Assessing the Current State of Amber Force Field Modifications for DNA─2023 Edition
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM081411
NIGMS NIH HHS - United States
R01 GM098102
NIGMS NIH HHS - United States
PubMed
37340948
PubMed Central
PMC10339676
DOI
10.1021/acs.jctc.3c00233
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie MeSH
- molekulární konformace MeSH
- reprodukovatelnost výsledků MeSH
- simulace molekulární dynamiky MeSH
- Z-DNA * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- Z-DNA * MeSH
Advances in molecular dynamics (MD) software alongside enhanced computational power and hardware have allowed for MD simulations to significantly expand our knowledge of biomolecular structure, dynamics, and interactions. Furthermore, it has allowed for the extension of conformational sampling times from nanoseconds to the microsecond level and beyond. This has not only made convergence of conformational ensembles through comprehensive sampling possible but consequently exposed deficiencies and allowed the community to overcome limitations in the available force fields. The reproducibility and accuracy of the force fields are imperative in order to produce biologically relevant data. The Amber nucleic acid force fields have been used widely since the mid-1980s, and improvement of these force fields has been a community effort with several artifacts revealed, corrected, and reevaluated by various research groups. Here, we focus on the Amber force fields for use with double-stranded DNA and present the assessment of two recently developed force field parameter sets (OL21 and Tumuc1). Extensive MD simulations were performed with six test systems and two different water models. We observe the improvement of OL21 and Tumuc1 compared to previous generations of the Amber DNA force. We did not detect any significant improvement in the performance of Tumuc1 compared to OL21 despite the reparameterization of bonded force field terms in the former; however, we did note discrepancies in Tumuc1 when modeling Z-DNA sequences.
Zobrazit více v PubMed
Galindo-Murillo R.; Robertson J. C.; Zgarbová M.; Šponer J.; Otyepka M.; Jurečka P.; Cheatham T. E. Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12, 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC
Yoo J.; Winogradoff D.; Aksimentiev A. Molecular Dynamics Simulations of DNA–DNA and DNA–Protein Interactions. Curr. Opin. Struct. Biol. 2020, 64, 88–96. 10.1016/j.sbi.2020.06.007. PubMed DOI
Pal S.; Paul S. Understanding The Role of Reline, a Natural DES, on Temperature-Induced Conformational Changes of C-Kit G-Quadruplex DNA: A Molecular Dynamics Study. J. Phys. Chem. B 2020, 124, 3123–3136. 10.1021/acs.jpcb.0c00644. PubMed DOI
Galindo-Murillo R.; Roe D. R.; Cheatham T. E. Convergence and Reproducibility in Molecular Dynamics Simulations of the DNA Duplex d(GCACGAACGAACGAACGC). Biochim. Biophys. Acta, Gen. Subj. 2015, 1850, 1041–1058. 10.1016/j.bbagen.2014.09.007. PubMed DOI PMC
Galindo-Murillo R.; Winkler L.; García-Ramos J. C.; Ruiz-Azuara L.; Cortés-Guzmán F.; Cheatham T. E. Ancillary Ligand in Ternary CuII Complexes Guides Binding Selectivity toward Minor-Groove DNA. J. Phys. Chem. B 2020, 124, 11648–11658. 10.1021/acs.jpcb.0c09296. PubMed DOI PMC
Galindo-Murillo R.; Winkler L.; Ma J.; Hanelli F.; Fleming A. M.; Burrows C. J.; Cheatham T. E. I. Riboflavin Stabilizes Abasic, Oxidized G-Quadruplex Structures. Biochemistry 2022, 61, 265–275. 10.1021/acs.biochem.1c00598. PubMed DOI PMC
Galindo-Murillo R.; Cheatham T. E. III. Ethidium Bromide Interactions with DNA: An Exploration of a Classic DNA–Ligand Complex with Unbiased Molecular Dynamics Simulations. Nucleic Acids Res. 2021, 49, 3735–3747. 10.1093/nar/gkab143. PubMed DOI PMC
Cruz-León S.; Schwierz N. RNA Captures More Cations than DNA: Insights from Molecular Dynamics Simulations. J. Phys. Chem. B 2022, 126, 8646–8654. 10.1021/acs.jpcb.2c04488. PubMed DOI PMC
