Force Field for Cyclic Alkanes. J. Chem. Phys. 2015, 143 (24), 24314410.1063/1.4937153. PubMed DOI
MacDermaid C. M.; Hall K. W.; DeVane R. H.; Klein M. L.; Fiorin G. Coexistence of Lipid Phases Stabilizes Interstitial Water in the Outer Layer of Mammalian Skin. Biophys. J. 2020, 118 (7), 1588–1601. 10.1016/j.bpj.2020.01.044. PubMed DOI PMC
Seo S.; Shinoda W. SPICA Force Field for Lipid Membranes: Domain Formation Induced by Cholesterol. J. Chem. Theory Comput. 2019, 15 (1), 762–774. 10.1021/acs.jctc.8b00987. PubMed DOI
Miyazaki Y.; Okazaki S.; Shinoda W. PSPICA: A Coarse-Grained Force Field for Lipid Membranes Based on a Polar Water Model. J. Chem. Theory Comput. 2020, 16 (1), 782–793. 10.1021/acs.jctc.9b00946. PubMed DOI
Barrera E. E.; Frigini E. N.; Porasso R. D.; Pantano S. Modeling DMPC Lipid Membranes with SIRAH Force-Field. J. Mol. Model. 2017, 23 (9), 2–7. 10.1007/s00894-017-3426-5. PubMed DOI
Barrera E. E.; Machado M. R.; Pantano S. Fat SIRAH: Coarse-Grained Phospholipids to Explore Membrane-Protein Dynamics. J. Chem. Theory Comput. 2019, 15 (10), 5674–5688. 10.1021/acs.jctc.9b00435. PubMed DOI
Groot R. D.; Rabone K. L. Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and Rupture by Nonionic Surfactants. Biophys. J. 2001, 81 (2), 725–736. 10.1016/S0006-3495(01)75737-2. PubMed DOI PMC
Kranenburg M.; Nicolas J. P.; Smit B. Comparison of Mesoscopic Phospholipid-Water Models. Phys. Chem. Chem. Phys. 2004, 6 (16), 4142–4151. 10.1039/B406433J. DOI
Gao L.; Shillcock J.; Lipowsky R. Improved Dissipative Particle Dynamics Simulations of Lipid Bilayers. J. Chem. Phys. 2007, 126 (1), 015101.10.1063/1.2424698. PubMed DOI
Li X.; Gao L.; Fang W. Dissipative Particle Dynamics Simulations for Phospholipid Membranes Based on a Four-to-One Coarse-Grained Mapping Scheme. PLoS One 2016, 11 (5), e0154568.10.1371/journal.pone.0154568. PubMed DOI PMC
Wan M.; Gao L.; Fang W. Implicit-Solvent Dissipative Particle Dynamics Force Field Based on a Four-to-One Coarse-Grained Mapping Scheme. PLoS One 2018, 13 (5), e019804910.1371/journal.pone.0198049. PubMed DOI PMC
Marrink S. J.; Monticelli L.; Melo M. N.; Alessandri R.; Tieleman D. P.; Souza P. C. T. Two Decades of Martini: Better Beads, Broader Scope. WIREs Comput. Mol. Sci. 2023, 13 (1), 1–42. 10.1002/wcms.1620. DOI
Alessandri R.; Souza P. C. T.; Thallmair S.; Melo M. N.; De Vries A. H.; Marrink S. J. Pitfalls of the Martini Model. J. Chem. Theory Comput. 2019, 15 (10), 5448–5460. 10.1021/acs.jctc.9b00473. PubMed DOI PMC
Jarin Z.; Newhouse J.; Voth G. A. Coarse-Grained Force Fields from the Perspective of Statistical Mechanics: Better Understanding of the Origins of a MARTINI Hangover. J. Chem. Theory Comput. 2021, 17 (2), 1170–1180. 10.1021/acs.jctc.0c00638. PubMed DOI PMC
Dahlberg M.; Maliniak A. Mechanical Properties of Coarse-Grained Bilayers Formed by Cardiolipin and Zwitterionic Lipids. J. Chem. Theory Comput. 2010, 6 (5), 1638–1649. 10.1021/ct900654e. PubMed DOI
Boyd K. J.; Alder N. N.; May E. R. Molecular Dynamics Analysis of Cardiolipin and Monolysocardiolipin on Bilayer Properties. Biophys. J. 2018, 114 (9), 2116–2127. 10.1016/j.bpj.2018.04.001. PubMed DOI PMC
Ingólfsson H. I.; Carpenter T. S.; Bhatia H.; Bremer P.; Marrink S. J.; Lightstone F. C. Computational Lipidomics of the Neuronal Plasma Membrane. Biophys. J. 2017, 113 (10), 2271–2280. 10.1016/j.bpj.2017.10.017. PubMed DOI PMC
Ingólfsson H. I.; Melo M. N.; van Eerden F. J.; Arnarez C.; Lopez C. A.; Wassenaar T. A.; Periole X.; de Vries A. H.; Tieleman D. P.; Marrink S. J. Lipid Organization of the Plasma Membrane. J. Am. Chem. Soc. 2014, 136 (41), 14554–14559. 10.1021/ja507832e. PubMed DOI
Monticelli L.; Kandasamy S. K.; Periole X.; Larson R. G.; Tieleman D. P.; Marrink S. J. The MARTINI Coarse-Grained Force Field: Extension to Proteins. J. Chem. Theory Comput. 2008, 4 (5), 819–834. 10.1021/ct700324x. PubMed DOI
De Jong D. H.; Singh G.; Bennett W. F. D.; Arnarez C.; Wassenaar T. A.; Schäfer L. V.; Periole X.; Tieleman D. P.; Marrink S. J. Improved Parameters for the Martini Coarse-Grained Protein Force Field. J. Chem. Theory Comput. 2013, 9 (1), 687–697. 10.1021/ct300646g. PubMed DOI
López C. A.; Rzepiela A. J.; de Vries A. H.; Dijkhuizen L.; Hünenberger P. H.; Marrink S. J. Martini Coarse-Grained Force Field: Extension to Carbohydrates. J. Chem. Theory Comput. 2009, 5 (12), 3195–3210. 10.1021/ct900313w. PubMed DOI
Uusitalo J. J.; Ingólfsson H. I.; Akhshi P.; Tieleman D. P.; Marrink S. J. Martini Coarse-Grained Force Field: Extension to DNA. J. Chem. Theory Comput. 2015, 11 (8), 3932–3945. 10.1021/acs.jctc.5b00286. PubMed DOI
Uusitalo J. J.; Ingólfsson H. I.; Marrink S. J.; Faustino I. Martini Coarse-Grained Force Field: Extension to RNA. Biophys. J. 2017, 113 (2), 246–256. 10.1016/j.bpj.2017.05.043. PubMed DOI PMC
Grünewald F.; Alessandri R.; Kroon P. C.; Monticelli L.; Souza P. C. T.; Marrink S. J. Polyply; a Python Suite for Facilitating Simulations of Macromolecules and Nanomaterials. Nat. Commun. 2022, 13 (1), 68.10.1038/s41467-021-27627-4. PubMed DOI PMC
Arnarez C.; Uusitalo J. J.; Masman M. F.; Ingólfsson H. I.; de Jong D. H.; Melo M. N.; Periole X.; de Vries A. H.; Marrink S. J. Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. J. Chem. Theory Comput. 2015, 11 (1), 260–275. 10.1021/ct500477k. PubMed DOI
Yesylevskyy S. O.; Schäfer L. V.; Sengupta D.; Marrink S. J. Polarizable Water Model for the Coarse-Grained MARTINI Force Field. PLoS Comput. Biol. 2010, 6 (6), e100081010.1371/journal.pcbi.1000810. PubMed DOI PMC
Michalowsky J.; Schäfer L. V.; Holm C.; Smiatek J. A Refined Polarizable Water Model for the Coarse-Grained MARTINI Force Field with Long-Range Electrostatic Interactions. J. Chem. Phys. 2017, 146 (5), 054501.10.1063/1.4974833. PubMed DOI
Michalowsky J.; Zeman J.; Holm C.; Smiatek J. A Polarizable MARTINI Model for Monovalent Ions in Aqueous Solution. J. Chem. Phys. 2018, 149 (16), 163319.10.1063/1.5028354. PubMed DOI
Grünewald F.; Souza P. C. T.; Abdizadeh H.; Barnoud J.; De Vries A. H.; Marrink S. J. Titratable Martini Model for Constant pH Simulations. J. Chem. Phys. 2020, 153 (2), 024118.10.1063/5.0014258. PubMed DOI
Aho N.; Buslaev P.; Jansen A.; Bauer P.; Groenhof G.; Hess B. Scalable Constant PH Molecular Dynamics in GROMACS. J. Chem. Theory Comput. 2022, 18 (10), 6148–6160. 10.1021/acs.jctc.2c00516. PubMed DOI PMC
Hilpert C.; Beranger L.; Souza P. C. T.; Vainikka P. A.; Nieto V.; Marrink S. J.; Monticelli L.; Launay G. Facilitating CG Simulations with MAD: The MArtini Database Server. J. Chem. Inf. Model. 2023, 63 (3), 702–710. 10.1021/acs.jcim.2c01375. PubMed DOI
Berendsen H. J. C.; van der Spoel D.; van Drunen R. GROMACS: A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun. 1995, 91 (1–3), 43–56. 10.1016/0010-4655(95)00042-E. DOI
MacCallum J. L.; Hu S.; Lenz S.; Souza P. C. T.; Corradi V.; Tieleman D. P. An Implementation of the Martini Coarse-Grained Force Field in OpenMM. Biophys. J. 2023, 122 (14), 2864–2870. 10.1016/j.bpj.2023.04.007. PubMed DOI PMC
Phillips J. C.; Braun R.; Wang W.; Gumbart J.; Tajkhorshid E.; Villa E.; Chipot C.; Skeel R. D.; Kalé L.; Schulten K. Scalable Molecular Dynamics with NAMD. J. Comput. Chem. 2005, 26 (16), 1781–1802. 10.1002/jcc.20289. PubMed DOI PMC
Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117 (1), 1–19. 10.1006/jcph.1995.1039. DOI
Souza P. C. T.; Borges-Araújo L.; Brasnett C.; Moreira R. A.; Grünewald F.; Park P.; Wang L.; Razmazma H.; Borges-Araújo A. C.; Cofas-Vargas L. F.. Go̅Martini 3: From Large Conformational Changes in Proteins to Environmental Bias Corrections. bioRxiv (Biophysics), April 16, 2024, 2024.04.15.589479, DOI: 10.1101/2024.04.15.589479. (accessed 2024–11–22).
