Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition

. 2023 Jul 11 ; 19 (13) : 4299-4307. [epub] 20230621

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37340948

Grantová podpora
R01 GM081411 NIGMS NIH HHS - United States
R01 GM098102 NIGMS NIH HHS - United States

Advances in molecular dynamics (MD) software alongside enhanced computational power and hardware have allowed for MD simulations to significantly expand our knowledge of biomolecular structure, dynamics, and interactions. Furthermore, it has allowed for the extension of conformational sampling times from nanoseconds to the microsecond level and beyond. This has not only made convergence of conformational ensembles through comprehensive sampling possible but consequently exposed deficiencies and allowed the community to overcome limitations in the available force fields. The reproducibility and accuracy of the force fields are imperative in order to produce biologically relevant data. The Amber nucleic acid force fields have been used widely since the mid-1980s, and improvement of these force fields has been a community effort with several artifacts revealed, corrected, and reevaluated by various research groups. Here, we focus on the Amber force fields for use with double-stranded DNA and present the assessment of two recently developed force field parameter sets (OL21 and Tumuc1). Extensive MD simulations were performed with six test systems and two different water models. We observe the improvement of OL21 and Tumuc1 compared to previous generations of the Amber DNA force. We did not detect any significant improvement in the performance of Tumuc1 compared to OL21 despite the reparameterization of bonded force field terms in the former; however, we did note discrepancies in Tumuc1 when modeling Z-DNA sequences.

Zobrazit více v PubMed

Galindo-Murillo R.; Robertson J. C.; Zgarbová M.; Šponer J.; Otyepka M.; Jurečka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC

Yoo J.; Winogradoff D.; Aksimentiev A. Molecular Dynamics Simulations of DNA–DNA and DNA–Protein Interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. 10.1016/j.sbi.2020.06.007. PubMed DOI

Pal S.; Paul S. Understanding The Role of Reline, a Natural DES, on Temperature-Induced Conformational Changes of C-Kit G-Quadruplex DNA: A Molecular Dynamics Study. J. Phys. Chem. B 2020, 124, 3123–3136. 10.1021/acs.jpcb.0c00644. PubMed DOI

Galindo-Murillo R.; Roe D. R.; Cheatham T. E. Convergence and Reproducibility in Molecular Dynamics Simulations of the DNA Duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1041–1058. 10.1016/j.bbagen.2014.09.007. PubMed DOI PMC

Galindo-Murillo R.; Winkler L.; García-Ramos J. C.; Ruiz-Azuara L.; Cortés-Guzmán F.; Cheatham T. E. Ancillary Ligand in Ternary CuII Complexes Guides Binding Selectivity toward Minor-Groove DNA. J. Phys. Chem. B 2020, 124, 11648–11658. 10.1021/acs.jpcb.0c09296. PubMed DOI PMC

Galindo-Murillo R.; Winkler L.; Ma J.; Hanelli F.; Fleming A. M.; Burrows C. J.; Cheatham T. E. I. Riboflavin Stabilizes Abasic, Oxidized G-Quadruplex Structures. Biochemistry 2022, 61, 265–275. 10.1021/acs.biochem.1c00598. PubMed DOI PMC

Galindo-Murillo R.; Cheatham T. E. III. Ethidium Bromide Interactions with DNA: An Exploration of a Classic DNA–Ligand Complex with Unbiased Molecular Dynamics Simulations. Nucleic Acids Res. 2021, 49, 3735–3747. 10.1093/nar/gkab143. PubMed DOI PMC

Cruz-León S.; Schwierz N. RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2022, 126, 8646–8654. 10.1021/acs.jpcb.2c04488. PubMed DOI PMC

Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI

Cheatham T. E.; Cieplak P.; Kollman P. A. A Modified Version of the Cornell et al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct. Dyn. 1999, 16, 845–862. 10.1080/07391102.1999.10508297. PubMed DOI

Wang J.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI

Weiner S. J.; Kollman P. A.; Case D. A.; Singh U. C.; Ghio C.; Alagona G.; Profeta S.; Weiner P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. 10.1021/ja00315a051. DOI

Weiner S. J.; Kollman P. A.; Nguyen D. T.; Case D. A. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 1986, 7, 230–252. 10.1002/jcc.540070216. PubMed DOI

Pérez A.; Marchán I.; Svozil D.; Sponer J.; Cheatham T. E.; Laughton C. A.; Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC

Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E.; Jurečka P.; Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC

Liebl K.; Zacharias M. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J. Chem. Theory Comput. 2021, 17, 7096–7105. 10.1021/acs.jctc.1c00682. PubMed DOI

Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; Portella G.; Battistini F.; Gelpí J. L.; González C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: A Refined Force-Field for DNA Simulations. Nat. Methods 2016, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC

Zgarbová M.; Luque F. J.; Šponer J.; Cheatham T. E.; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC

Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI

Zgarbová M.; Šponer J.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17, 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI

Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI

Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC

Han G. W.; Langs D.; Kopka M. L.; Dickerson R. E.. The ultra-high resolution structure of d(CTTTTAAAAG)2: modulation of bending by T-A steps and its role in DNA recognition (PDB entry 1SK5). https://www.rcsb.org/structure/1sk5 (accessed Sep 20, 2022).