Cornell W. D.; Cieplak P.; Bayly C. I.; Gould I. R.; Merz K. M.; Ferguson D. M.; Spellmeyer D. C.; Fox T.; Caldwell J. W.; Kollman P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117, 5179–5197. 10.1021/ja00124a002. DOI
Cheatham T. E.; Cieplak P.; Kollman P. A. A Modified Version of the Cornell et al. Force Field with Improved Sugar Pucker Phases and Helical Repeat. J. Biomol. Struct. Dyn. 1999, 16, 845–862. 10.1080/07391102.1999.10508297. PubMed DOI
Wang J.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000, 21, 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Weiner S. J.; Kollman P. A.; Case D. A.; Singh U. C.; Ghio C.; Alagona G.; Profeta S.; Weiner P. A New Force Field for Molecular Mechanical Simulation of Nucleic Acids and Proteins. J. Am. Chem. Soc. 1984, 106, 765–784. 10.1021/ja00315a051. DOI
Weiner S. J.; Kollman P. A.; Nguyen D. T.; Case D. A. An all atom force field for simulations of proteins and nucleic acids. J. Comput. Chem. 1986, 7, 230–252. 10.1002/jcc.540070216. PubMed DOI
Pérez A.; Marchán I.; Svozil D.; Sponer J.; Cheatham T. E.; Laughton C. A.; Orozco M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007, 92, 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC
Krepl M.; Zgarbová M.; Stadlbauer P.; Otyepka M.; Banáš P.; Koča J.; Cheatham T. E.; Jurečka P.; Šponer J. Reference Simulations of Noncanonical Nucleic Acids with Different χ Variants of the AMBER Force Field: Quadruplex DNA, Quadruplex RNA, and Z-DNA. J. Chem. Theory Comput. 2012, 8, 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Liebl K.; Zacharias M. Tumuc1: A New Accurate DNA Force Field Consistent with High-Level Quantum Chemistry. J. Chem. Theory Comput. 2021, 17, 7096–7105. 10.1021/acs.jctc.1c00682. PubMed DOI
Ivani I.; Dans P. D.; Noy A.; Pérez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goñi R.; Balaceanu A.; Portella G.; Battistini F.; Gelpí J. L.; González C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: A Refined Force-Field for DNA Simulations. Nat. Methods 2016, 13, 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Zgarbová M.; Luque F. J.; Šponer J.; Cheatham T. E.; Otyepka M.; Jurečka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9, 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Zgarbová M.; Šponer J.; Otyepka M.; Cheatham T. E.; Galindo-Murillo R.; Jurečka P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbová M.; Šponer J.; Jurečka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17, 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. 10.1063/1.445869. DOI
Izadi S.; Anandakrishnan R.; Onufriev A. V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. 10.1021/jz501780a. PubMed DOI PMC
Han G. W.; Langs D.; Kopka M. L.; Dickerson R. E.. The ultra-high resolution structure of d(CTTTTAAAAG)2: modulation of bending by T-A steps and its role in DNA recognition (PDB entry 1SK5). https://www.rcsb.org/structure/1sk5 (accessed Sep 20, 2022).
Dickerson R. E.; Goodsell D. S.; Kopka M. L.; Pjura P. E. The Effect of Crystal Packing on Oligonucleotide Double Helix Structure. J. Biomol. Struct. Dyn. 1987, 5, 557–579. 10.1080/07391102.1987.10506413. PubMed DOI
Galindo-Murillo R.; Roe D. R.; Cheatham T. E. On the Absence of Intrahelical DNA Dynamics on the Ms to Ms Timescale. Nat. Commun. 2014, 5, 5152.10.1038/ncomms6152. PubMed DOI PMC
MacDonald D.; Herbert K.; Zhang X.; Polgruto T.; Lu P. Solution structure of an A-tract DNA bend. J. Mol. Biol. 2001, 306, 1081–1098. 10.1006/jmbi.2001.4447. PubMed DOI
Dauter Z.; Adamiak D. A. Anomalous Signal of Phosphorus Used for Phasing DNA Oligomer: Importance of Data Redundancy. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2001, 57, 990–995. 10.1107/s0907444901006382. PubMed DOI
Maehigashi T.; Moulaei T.; Watkins D.; Komeda S.; Williams L. D.. Locating monovalent cations in one turn of G/C rich B-DNA (PDB entry 3GGI). https://www.rcsb.org/structure/3GGI (accessed Sep 20, 2022).