Poma A. B.; Cieplak M.; Theodorakis P. E. Combining the MARTINI and Structure-Based Coarse-Grained Approaches for the Molecular Dynamics Studies of Conformational Transitions in Proteins. J. Chem. Theory Comput. 2017, 13 (3), 1366–1374. 10.1021/acs.jctc.6b00986. PubMed DOI
Pedersen K. B.; Borges-Araújo L.; Stange A. D.; Souza P. C. T.; Marrink S. J.; Schiøtt B. OLIVES: A Go-like Model for Stabilizing Protein Structure via Hydrogen Bonding Native Contacts in the Martini 3 Coarse-Grained Force Field. J. Chem. Theory Comput. 2024, 10.1021/acs.jctc.4c00553. PubMed DOI
Shinoda W.; DeVane R.; Klein M. L. Multi-Property Fitting and Parameterization of a Coarse Grained Model for Aqueous Surfactants. Mol. Simul. 2007, 33 (1–2), 27–36. 10.1080/08927020601054050. DOI
Prabhu J.; Frigerio M.; Petretto E.; Campomanes P.; Salentinig S.; Vanni S. A Coarse-Grained SPICA Makeover for Solvated and Bare Sodium and Chloride Ions. J. Chem. Theory Comput. 2024, 20 (17), 7624–7634. 10.1021/acs.jctc.4c00529. PubMed DOI PMC
Kawamoto S.; Liu H.; Miyazaki Y.; Seo S.; Dixit M.; Devane R.; Macdermaid C.; Fiorin G.; Klein M. L.; Shinoda W. SPICA Force Field for Proteins and Peptides. J. Chem. Theory Comput. 2022, 18, 3204.10.1021/acs.jctc.1c01207. PubMed DOI
Yamada T.; Miyazaki Y.; Harada S.; Kumar A.; Vanni S.; Shinoda W. Improved Protein Model in SPICA Force Field. J. Chem. Theory Comput. 2023, 19 (23), 8967–8977. 10.1021/acs.jctc.3c01016. PubMed DOI
Shinoda W.; Klein M. L. Effective Interaction between Small Unilamellar Vesicles as Probed by Coarse-Grained Molecular Dynamics Simulations. Pure Appl. Chem. 2014, 86 (2), 215–222. 10.1515/pac-2014-5023. DOI
Jusufi A.; DeVane R. H.; Shinoda W.; Klein M. L. Nanoscale Carbon Particles and the Stability of Lipid Bilayers. Soft Matter 2011, 7 (3), 1139.10.1039/C0SM00963F. DOI
Bacle A.; Gautier R.; Jackson C. L.; Fuchs P. F. J.; Vanni S. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophys. J. 2017, 112 (7), 1417–1430. 10.1016/j.bpj.2017.02.032. PubMed DOI PMC
Machado M. R.; Barrera E. E.; Klein F.; Sónora M.; Silva S.; Pantano S. The SIRAH 2.0 Force Field: Altius, Fortius, Citius. J. Chem. Theory Comput. 2019, 15 (4), 2719–2733. 10.1021/acs.jctc.9b00006. PubMed DOI
Brandner A.; Schüller A.; Melo F.; Pantano S. Exploring DNA Dynamics within Oligonucleosomes with Coarse-Grained Simulations: SIRAH Force Field Extension for Protein-DNA Complexes. Biochem. Biophys. Res. Commun. 2018, 498 (2), 319–326. 10.1016/j.bbrc.2017.09.086. PubMed DOI
Soñora M.; Martínez L.; Pantano S.; Machado M. R. Wrapping up Viruses at Multiscale Resolution: Optimizing PACKMOL and SIRAH Execution for Simulating the Zika Virus. J. Chem. Inf. Model. 2021, 61 (1), 408–422. 10.1021/acs.jcim.0c01205. PubMed DOI
Garay P. G.; Barrera E. E.; Klein F.; Machado M. R.; Soñora M.; Pantano S. The SIRAH-CoV-2 Initiative: A Coarse-Grained Simulations’ Dataset of the SARS-CoV-2 Proteome. Front. Med. Technol. 2021, 3, 644039.10.3389/fmedt.2021.644039. PubMed DOI PMC
Salomon-Ferrer R.; Case D. A.; Walker R. C. An Overview of the Amber Biomolecular Simulation Package. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3 (2), 198–210. 10.1002/wcms.1121. DOI
Hoogerbrugge P. J.; Koelman J. M. V. A. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Epl 1992, 19 (3), 155–160. 10.1209/0295-5075/19/3/001. DOI
Groot R. D.; Warren P. B. Dissipative Particle Dynamics: Bridging the Gap between Atomistic and Mesoscopic Simulation. J. Chem. Phys. 1997, 107 (11), 4423–4435. 10.1063/1.474784. DOI
Peter E. K.; Pivkin I. V. A Polarizable Coarse-Grained Water Model for Dissipative Particle Dynamics. J. Chem. Phys. 2014, 141 (16), 164506.10.1063/1.4899317. PubMed DOI
Español P.; Warren P. B. Perspective: Dissipative Particle Dynamics. J. Chem. Phys. 2017, 146 (15), 150901.10.1063/1.4979514. PubMed DOI
Wang Y.; Hernandez R. Construction of Multiscale Dissipative Particle Dynamics (DPD) Models from Other Coarse-Grained Models. ACS Omega 2024, 10.1021/acsomega.4c01868. PubMed DOI PMC
de Meyer F.; Smit B. Effect of Cholesterol on the Structure of a Phospholipid Bilayer. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (10), 3654–3658. 10.1073/pnas.0809959106. PubMed DOI PMC
Li Z.; Gorfe A. A. Receptor-Mediated Membrane Adhesion of Lipid-Polymer Hybrid (LPH) Nanoparticles Studied by Dissipative Particle Dynamics Simulations. Nanoscale 2015, 7 (2), 814–824. 10.1039/C4NR04834B. PubMed DOI PMC
Burgess S.; Wang Z.; Vishnyakov A.; Neimark A. V. Adhesion, Intake, and Release of Nanoparticles by Lipid Bilayers. J. Colloid Interface Sci. 2020, 561, 58–70. 10.1016/j.jcis.2019.11.106. PubMed DOI
Wang S.; Guo H.; Li Y.; Li X. Penetration of Nanoparticles across a Lipid Bilayer: Effects of Particle Stiffness and Surface Hydrophobicity. Nanoscale 2019, 11 (9), 4025.10.1039/C8NR09381D. PubMed DOI
Chong G.; Foreman-Ortiz I. U.; Wu M.; Bautista A.; Murphy C. J.; Pedersen J. A.; Hernandez R. Defects in Self-Assembled Monolayers on Nanoparticles Prompt Phospholipid Extraction and Bilayer-Curvature-Dependent Deformations. J. Phys. Chem. C 2019, 123, 27951.10.1021/acs.jpcc.9b08583. DOI
Grafmüller A.; Shillcock J.; Lipowsky R. The Fusion of Membranes and Vesicles: Pathway and Energy Barriers from Dissipative Particle Dynamics. Biophys. J. 2009, 96 (7), 2658–2675. 10.1016/j.bpj.2008.11.073. PubMed DOI PMC
Yildiz M.; Kacar G. Investigation of Ibuprofen Loading in PEG-PLGA-PEG Micelles by Coarse-Grained DPD Simulations. MRS Adv. 2021, 6 (28), 689–694. 10.1557/s43580-021-00073-6. DOI
Kacar G. Molecular Understanding of Interactions, Structure, and Drug Encapsulation Efficiency of Pluronic Micelles from Dissipative Particle Dynamics Simulations. Colloid Polym. Sci. 2019, 297 (7–8), 1037–1051. 10.1007/s00396-019-04535-0. DOI
Guo R.; Mao J.; Yan L. T. Unique Dynamical Approach of Fully Wrapping Dendrimer-like Soft Nanoparticles by Lipid Bilayer Membrane. ACS Nano 2013, 7 (12), 10646–10653. 10.1021/nn4033344. PubMed DOI
Harris J.; Chipot C.; Roux B. How Is Membrane Permeation of Small Ionizable Molecules Affected by Protonation Kinetics?. J. Phys. Chem. B 2024, 128 (3), 795–811. 10.1021/acs.jpcb.3c06765. PubMed DOI PMC