Dickerson R. E.; Goodsell D. S.; Kopka M. L.; Pjura P. E. The Effect of Crystal Packing on Oligonucleotide Double Helix Structure. J. Biomol. Struct. Dyn. 1987, 5, 557–579. 10.1080/07391102.1987.10506413. PubMed DOI

Galindo-Murillo R.; Roe D. R.; Cheatham T. E. On the Absence of Intrahelical DNA Dynamics on the Ms to Ms Timescale. Nat. Commun. 2014, 5, 5152.10.1038/ncomms6152. PubMed DOI PMC

MacDonald D.; Herbert K.; Zhang X.; Polgruto T.; Lu P. Solution structure of an A-tract DNA bend. J. Mol. Biol. 2001, 306, 1081–1098. 10.1006/jmbi.2001.4447. PubMed DOI

Dauter Z.; Adamiak D. A. Anomalous Signal of Phosphorus Used for Phasing DNA Oligomer: Importance of Data Redundancy. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2001, 57, 990–995. 10.1107/s0907444901006382. PubMed DOI

Maehigashi T.; Moulaei T.; Watkins D.; Komeda S.; Williams L. D.. Locating monovalent cations in one turn of G/C rich B-DNA (PDB entry 3GGI). https://www.rcsb.org/structure/3GGI (accessed Sep 20, 2022).

Wu Z.; Delaglio F.; Tjandra N.; Zhurkin V. B.; Bax A. Overall Structure and Sugar Dynamics of a DNA Dodecamer from Homo- and Heteronuclear Dipolar Couplings and 31P Chemical Shift Anisotropy. J. Biomol. NMR 2003, 26, 297–315. 10.1023/a:1024047103398. PubMed DOI

Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC

Joung I. S.; Cheatham T. E. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. 10.1021/jp902584c. PubMed DOI PMC

Ross G. A.; Rustenburg A. S.; Grinaway P. B.; Fass J.; Chodera J. D. Biomolecular Simulations under Realistic Macroscopic Salt Conditions. J. Phys. Chem. B 2018, 122, 5466–5486. 10.1021/acs.jpcb.7b11734. PubMed DOI PMC

Roe D. R.; Cheatham T. E. Parallelization of CPPTRAJ Enables Large Scale Analysis of Molecular Dynamics Trajectory Data. J. Comput. Chem. 2018, 39, 2110–2117. 10.1002/jcc.25382. PubMed DOI PMC

Pastor R. W.; Brooks B. R.; Szabo A. An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms. Mol. Phys. 1988, 65, 1409–1419. 10.1080/00268978800101881. DOI

Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI

Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI

Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI

Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI

Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184, 374–380. 10.1016/j.cpc.2012.09.022. DOI

Humphrey W.; Dalke A.; Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI

Zgarbová M.; Otyepka M.; Šponer J.; Lankaš F.; Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI

Simmons C. R.; MacCulloch T.; Krepl M.; Matthies M.; Buchberger A.; Crawford I.; Šponer J.; Šulc P.; Stephanopoulos N.; Yan H. The Influence of Holliday Junction Sequence and Dynamics on DNA Crystal Self-Assembly. Nat. Commun. 2022, 13, 3112.10.1038/s41467-022-30779-6. PubMed DOI PMC

Galindo-Murillo R.; Cheatham T. E. I. Transient Hoogsteen Base Pairs Observed in Unbiased Molecular Dynamics Simulations of DNA. J. Phys. Chem. Lett. 2022, 13, 6283–6287. 10.1021/acs.jpclett.2c01348. PubMed DOI PMC

Galindo-Murillo R.; Iii T. E. C. Lessons Learned in Atomistic Simulation of Double-Stranded DNA: Solvation and Salt Concerns [Article v1.0]. Living J. Comput. Mol. Sci. 2019, 1, 9974.10.33011/livecoms.1.2.9974. PubMed DOI PMC

Brown R. F.; Andrews C. T.; Elcock A. H. Stacking Free Energies of All DNA and RNA Nucleoside Pairs and Dinucleoside-Monophosphates Computed Using Recently Revised AMBER Parameters and Compared with Experiment. J. Chem. Theory Comput. 2015, 11, 2315–2328. 10.1021/ct501170h. PubMed DOI PMC

Abraham Punnoose J.; Thomas K. J.; Chandrasekaran A. R.; Vilcapoma J.; Hayden A.; Kilpatrick K.; Vangaveti S.; Chen A.; Banco T.; Halvorsen K. High-Throughput Single-Molecule Quantification of Individual Base Stacking Energies in Nucleic Acids. Nat. Commun. 2023, 14, 631.10.1038/s41467-023-36373-8. PubMed DOI PMC

Winkler L.; Galindo-Murillo R.; Cheatham T. E. I. Structures and Dynamics of DNA Mini-Dumbbells Are Force Field Dependent. J. Chem. Theory Comput. 2023, 19, 2198–2212. 10.1021/acs.jctc.3c00130. PubMed DOI PMC

Liebl K.; Zacharias M. Toward Force Fields with Improved Base Stacking Descriptions. J. Chem. Theory Comput. 2023, 19, 1529–1536. 10.1021/acs.jctc.2c01121. PubMed DOI

Savelyev A.; MacKerell A. D. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model. J. Comput. Chem. 2014, 35, 1219–1239. 10.1002/jcc.23611. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...