Wu Z.; Delaglio F.; Tjandra N.; Zhurkin V. B.; Bax A. Overall Structure and Sugar Dynamics of a DNA Dodecamer from Homo- and Heteronuclear Dipolar Couplings and 31P Chemical Shift Anisotropy. J. Biomol. NMR 2003, 26, 297–315. 10.1023/a:1024047103398. PubMed DOI
Joung I. S.; Cheatham T. E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Joung I. S.; Cheatham T. E. Molecular Dynamics Simulations of the Dynamic and Energetic Properties of Alkali and Halide Ions Using Water-Model-Specific Ion Parameters. J. Phys. Chem. B 2009, 113, 13279–13290. 10.1021/jp902584c. PubMed DOI PMC
Ross G. A.; Rustenburg A. S.; Grinaway P. B.; Fass J.; Chodera J. D. Biomolecular Simulations under Realistic Macroscopic Salt Conditions. J. Phys. Chem. B 2018, 122, 5466–5486. 10.1021/acs.jpcb.7b11734. PubMed DOI PMC
Roe D. R.; Cheatham T. E. Parallelization of CPPTRAJ Enables Large Scale Analysis of Molecular Dynamics Trajectory Data. J. Comput. Chem. 2018, 39, 2110–2117. 10.1002/jcc.25382. PubMed DOI PMC
Pastor R. W.; Brooks B. R.; Szabo A. An Analysis of the Accuracy of Langevin and Molecular Dynamics Algorithms. Mol. Phys. 1988, 65, 1409–1419. 10.1080/00268978800101881. DOI
Ryckaert J.-P.; Ciccotti G.; Berendsen H. J. C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. 10.1016/0021-9991(77)90098-5. DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. 10.1021/ct5010406. PubMed DOI
Essmann U.; Perera L.; Berkowitz M. L.; Darden T.; Lee H.; Pedersen L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995, 103, 8577–8593. 10.1063/1.470117. DOI
Darden T.; York D.; Pedersen L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. 10.1063/1.464397. DOI
Le Grand S.; Götz A. W.; Walker R. C. SPFP: Speed without Compromise—A Mixed Precision Model for GPU Accelerated Molecular Dynamics Simulations. Comput. Phys. Commun. 2013, 184, 374–380. 10.1016/j.cpc.2012.09.022. DOI
Humphrey W.; Dalke A.; Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graphics 1996, 14, 33–38. 10.1016/0263-7855(96)00018-5. PubMed DOI
Zgarbová M.; Otyepka M.; Šponer J.; Lankaš F.; Jurečka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. 10.1021/ct500120v. PubMed DOI
Simmons C. R.; MacCulloch T.; Krepl M.; Matthies M.; Buchberger A.; Crawford I.; Šponer J.; Šulc P.; Stephanopoulos N.; Yan H. The Influence of Holliday Junction Sequence and Dynamics on DNA Crystal Self-Assembly. Nat. Commun. 2022, 13, 3112.10.1038/s41467-022-30779-6. PubMed DOI PMC
Galindo-Murillo R.; Cheatham T. E. I. Transient Hoogsteen Base Pairs Observed in Unbiased Molecular Dynamics Simulations of DNA. J. Phys. Chem. Lett. 2022, 13, 6283–6287. 10.1021/acs.jpclett.2c01348. PubMed DOI PMC
Galindo-Murillo R.; Iii T. E. C. Lessons Learned in Atomistic Simulation of Double-Stranded DNA: Solvation and Salt Concerns [Article v1.0]. Living J. Comput. Mol. Sci. 2019, 1, 9974.10.33011/livecoms.1.2.9974. PubMed DOI PMC
Brown R. F.; Andrews C. T.; Elcock A. H. Stacking Free Energies of All DNA and RNA Nucleoside Pairs and Dinucleoside-Monophosphates Computed Using Recently Revised AMBER Parameters and Compared with Experiment. J. Chem. Theory Comput. 2015, 11, 2315–2328. 10.1021/ct501170h. PubMed DOI PMC
Abraham Punnoose J.; Thomas K. J.; Chandrasekaran A. R.; Vilcapoma J.; Hayden A.; Kilpatrick K.; Vangaveti S.; Chen A.; Banco T.; Halvorsen K. High-Throughput Single-Molecule Quantification of Individual Base Stacking Energies in Nucleic Acids. Nat. Commun. 2023, 14, 631.10.1038/s41467-023-36373-8. PubMed DOI PMC
Winkler L.; Galindo-Murillo R.; Cheatham T. E. I. Structures and Dynamics of DNA Mini-Dumbbells Are Force Field Dependent. J. Chem. Theory Comput. 2023, 19, 2198–2212. 10.1021/acs.jctc.3c00130. PubMed DOI PMC
Liebl K.; Zacharias M. Toward Force Fields with Improved Base Stacking Descriptions. J. Chem. Theory Comput. 2023, 19, 1529–1536. 10.1021/acs.jctc.2c01121. PubMed DOI
Savelyev A.; MacKerell A. D. All-Atom Polarizable Force Field for DNA Based on the Classical Drude Oscillator Model. J. Comput. Chem. 2014, 35, 1219–1239. 10.1002/jcc.23611. PubMed DOI PMC
Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field