Paloncýová M.; Šrejber M.; Čechová P.; Kührová P.; Zaoral F.; Otyepka M. Atomistic Insights into Organization of RNA-Loaded Lipid Nanoparticles. J. Phys. Chem. B 2023, 127 (5), 1158–1166. 10.1021/acs.jpcb.2c07671. PubMed DOI
Trollmann M. F. W.; Böckmann R. A. MRNA Lipid Nanoparticle Phase Transition. Biophys. J. 2022, 121, 3927.10.1016/j.bpj.2022.08.037. PubMed DOI PMC
Berka K.; Hendrychová T.; Anzenbacher P.; Otyepka M. Membrane Position of Ibuprofen Agrees with Suggested Access Path Entrance to Cytochrome P450 2C9 Active Site. J. Phys. Chem. A 2011, 115 (41), 11248–11255. 10.1021/jp204488j. PubMed DOI PMC
Paloncýová M.; Berka K.; Otyepka M. Molecular Insight into Affinities of Drugs and Their Metabolites to Lipid Bilayers. J. Phys. Chem. B 2013, 117 (8), 2403–2410. 10.1021/jp311802x. PubMed DOI
Jo S.; Kim T.; Iyer V. G.; Im W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29 (11), 1859–1865. 10.1002/jcc.20945. PubMed DOI
Kern N. R.; Lee J.; Kyo Choi Y.; Im W. CHARMM-GUI Multicomponent Assembler for Modeling and Simulation of Complex Multicomponent Systems. Biophys. J. 2022, 121 (3), 529a.10.1016/j.bpj.2021.11.2789. PubMed DOI PMC
Qi Y.; Ingólfsson H. I.; Cheng X.; Lee J.; Marrink S. J.; Im W. CHARMM-GUI Martini Maker for Coarse-Grained Simulations with the Martini Force Field. J. Chem. Theory Comput. 2015, 11 (9), 4486–4494. 10.1021/acs.jctc.5b00513. PubMed DOI
Hsu P. C.; Bruininks B. M. H.; Jefferies D.; Souza P. C. T.; Lee J.; Patel D. S.; Marrink S. J.; Qi Y.; Khalid S.; Im W. Charmm-Gui Martini Maker for Modeling and Simulation of Complex Bacterial Membranes with Lipopolysaccharides. J. Comput. Chem. 2017, 38 (27), 2354–2363. 10.1002/jcc.24895. PubMed DOI PMC
Wassenaar T. A.; Pluhackova K.; Böckmann R. A.; Marrink S. J.; Tieleman D. P. Going Backward: A Flexible Geometric Approach to Reverse Transformation from Coarse Grained to Atomistic Models. J. Chem. Theory Comput. 2014, 10 (2), 676–690. 10.1021/ct400617g. PubMed DOI
Vickery O. N.; Stansfeld P. J. CG2AT2: An Enhanced Fragment-Based Approach for Serial Multi-Scale Molecular Dynamics Simulations. J. Chem. Theory Comput. 2021, 17 (10), 6472–6482. 10.1021/acs.jctc.1c00295. PubMed DOI PMC
Bennett W. F. D.; Bernardi A.; Ozturk T. N.; Ingólfsson H. I.; Fox S. J.; Sun D.; Maupin C. M. EzAlign: A Tool for Converting Coarse-Grained Molecular Dynamics Structures to Atomistic Resolution for Multiscale Modeling. Molecules 2024, 29 (15), 3557.10.3390/molecules29153557. PubMed DOI PMC
Pezeshkian W.; König M.; Wassenaar T. A.; Marrink S. J. Backmapping Triangulated Surfaces to Coarse-Grained Membrane Models. Nat. Commun. 2020, 11 (1), 2296.10.1038/s41467-020-16094-y. PubMed DOI PMC
Martínez J. M.; Martínez L. Packing Optimization for Automated Generation of Complex System’s Initial Configurations for Molecular Dynamics and Docking. J. Comput. Chem. 2003, 24 (7), 819–825. 10.1002/jcc.10216. PubMed DOI
Stanley N.; Pardo L.; Fabritiis G. De. The Pathway of Ligand Entry from the Membrane Bilayer to a Lipid G Protein-Coupled Receptor. Sci. Rep. 2016, 6, 1–9. 10.1038/srep22639. PubMed DOI PMC
Harada R.; Morita R.; Shigeta Y. Free-Energy Profiles for Membrane Permeation of Compounds Calculated Using Rare-Event Sampling Methods. J. Chem. Inf. Model. 2023, 63 (1), 259–269. 10.1021/acs.jcim.2c01097. PubMed DOI
Duché G.; Sanderson J. M. The Chemical Reactivity of Membrane Lipids. Chem. Rev. 2024, 124, 3284.10.1021/acs.chemrev.3c00608. PubMed DOI PMC
Wang A. H.; Zhang Z. C.; Li G. H. Advances in Enhanced Sampling Molecular Dynamics Simulations for Biomolecules. Chin. J. Chem. Phys. 2019, 32 (3), 277–286. 10.1063/1674-0068/cjcp1905091. DOI
Mori T.; Miyashita N.; Im W.; Feig M.; Sugita Y. Molecular Dynamics Simulations of Biological Membranes and Membrane Proteins Using Enhanced Conformational Sampling Algorithms. Biochim. Biophys. Acta - Biomembr. 2016, 1858 (7), 1635–1651. 10.1016/j.bbamem.2015.12.032. PubMed DOI PMC
Matos A. L. L.; Pereira G.; Santos B. S.; Fontes A. Fluorescent Liposomes to Probe How DOTAP Lipid Concentrations Can Change Red Blood Cells Homeostasis. Biophotonics South Am. 2015, 9531, 953139.10.1117/12.2180957. DOI
Hénin J.; Lelièvre T.; Shirts M. R.; Valsson O.; Delemotte L. Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0]. Living J. Comput. Mol. Sci. 2022, 4 (1), 1–60. 10.33011/livecoms.4.1.1583. DOI
Shen W.; Zhou T.; Shi X. Enhanced Sampling in Molecular Dynamics Simulations and Their Latest Applications—A Review. Nano Res. 2023, 16 (12), 13474–13497. 10.1007/s12274-023-6311-9. DOI
Jämbeck J. P. M.; Lyubartsev A. P. Exploring the Free Energy Landscape of Solutes Embedded in Lipid Bilayers. J. Phys. Chem. Lett. 2013, 4 (11), 1781–1787. 10.1021/jz4007993. PubMed DOI
Bottaro S.; Di Palma F.; Bussi G. The Role of Nucleobase Interactions in RNA Structure and Dynamics. Nucleic Acids Res. 2014, 42 (21), 13306–13314. 10.1093/nar/gku972. PubMed DOI PMC
Branduardi D.; Gervasio F. L.; Parrinello M. From A to B in Free Energy Space. J. Chem. Phys. 2007, 126 (5), 054103.10.1063/1.2432340. PubMed DOI
Spiwok V.; Králová B. Metadynamics in the Conformational Space Nonlinearly Dimensionally Reduced by Isomap. J. Chem. Phys. 2011, 135 (22), 1–7. 10.1063/1.3660208. PubMed DOI
Paloncýová M.; Navrátilová V.; Berka K.; Laio A.; Otyepka M. Role of Enzyme Flexibility in Ligand Access and Egress to Active Site: Bias-Exchange Metadynamics Study of 1,3,7-Trimethyluric Acid in Cytochrome P450 3A4. J. Chem. Theory Comput. 2016, 12 (4), 2101–2109. 10.1021/acs.jctc.6b00075. PubMed DOI
Bhakat S. Collective Variable Discovery in the Age of Machine Learning: Reality, Hype and Everything in Between. RSC Adv. 2022, 12 (38), 25010–25024. 10.1039/D2RA03660F. PubMed DOI PMC
Ciccotti G.; Kapral R.; Vanden-Eijnden E. Blue Moon Sampling, Vectorial Reaction Coordinates, and Unbiased Constrained Dynamics. ChemPhysChem 2005, 6 (9), 1809–1814. 10.1002/cphc.200400669. PubMed DOI
Torrie G. M.; Valleau J. P. Nonphysical Sampling Distributions in Monte Carlo Free-Energy Estimation: Umbrella Sampling. J. Comput. Phys. 1977, 23 (2), 187–199. 10.1016/0021-9991(77)90121-8. DOI
Kumar S.; Rosenberg J. M.; Bouzida D.; Swendsen R. H.; Kollman P. A. THE Weighted Histogram Analysis Method for Free-Energy Calculations on Biomolecules. I. The Method. J. Comput. Chem. 1992, 13 (8), 1011–1021. 10.1002/jcc.540130812. DOI
Darve E.; Rodríguez-Gómez D.; Pohorille A. Adaptive Biasing Force Method for Scalar and Vector Free Energy Calculations. J. Chem. Phys. 2008, 128 (14), 1–13. 10.1063/1.2829861. PubMed DOI
Laio A.; Parrinello M. Escaping Free-Energy Minima. Proc. Natl. Acad. Sci. U. S. A. 2002, 99 (20), 12562–12566. 10.1073/pnas.202427399. PubMed DOI PMC
Barducci A.; Bussi G.; Parrinello M. Well-Tempered Metadynamics: A Smoothly Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100 (2), 1–4. 10.1103/PhysRevLett.100.020603. PubMed DOI
Wu X.; Dai X.; Liao Y.; Sheng M.; Shi X. Investigation on Drug Entrapment Location in Liposomes and Transfersomes Based on Molecular Dynamics Simulation. J. Mol. Model. 2021, 27 (4), 111.10.1007/s00894-021-04722-3. PubMed DOI
Mitsuta Y.; Asada T.; Shigeta Y. Calculation of the Permeability Coefficients of Small Molecules through Lipid Bilayers by Free-Energy Reaction Network Analysis Following the Explicit Treatment of the Internal Conformation of the Solute. Phys. Chem. Chem. Phys. 2022, 24 (42), 26070–26082. 10.1039/D2CP03678A. PubMed DOI
Zamani Zakaria A.; Malde A. K.; Gould T. Permeability of Dermatological Solutes through the Short Periodicity Phase of Human Stratum Corneum Lipid Bilayers. J. Chem. Inf. Model. 2024, 64 (1), 276–288. 10.1021/acs.jcim.3c01362. PubMed DOI
Jo S.; Rui H.; Lim J. B.; Klauda J. B.; Im W. Cholesterol Flip-Flop: Insights from Free Energy Simulation Studies. J. Phys. Chem. B 2010, 114 (42), 13342–13348. 10.1021/jp108166k. PubMed DOI
Čechová P.; Paloncýová M.; Šrejber M.; Otyepka M. Mechanistic Insights into Interactions between Ionizable Lipid Nanodroplets and Biomembranes. J. Biomol. Struct. Dyn. 2024, 0 (0), 1–11. 10.1080/07391102.2024.2329307. PubMed DOI
Poojari C. S.; Scherer K. C.; Hub J. S. Free Energies of Membrane Stalk Formation from a Lipidomics Perspective. Nat. Commun. 2021, 12 (1), 1–10. 10.1038/s41467-021-26924-2. PubMed DOI PMC
Sugita Y.; Okamoto Y. Replica-Exchange Molecular Dynamics Method for Protein Folding Simulation. Chem. Phys. Lett. 1999, 314, 141–151. 10.1016/S0009-2614(99)01123-9. DOI
Kirkpatrick S.; Gelatt C. D.; Vecchi M. P. Optimization by Simulated Annealing. Science 1983, 220 (4598), 671–680. 10.1126/science.220.4598.671. PubMed DOI
Sugita Y.; Kitao A.; Okamoto Y. Multidimensional Replica-Exchange Method for Free-Energy Calculations. J. Chem. Phys. 2000, 113 (15), 6042–6051. 10.1063/1.1308516. DOI
Bunker A.; Dünweg B. Parallel Excluded Volume Tempering for Polymer Melts. Phys. Rev. E 2000, 63 (1), 016701.10.1103/PhysRevE.63.016701. PubMed DOI
Wang L.; Friesner R. A.; Berne B. J. Replica Exchange with Solute Scaling: A More Efficient Version of Replica Exchange with Solute Tempering (REST2). J. Phys. Chem. B 2011, 115 (30), 9431–9438. 10.1021/jp204407d. PubMed DOI PMC
Miao Y.; Feher V. A.; McCammon J. A. Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation. J. Chem. Theory Comput. 2015, 11 (8), 3584–3595. 10.1021/acs.jctc.5b00436. PubMed DOI PMC
Pang Y. T.; Miao Y.; Wang Y.; McCammon J. A. Gaussian Accelerated Molecular Dynamics in NAMD. J. Chem. Theory Comput. 2017, 13 (1), 9–19. 10.1021/acs.jctc.6b00931. PubMed DOI PMC
Wang J.; Arantes P. R.; Bhattarai A.; Hsu R. V.; Pawnikar S.; Huang Y.M. M.; Palermo G.; Miao Y. Gaussian Accelerated Molecular Dynamics: Principles and Applications. WIREs Comput. Mol. Sci. 2021, 11 (5), e1521.10.1002/wcms.1521. PubMed DOI PMC
Hamelberg D.; Mongan J.; McCammon J. A. Accelerated Molecular Dynamics: A Promising and Efficient Simulation Method for Biomolecules. J. Chem. Phys. 2004, 120 (24), 11919–11929. 10.1063/1.1755656. PubMed DOI
Kamiya M.; Sugita Y. Flexible Selection of the Solute Region in Replica Exchange with Solute Tempering: Application to Protein-Folding Simulations. J. Chem. Phys. 2018, 149 (7), 072304.10.1063/1.5016222. PubMed DOI
Stelzl L. S.; Hummer G. Kinetics from Replica Exchange Molecular Dynamics Simulations. J. Chem. Theory Comput. 2017, 13 (8), 3927–3935. 10.1021/acs.jctc.7b00372. PubMed DOI
Zhang Y.; Liu X.; Chen J. Re-Balancing Replica Exchange with Solute Tempering for Sampling Dynamic Protein Conformations. J. Chem. Theory Comput. 2023, 19 (5), 1602–1614. 10.1021/acs.jctc.2c01139. PubMed DOI PMC
Luitz M. P.; Zacharias M. Protein-Ligand Docking Using Hamiltonian Replica Exchange Simulations with Soft Core Potentials. J. Chem. Inf. Model. 2014, 54 (6), 1669–1675. 10.1021/ci500296f. PubMed DOI
Srivastava A.; Tama F.; Kohda D.; Miyashita O. Computational Investigation of the Conformational Dynamics in Tom20-Mitochondrial Presequence Tethered Complexes. Proteins Struct. Funct. Bioinforma. 2019, 87 (1), 81–90. 10.1002/prot.25625. PubMed DOI
Roe D. R.; Bergonzo C.; Cheatham T. E. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods. J. Phys. Chem. B 2014, 118 (13), 3543–3552. 10.1021/jp4125099. PubMed DOI PMC
Tarakanova A.; Yeo G. C.; Baldock C.; Weiss A. S.; Buehler M. J. Molecular Model of Human Tropoelastin and Implications of Associated Mutations. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (28), 7338–7343. 10.1073/pnas.1801205115. PubMed DOI PMC
Tarakanova A.; Yeo G. C.; Baldock C.; Weiss A. S.; Buehler M. J. Tropoelastin Is a Flexible Molecule That Retains Its Canonical Shape. Macromol. Biosci. 2019, 19 (3), 1800250.10.1002/mabi.201800250. PubMed DOI
Jung J.; Mori T.; Kobayashi C.; Matsunaga Y.; Yoda T.; Feig M.; Sugita Y. GENESIS: A Hybrid-Parallel and Multi-Scale Molecular Dynamics Simulator with Enhanced Sampling Algorithms for Biomolecular and Cellular Simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2015, 5 (4), 310–323. 10.1002/wcms.1220. PubMed DOI PMC
Nagai T.; Okamoto Y. Replica-Exchange Molecular Dynamics Simulation of a Lipid Bilayer System with a Coarse-Grained Model. Mol. Simul. 2012, 38 (5), 437–441. 10.1080/08927022.2011.564172. DOI
Huang K.; García A. E. Acceleration of Lateral Equilibration in Mixed Lipid Bilayers Using Replica Exchange with Solute Tempering. J. Chem. Theory Comput. 2014, 10 (10), 4264–4272. 10.1021/ct500305u. PubMed DOI PMC
Gupta C.; Sarkar D.; Tieleman D. P.; Singharoy A. The Ugly, Bad, and Good Stories of Large-Scale Biomolecular Simulations. Curr. Opin. Struct. Biol. 2022, 73, 102338.10.1016/j.sbi.2022.102338. PubMed DOI
Bussi G.; Gervasio F. L.; Laio A.; Parrinello M. Free-Energy Landscape for β Hairpin Folding from Combined Parallel Tempering and Metadynamics. J. Am. Chem. Soc. 2006, 128 (41), 13435–13441. 10.1021/ja062463w. PubMed DOI
Mlýnský V.; Janeček M.; Kührová P.; Fröhlking T.; Otyepka M.; Bussi G.; Banáš P.; Šponer J. Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications. J. Chem. Theory Comput. 2022, 18 (4), 2642–2656. 10.1021/acs.jctc.1c01222. PubMed DOI
Mehdi S.; Smith Z.; Herron L.; Zou Z.; Tiwary P. Enhanced Sampling with Machine Learning. Annu. Rev. Phys. Chem. 2024, 75 (1), 347.10.1146/annurev-physchem-083122-125941. PubMed DOI PMC
Jung H.; Covino R.; Arjun A.; Leitold C.; Dellago C.; Bolhuis P. G.; Hummer G. Machine-Guided Path Sampling to Discover Mechanisms of Molecular Self-Organization. Nat. Comput. Sci. 2023, 3 (4), 334–345. 10.1038/s43588-023-00428-z. PubMed DOI PMC
Zhang J.; Chen D.; Xia Y.; Huang Y.-P.; Lin X.; Han X.; Ni N.; Wang Z.; Yu F.; Yang L.; et al. Artificial Intelligence Enhanced Molecular Simulations. J. Chem. Theory Comput. 2023, 19 (14), 4338–4350. 10.1021/acs.jctc.3c00214. PubMed DOI
Wang Y.; Lamim Ribeiro J. M.; Tiwary P. Machine Learning Approaches for Analyzing and Enhancing Molecular Dynamics Simulations. Curr. Opin. Struct. Biol. 2020, 61, 139–145. 10.1016/j.sbi.2019.12.016. PubMed DOI
Prašnikar E.; Ljubič M.; Perdih A.; Borišek J. Machine Learning Heralding a New Development Phase in Molecular Dynamics Simulations. Artif. Intell. Rev. 2024, 57 (4), 102.10.1007/s10462-024-10731-4. DOI
Schug A.; Weigt M.; Onuchic J. N.; Hwa T.; Szurmant H. High-Resolution Protein Complexes from Integrating Genomic Information with Molecular Simulation. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (52), 22124–22129. 10.1073/pnas.0912100106. PubMed DOI PMC
Colizzi F.; Orozco M. Probing Allosteric Regulations with Coevolution-Driven Molecular Simulations. Sci. Adv. 2021, 7 (37), 1–7. 10.1126/sciadv.abj0786. PubMed DOI PMC
Dos Santos R. N.; Morcos F.; Jana B.; Andricopulo A. D.; Onuchic J. N. Dimeric Interactions and Complex Formation Using Direct Coevolutionary Couplings. Sci. Rep. 2015, 5, 1–10. 10.1038/srep13652. PubMed DOI PMC
Dos Santos R. N.; Ferrari A. J. R.; De Jesus H. C. R.; Gozzo F. C.; Morcos F.; Martínez L. Enhancing Protein Fold Determination by Exploring the Complementary Information of Chemical Cross-Linking and Coevolutionary Signals. Bioinformatics 2018, 34 (13), 2201–2208. 10.1093/bioinformatics/bty074. PubMed DOI
dos Santos R. N.; Khan S.; Morcos F. Characterization of C-Ring Component Assembly in Flagellar Motors from Amino Acid Coevolution. R. Soc. Open Sci. 2018, 5 (5), 171854.10.1098/rsos.171854. PubMed DOI PMC
Fongang B.; Wadop Y. N.; Zhu Y.; Wagner E. J.; Kudlicki A.; Rowicka M. Coevolution Combined with Molecular Dynamics Simulations Provides Structural and Mechanistic Insights into the Interactions between the Integrator Complex Subunits. Comput. Struct. Biotechnol. J. 2023, 21, 5686–5697. 10.1016/j.csbj.2023.11.022. PubMed DOI PMC
Jumper J.; Hassabis D. Protein Structure Predictions to Atomic Accuracy with AlphaFold. Nat. Methods 2022, 19 (1), 11–12. 10.1038/s41592-021-01362-6. PubMed DOI
Martin-Barrios R.; Navas-Conyedo E.; Zhang X.; Chen Y.; Gulín-González J. An Overview about Neural Networks Potentials in Molecular Dynamics Simulation. Int. J. Quantum Chem. 2024, 124 (11), 1–27. 10.1002/qua.27389. DOI
Fedik N.; Zubatyuk R.; Kulichenko M.; Lubbers N.; Smith J. S.; Nebgen B.; Messerly R.; Li Y. W.; Boldyrev A. I.; Barros K.; et al. Extending Machine Learning beyond Interatomic Potentials for Predicting Molecular Properties. Nat. Rev. Chem. 2022, 6 (9), 653–672. 10.1038/s41570-022-00416-3. PubMed DOI
Pun G. P. P.; Batra R.; Ramprasad R.; Mishin Y. Physically Informed Artificial Neural Networks for Atomistic Modeling of Materials. Nat. Commun. 2019, 10 (1), 1–10. 10.1038/s41467-019-10343-5. PubMed DOI PMC
Omar S. I.; Keasar C.; Ben-Sasson A. J.; Haber E. Protein Design Using Physics Informed Neural Networks. Biomolecules 2023, 13 (3), 457.10.3390/biom13030457. PubMed DOI PMC
Hansch C.; Fujita T. P -σ-π Analysis. A Method for the Correlation of Biological Activity and Chemical Structure. J. Am. Chem. Soc. 1964, 86 (8), 1616–1626. 10.1021/ja01062a035. DOI
Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Inform. 2010, 29 (6–7), 476–488. 10.1002/minf.201000061. PubMed DOI
Bishop C. M.Pattern Recognition and Machine Learning; Springer: New York, NY, 2006; Vol. 4.
Murphy K. P.Machine Learning: A Probabilistic Perspective; Springer Series in Statistics; The MIT Press: Cambridge, MA, 2012.
Hastie T.; Tibshirani R.; Friedman J.. The Elements of Statistical Learning; Springer Series in Statistics; Springer New York: New York, NY, 2009.
Fourches D.; Muratov E.; Tropsha A. Trust, but Verify: On the Importance of Chemical Structure Curation in Cheminformatics and QSAR Modeling Research. J. Chem. Inf. Model. 2010, 50 (7), 1189–1204. 10.1021/ci100176x. PubMed DOI PMC
Fourches D.; Muratov E.; Tropsha A. Trust, but Verify II: A Practical Guide to Chemogenomics Data Curation. J. Chem. Inf. Model. 2016, 56 (7), 1243–1252. 10.1021/acs.jcim.6b00129. PubMed DOI PMC
Cheng L.; Zhu Y.; Ma J.; Aggarwal A.; Toh W. H.; Shin C.; Sangpachatanaruk W.; Weng G.; Kumar R.; Mao H.-Q.. Machine Learning Elucidates Design Features of Plasmid DNA Lipid Nanoparticles for Cell Type-Preferential Transfection. bioRxiv (Bioengineering), Dec. 8, 2023, 2023.12.07.570602. DOI: 10.1101/2023.12.07.570602. PubMed PMC
Harrison P. J.; Wieslander H.; Sabirsh A.; Karlsson J.; Malmsjö V.; Hellander A.; Wählby C.; Spjuth O. Deep-Learning Models for Lipid Nanoparticle-Based Drug Delivery. Nanomedicine 2021, 16 (13), 1097–1110. 10.2217/nnm-2020-0461. PubMed DOI
Ding D. Y.; Zhang Y.; Jia Y.; Sun J.. Machine Learning-Guided Lipid Nanoparticle Design for mRNA Delivery. arXiv (Biomolecules), August 29, 2023. DOI: 10.48550/arXiv.2308.01402(accessed 2024–11–22).
Ostro M. J.; Giacomoni D.; Lavelle D.; Paxton W.; Dray S. Evidence for Translation of Rabbit Globin MRNA after Liposomemediated Insertion into a Human Cell Line. Nature 1978, 274 (5674), 921–923. 10.1038/274921a0. PubMed DOI
Bao Z.; Yung F.; Hickman R. J.; Aspuru-Guzik A.; Bannigan P.; Allen C. Data-Driven Development of an Oral Lipid-Based Nanoparticle Formulation of a Hydrophobic Drug. Drug Delivery Transl. Res. 2024, 14, 1872.10.1007/s13346-023-01491-9. PubMed DOI
Xu Y.; Ma S.; Cui H.; Chen J.; Xu S.; Gong F.; Golubovic A.; Zhou M.; Wang K. C.; Varley A.; et al. AGILE Platform: A Deep Learning Powered Approach to Accelerate LNP Development for MRNA Delivery. Nat. Commun. 2024, 15 (1), 6305.10.1038/s41467-024-50619-z. PubMed DOI PMC
Moayedpour S.; Broadbent J.; Riahi S.; Bailey M.; V. Thu H.; Dobchev D.; Balsubramani A.; N. D. Santos R.; Kogler-Anele L.; Corrochano-Navarro A.; et al. Representations of Lipid Nanoparticles Using Large Language Models for Transfection Efficiency Prediction. Bioinformatics 2024, 40, btae342.10.1093/bioinformatics/btae342. PubMed DOI PMC
Reiser P.; Neubert M.; Eberhard A.; Torresi L.; Zhou C.; Shao C.; Metni H.; van Hoesel C.; Schopmans H.; Sommer T.; et al. Graph Neural Networks for Materials Science and Chemistry. Commun. Mater. 2022, 3 (1), 93.10.1038/s43246-022-00315-6. PubMed DOI PMC
Townshend R. J. L.; Eismann S.; Watkins A. M.; Rangan R.; Karelina M.; Das R.; Dror R. O. Geometric Deep Learning of RNA Structure. Science 2021, 373 (6558), 1047–1051. 10.1126/science.abe5650. PubMed DOI PMC
Wang Y.; Wang J.; Cao Z.; Barati Farimani A. Molecular Contrastive Learning of Representations via Graph Neural Networks. Nat. Mach. Intell. 2022, 4 (3), 279–287. 10.1038/s42256-022-00447-x. DOI
Wang W.; Feng S.; Ye Z.; Gao H.; Lin J.; Ouyang D. Prediction of Lipid Nanoparticles for MRNA Vaccines by the Machine Learning Algorithm. Acta Pharm. Sin. B 2022, 12 (6), 2950–2962. 10.1016/j.apsb.2021.11.021. PubMed DOI PMC
Rogers D.; Hahn M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50 (5), 742–754. 10.1021/ci100050t. PubMed DOI
Ke G.; Meng Q.; Finley T.; Wang T.; Chen W.; Ma W.; Ye Q.; Liu T.-Y. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. Proc. 31st Int. Conf. Neural Inf. Process. Syst. 2017, 3149–3157. 10.5555/3294996.3295074. DOI
Maharjan R.; Hada S.; Lee J. E.; Han H. K.; Kim K. H.; Seo H. J.; Foged C.; Jeong S. H. Comparative Study of Lipid Nanoparticle-Based MRNA Vaccine Bioprocess with Machine Learning and Combinatorial Artificial Neural Network-Design of Experiment Approach. Int. J. Pharm. 2023, 640 (April), 123012.10.1016/j.ijpharm.2023.123012. PubMed DOI
Benson S. P.; Pleiss J. Molecular Dynamics Simulations of Self-Emulsifying Drug-Delivery Systems (SEDDS): Influence of Excipients on Droplet Nanostructure and Drug Localization. Langmuir 2014, 30 (28), 8471–8480. 10.1021/la501143z. PubMed DOI
Balouch M.; Šrejber M.; Šoltys M.; Janská P.; Štěpánek F.; Berka K. In Silico Screening of Drug Candidates for Thermoresponsive Liposome Formulations. Mol. Syst. Des. Eng. 2021, 6 (5), 368–380. 10.1039/D0ME00160K. DOI
Venable R. M.; Krämer A.; Pastor R. W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119 (9), 5954–5997. 10.1021/acs.chemrev.8b00486. PubMed DOI PMC
Eid J.; Jraij A.; Greige-Gerges H.; Monticelli L. Effect of Quercetin on Lipid Membrane Rigidity: Assessment by Atomic Force Microscopy and Molecular Dynamics Simulations. BBA Adv. 2021, 1, 100018.10.1016/j.bbadva.2021.100018. PubMed DOI PMC
Siani P.; Donadoni E.; Ferraro L.; Re F.; Di Valentin C. Molecular Dynamics Simulations of Doxorubicin in Sphingomyelin-Based Lipid Membranes. Biochim. Biophys. Acta - Biomembr. 2022, 1864 (1), 183763.10.1016/j.bbamem.2021.183763. PubMed DOI
Róg T.; Girych M.; Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals 2021, 14 (10), 1062.10.3390/ph14101062. PubMed DOI PMC
Hamal P.; Nguyenhuu H.; Subasinghege Don V.; Kumal R. R.; Kumar R.; McCarley R. L.; Haber L. H. Molecular Adsorption and Transport at Liposome Surfaces Studied by Molecular Dynamics Simulations and Second Harmonic Generation Spectroscopy. J. Phys. Chem. B 2019, 123 (36), 7722–7730. 10.1021/acs.jpcb.9b05954. PubMed DOI
Konig M.; Vries R. de; Grunewald F.; Marrink S.-J.; Pezeshkian W.. Curvature-Induced Lipid Sorting beyond the Critical Packing Parameter. bioXriv (Biophysics), December 15, 2023, 2023.12.15.571845. DOI: 10.1101/2023.12.15.571845(accessed 2024–11–22).
Xiang T.-X.; Anderson B. D. Liposomal Drug Transport: A Molecular Perspective from Molecular Dynamics Simulations in Lipid Bilayers. Adv. Drug Delivery Rev. 2006, 58 (12–13), 1357–1378. 10.1016/j.addr.2006.09.002. PubMed DOI
Salahshoori I.; Golriz M.; Nobre M. A. L.; Mahdavi S.; Eshaghi Malekshah R.; Javdani-Mallak A.; Namayandeh Jorabchi M.; Ali Khonakdar H.; Wang Q.; Mohammadi A. H.; et al. Simulation-Based Approaches for Drug Delivery Systems: Navigating Advancements, Opportunities, and Challenges. J. Mol. Liq. 2024, 395, 123888.10.1016/j.molliq.2023.123888. DOI
Santos D. E. S.; De Nicola A.; dos Santos V. F.; Milano G.; Soares T. A. Exploring the Molecular Dynamics of a Lipid-A Vesicle at the Atom Level: Morphology and Permeation Mechanism. J. Phys. Chem. B 2023, 127 (30), 6694–6702. 10.1021/acs.jpcb.3c02848. PubMed DOI PMC
Santos D. E. S.; De Nicola A.; dos Santos V. F.; Milano G.; Soares T. A. Exploring the Molecular Dynamics of a Lipid-A Vesicle at the Atom Level: Morphology and Permeation Mechanism. J. Phys. Chem. B 2023, 127 (30), 6694–6702. 10.1021/acs.jpcb.3c02848. PubMed DOI PMC
Man V. H.; Li M. S.; Derreumaux P.; Wang J.; Nguyen P. H. Molecular Mechanism of Ultrasound-Induced Structural Defects in Liposomes: A Nonequilibrium Molecular Dynamics Simulation Study. Langmuir 2021, 37 (26), 7945–7954. 10.1021/acs.langmuir.1c00555. PubMed DOI
Vetta M. De; González L.; Nogueira J. J. Hydrogen Bonding Regulates the Rigidity of Liposome-Encapsulated Chlorin Photosensitizers. ChemistryOpen 2018, 7 (6), 475–483. 10.1002/open.201800050. PubMed DOI PMC
Knecht V.; Marrink S. J. Molecular Dynamics Simulations of Lipid Vesicle Fusion in Atomic Detail. Biophys. J. 2007, 92 (12), 4254–4261. 10.1529/biophysj.106.103572. PubMed DOI PMC
De Vries A. H.; Mark A. E.; Marrink S. J. Molecular Dynamics Simulation of the Spontaneous Formation of a Small DPPC Vesicle in Water in Atomistic Detail. J. Am. Chem. Soc. 2004, 126 (14), 4488–4489. 10.1021/ja0398417. PubMed DOI
Wu S.; Guo H. Dissipative Particle Dynamics Simulation Study of the Bilayer-Vesicle Transition. Sci. China, Ser. B Chem. 2008, 51 (8), 743–750. 10.1007/s11426-008-0077-5. DOI
Kacar G. Structural and Energetic Properties of Lecithin Liposomes Encapsulating Coenzyme Q10 from Coarse-Grained Simulations. Chem. Pap. 2024, 78 (7), 4551–4565. 10.1007/s11696-024-03417-2. DOI
Parchekani J.; Allahverdi A.; Taghdir M.; Naderi-Manesh H. Design and Simulation of the Liposomal Model by Using a Coarse-Grained Molecular Dynamics Approach towards Drug Delivery Goals. Sci. Rep. 2022, 12 (1), 1–15. 10.1038/s41598-022-06380-8. PubMed DOI PMC
Markvoort A. J.; Pieterse K.; Steijaert M. N.; Spijker P.; Hilbers P. A. J. The Bilayer-Vesicle Transition Is Entropy Driven. J. Phys. Chem. B 2005, 109 (47), 22649–22654. 10.1021/jp053038c. PubMed DOI
Shinoda W.; DeVane R.; Klein M. L. Computer Simulation Studies of Self-Assembling Macromolecules. Curr. Opin. Struct. Biol. 2012, 22 (2), 175–186. 10.1016/j.sbi.2012.01.011. PubMed DOI
Dwiastuti R.; Radifar M.; Marchaban; Noegrohati S.; Istyastono E. P. Molecular Dynamics Simulations and Empirical Observations on Soy Lecithin Liposome Preparation. Indones. J. Chem. 2016, 16 (2), 222–228. 10.22146/ijc.21167. DOI
Winter N. D.; Murphy R. K. J.; O’Halloran T. V.; Schatz G. C. Development and Modeling of Arsenic-Trioxide-Loaded Thermosensitive Liposomes for Anticancer Drug Delivery. J. Liposome Res. 2011, 21 (2), 106–115. 10.3109/08982104.2010.483597. PubMed DOI PMC
Lee H.; Kim H. R.; Larson R. G.; Park J. C. Effects of the Size, Shape, and Structural Transition of Thermosensitive Polypeptides on the Stability of Lipid Bilayers and Liposomes. Macromolecules 2012, 45 (17), 7304–7312. 10.1021/ma301327j. DOI
Shillcock J. C. Spontaneous Vesicle Self-Assembly: A Mesoscopic View of Membrane Dynamics. Langmuir 2012, 28 (1), 541–547. 10.1021/la2033803. PubMed DOI
Markvoort A. J.; Van Santen R. A.; Hilbers P. A. J. Vesicle Shapes from Molecular Dynamics Simulations. J. Phys. Chem. B 2006, 110 (45), 22780–22785. 10.1021/jp064888a. PubMed DOI
Wu H.-L.; Sheng Y.-J.; Tsao H.-K. Phase Behaviors and Membrane Properties of Model Liposomes: Temperature Effect. J. Chem. Phys. 2014, 141 (12), 124906.10.1063/1.4896382. PubMed DOI
Chng C. P. Effect of Simulation Temperature on Phospholipid Bilayer-Vesicle Transition Studied by Coarse-Grained Molecular Dynamics Simulations. Soft Matter 2013, 9 (30), 7294–7301. 10.1039/c3sm51038g. DOI
Koshiyama K.; Nakata K. Effects of Lipid Saturation on Bicelle to Vesicle Transition of a Binary Phospholipid Mixture: A Molecular Dynamics Simulation Study. Soft Matter 2023, 19 (39), 7655–7662. 10.1039/D3SM00904A. PubMed DOI
Durrant J. D.; Amaro R. E. LipidWrapper: An Algorithm for Generating Large-Scale Membrane Models of Arbitrary Geometry. PLoS Comput. Biol. 2014, 10 (7), e1003720.10.1371/journal.pcbi.1003720. PubMed DOI PMC
Risselada H. J.; Mark A. E.; Marrink S. J. Application of Mean Field Boundary Potentials in Simulations of Lipid Vesicles. J. Phys. Chem. B 2008, 112 (25), 7438–7447. 10.1021/jp0758519. PubMed DOI
Hashemzadeh H.; Javadi H.; Darvishi M. H. Study of Structural Stability and Formation Mechanisms in DSPC and DPSM Liposomes: A Coarse-Grained Molecular Dynamics Simulation. Sci. Rep. 2020, 10 (1), 1–10. 10.1038/s41598-020-58730-z. PubMed DOI PMC
Tamai H.; Okutsu N.; Tokuyama Y.; Shimizu E.; Miyagi S.; Shulga S.; Danilov V. I.; Kurita N. A Coarse Grained Molecular Dynamics Study on the Structure and Stability of Small-Sized Liposomes. Mol. Simul. 2016, 42 (2), 122–130. 10.1080/08927022.2015.1020487. DOI
Aydin F.; Ludford P.; Dutt M. Phase Segregation in Bio-Inspired Multi-Component Vesicles Encompassing Double Tail Phospholipid Species. Soft Matter 2014, 10 (32), 6096–6108. 10.1039/C4SM00998C. PubMed DOI
Risselada H. J.; Marrink S. J. Curvature Effects on Lipid Packing and Dynamics in Liposomes Revealed by Coarse Grained Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2009, 11 (12), 2056–2067. 10.1039/b818782g. PubMed DOI
Wang C. W.; Lin M. H.; Fischer W. B. Cholesterol Affected Dynamics of Lipids in Tailor-Made Vesicles by ArcVes Software during Multi Micro Second Coarse Grained Molecular Dynamics Simulations. AIMS Biophys. 2023, 10 (4), 482–502. 10.3934/biophy.2023027. DOI
Risselada H. J.; Marrink S. J. The Freezing Process of Small Lipid Vesicles at Molecular Resolution. Soft Matter 2009, 5 (22), 4531–4541. 10.1039/b913210d. DOI
Shinoda W.; Nakamura T.; Nielsen S. O. Free Energy Analysis of Vesicle-to-Bicelle Transformation. Soft Matter 2011, 7 (19), 9012.10.1039/c1sm05404j. DOI
Duran T.; P. Costa A.; Kneski J.; Xu X.; J. Burgess D.; Mohammadiarani H.; Chaudhuri B. Manufacturing Process of Liposomal Formation: A Coarse-Grained Molecular Dynamics Simulation. Int. J. Pharm. 2024, 659, 124288.10.1016/j.ijpharm.2024.124288. PubMed DOI
Zhu J.; Xu L.; Wang W.; Xiao M.; Li J.; Wang L.; Jiang X. Molecular Dynamics Simulations Reveal Octanoylated Hyaluronic Acid Enhances Liposome Stability, Stealth and Targeting. ACS Omega 2024, 9 (31), 33833–33844. 10.1021/acsomega.4c03526. PubMed DOI PMC
Lin C.-M.; Wu D. T.; Tsao H.-K.; Sheng Y.-J. Membrane Properties of Swollen Vesicles: Growth, Rupture, and Fusion. Soft Matter 2012, 8 (22), 6139.10.1039/c2sm25518a. DOI
Markvoort A. J.; Spijker P.; Smeijers A. F.; Pieterse K.; VanSanten R. A.; Hilbers P. A. J. Vesicle Deformation by Draining: Geometrical and Topological Shape Changes. J. Phys. Chem. B 2009, 113 (25), 8731–8737. 10.1021/jp901277h. PubMed DOI
Li Z.; Zhang Y.; Ma J.; Meng Q.; Fan J. Modeling Interactions between Liposomes and Hydrophobic Nanosheets. Small 2019, 15 (6), 1–10. 10.1002/smll.201804992. PubMed DOI
Blasco S.; Sukeník L.; Vácha R. Nanoparticle Induced Fusion of Lipid Membranes. Nanoscale 2024, 16 (21), 10221–10229. 10.1039/D4NR00591K. PubMed DOI PMC
Jämbeck J. P. M.; Eriksson E. S. E.; Laaksonen A.; Lyubartsev A. P.; Eriksson L. A. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model. J. Chem. Theory Comput. 2014, 10 (1), 5–13. 10.1021/ct400466m. PubMed DOI
Pickholz M.; Giupponi G. Coarse Grained Simulations of Local Anesthetics Encapsulated into a Liposome. J. Phys. Chem. B 2010, 114 (20), 7009–7015. 10.1021/jp909148n. PubMed DOI
Genheden S.; Eriksson L. A. Estimation of Liposome Penetration Barriers of Drug Molecules with All-Atom and Coarse-Grained Models. J. Chem. Theory Comput. 2016, 12 (9), 4651–4661. 10.1021/acs.jctc.6b00557. PubMed DOI
Smeijers A. F.; Markvoort A. J.; Pieterse K.; Hilbers P. A. J. A Detailed Look at Vesicle Fusion. J. Phys. Chem. B 2006, 110 (26), 13212–13219. 10.1021/jp060824o. PubMed DOI
Stevens M. J.; Hoh J. H.; Woolf T. B. Insights into the Molecular Mechanism of Membrane Fusion from Simulation: Evidence for the Association of Splayed Tails. Phys. Rev. Lett. 2003, 91 (18), 1–4. 10.1103/PhysRevLett.91.188102. PubMed DOI
Mirjanian D.; Dickey A. N.; Hoh J. H.; Woolf T. B.; Stevens M. J. Splaying of Aliphatic Tails Plays a Central Role in Barrier Crossing during Liposome Fusion. J. Phys. Chem. B 2010, 114 (34), 11061–11068. 10.1021/jp1055182. PubMed DOI PMC
Noguchi H.; Takasu M. Fusion Pathways of Vesicles: A Brownian Dynamics Simulation. J. Chem. Phys. 2001, 115 (20), 9547–9551. 10.1063/1.1414314. DOI
Marrink S. J.; Mark A. E. The Mechanism of Vesicle Fusion as Revealed by Molecular Dynamics Simulations. J. Am. Chem. Soc. 2003, 125 (37), 11144–11145. 10.1021/ja036138+. PubMed DOI
Chen L.; Wu Z.; Wu X.; Liao Y.; Dai X.; Shi X. The Application of Coarse-Grained Molecular Dynamics to the Evaluation of Liposome Physical Stability. AAPS PharmSciTech 2020, 21 (5), 1–8. 10.1208/s12249-020-01680-6. PubMed DOI
Lin C.-M.; Li C.-S.; Sheng Y.-J.; Wu D. T.; Tsao H.-K. Size-Dependent Properties of Small Unilamellar Vesicles Formed by Model Lipids. Langmuir 2012, 28 (1), 689–700. 10.1021/la203755v. PubMed DOI
Kasson P. M.; Pande V. S. Control of Membrane Fusion Mechanism by Lipid Composition: Predictions from Ensemble Molecular Dynamics. PLoS Comput. Biol. 2007, 3 (11), e22010.1371/journal.pcbi.0030220. PubMed DOI PMC
Kasson P. M.; Kelley N. W.; Singhal N.; Vrljic M.; Brunger A. T.; Pande V. S. Ensemble Molecular Dynamics Yields Submillisecond Kinetics and Intermediates of Membrane Fusion. Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (32), 11916–11921. 10.1073/pnas.0601597103. PubMed DOI PMC
Kawamoto S.; Klein M. L.; Shinoda W. Coarse-Grained Molecular Dynamics Study of Membrane Fusion: Curvature Effects on Free Energy Barriers along the Stalk Mechanism. J. Chem. Phys. 2015, 143 (24), 243112.10.1063/1.4933087. PubMed DOI
Chng C. P.; Hsia K. J.; Huang C. Modulation of Lipid Vesicle-Membrane Interactions by Cholesterol. Soft Matter 2022, 18 (40), 7752–7761. 10.1039/D2SM00693F. PubMed DOI
Shen Z.; Ye H.; Kröger M.; Tang S.; Li Y. Interplay between Ligand Mobility and Nanoparticle Geometry during Cellular Uptake of PEGylated Liposomes and Bicelles. Nanoscale 2019, 11 (34), 15971–15983. 10.1039/C9NR02408E. PubMed DOI
Settanni G. Computational Approaches to Lipid-Based Nucleic Acid Delivery Systems. Eur. Phys. J. E 2023, 46 (12), 1–13. 10.1140/epje/s10189-023-00385-5. PubMed DOI PMC
Paloncýová M.; Čechová P.; Šrejber M.; Kührová P.; Otyepka M. Role of Ionizable Lipids in SARS-CoV-2 Vaccines As Revealed by Molecular Dynamics Simulations: From Membrane Structure to Interaction with MRNA Fragments. J. Phys. Chem. Lett. 2021, 12 (45), 11199–11205. 10.1021/acs.jpclett.1c03109. PubMed DOI
Dehghani-Ghahnaviyeh S.; Smith M.; Xia Y.; Dousis A.; Grossfield A.; Sur S. Ionizable Amino Lipids Distribution and Effects on DSPC/Cholesterol Membranes: Implications for Lipid Nanoparticle Structure. J. Phys. Chem. B 2023, 127, 6928.10.1021/acs.jpcb.3c01296. PubMed DOI PMC
Ramezanpour M.; Tieleman D. P. Computational Insights into the Role of Cholesterol in Inverted Hexagonal Phase Stabilization and Endosomal Drug Release. Langmuir 2022, 38 (24), 7462–7471. 10.1021/acs.langmuir.2c00430. PubMed DOI PMC
Bruininks B. M. H.; Souza P. C. T.; Ingolfsson H.; Marrink S. J. A Molecular View on the Escape of Lipoplexed DNA from the Endosome. Elife 2020, 9, 1–16. 10.7554/eLife.52012. PubMed DOI PMC
Farago O.; Grønbech-Jensen N.; Pincus P. Mesoscale Computer Modeling of Lipid-DNA Complexes for Gene Therapy. Phys. Rev. Lett. 2006, 96 (1), 1–4. 10.1103/PhysRevLett.96.018102. PubMed DOI
Khalid S.; Bond P. J.; Holyoake J.; Hawtin R. W.; Sansom M. S. P. DNA and Lipid Bilayers: Self-Assembly and Insertion. J. R. Soc. Interface 2008, 5, 241–250. 10.1098/rsif.2008.0239.focus. PubMed DOI PMC
Corsi J.; Hawtin R. W.; Ces O.; Attard G. S.; Khalid S. DNA Lipoplexes: Formation of the Inverse Hexagonal Phase Observed by Coarse-Grained Molecular Dynamics Simulation. Langmuir 2010, 26 (14), 12119–12125. 10.1021/la101448m. PubMed DOI
Leung A. K. K.; Hafez I. M.; Baoukina S.; Belliveau N. M.; Zhigaltsev I. V.; Afshinmanesh E.; Tieleman D. P.; Hansen C. L.; Hope M. J.; Cullis P. R. Lipid Nanoparticles Containing SiRNA Synthesized by Microfluidic Mixing Exhibit an Electron-Dense Nanostructured Core. J. Phys. Chem. C 2012, 116 (34), 18440–18450. 10.1021/jp303267y. PubMed DOI PMC
Casey J. R.; Grinstein S.; Orlowski J. Sensors and Regulators of Intracellular PH. Nat. Rev. Mol. Cell Biol. 2010, 11 (1), 50–61. 10.1038/nrm2820. PubMed DOI
Brader M. L.; Williams S. J.; Banks J. M.; Hui W. H.; Zhou Z. H.; Jin L. Encapsulation State of Messenger RNA inside Lipid Nanoparticles. Biophys. J. 2021, 120 (14), 2766–2770. 10.1016/j.bpj.2021.03.012. PubMed DOI PMC
Garaizar A.; Díaz-Oviedo D.; Zablowsky N.; Rissanen S.; Köbberling J.; Sun J.; Steiger C.; Steigemann P.; Mann F. A.; Meier K. Toward Understanding Lipid Reorganization in RNA Lipid Nanoparticles in Acidic Environments. Proc. Natl. Acad. Sci. U. S. A. 2024, 121 (45), e240455512110.1073/pnas.2404555121. PubMed DOI PMC
Dane E. L.; Belessiotis-Richards A.; Backlund C.; Wang J.; Hidaka K.; Milling L. E.; Bhagchandani S.; Melo M. B.; Wu S.; Li N.; et al. STING Agonist Delivery by Tumour-Penetrating PEG-Lipid Nanodiscs Primes Robust Anticancer Immunity. Nat. Mater. 2022, 21 (6), 710–720. 10.1038/s41563-022-01251-z. PubMed DOI PMC
Machado N.; Bruininks B. M. H.; Singh P.; dos Santos L.; Dal Pizzol C.; Dieamant G. D. C.; Kruger O.; Martin A. A.; Marrink S. J.; Souza P. C. T.; et al. Complex Nanoemulsion for Vitamin Delivery: Droplet Organization and Interaction with Skin Membranes. Nanoscale 2022, 14 (2), 506–514. 10.1039/D1NR04610A. PubMed DOI
Khalkhali M.; Mohammadinejad S.; Khoeini F.; Rostamizadeh K. Vesicle-like Structure of Lipid-Based Nanoparticles as Drug Delivery System Revealed by Molecular Dynamics Simulations. Int. J. Pharm. 2019, 559, 173–181. 10.1016/j.ijpharm.2019.01.036. PubMed DOI
Quemener E.; Corvellec M. SIDUS–the Solution for Extreme Deduplication of an Operating System. Linux J. 2013, 2013 (235), 3.10.5555/2555789.2555792. DOI