Chemical Composition and Evaluation of Insecticidal Activity of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum Essential Oils against Stored Products Pests

. 2022 Jan 18 ; 27 (3) : . [epub] 20220118

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu hodnotící studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163853

Grantová podpora
2017A95NCJ Ministero dell'Istruzione, dell'Università e della Ricerca

The problems of the environment and human health related to the use of synthetic and broad-spectrum insecticides have increasingly motivated scientific research on different alternatives and among these, the use of green systems, such as essential oils, have been explored. Several species of the Apiaceae and Asteraceae families, aromatic herbs rich in secondary bioactive metabolites, are used in the industrial field for pharmaceutical, cosmetic, and food purposes. Different essential oils extracted from some species of these families have shown acute toxicity and attractive and/or repellent effects towards different insects. In our work, we investigated the toxic potential of Calendula incana subsp. maritima and Laserpitium siler subsp. siculum essential oils against four insect species, Sitophilus oryzae, Lasioderma serricorne, Necrobia rufipes, and Rhyzoperta dominica, which are common pests of stored products. The composition of both oils, extracted by hydrodistillation from the aerial parts of the two plants, was evaluated by GC×GC-MS. Calendula incana subsp. maritima essential oil was rich in oxygenated sesquiterpenoids, such as cubebol (35.39%), 4-epi-cubebol (22.99%), and cubenol (12.77%), while the Laserpitium siler subsp. siculum essential oil was composed mainly of monoterpene hydrocarbons, such as β-phellandrene (42.16%), limonene (23.87%), and β-terpinene (11.80%). The toxicity Petri dish bioassays indicated that C. maritima oil killed a mean of 65.50% of S. oryzae and 44.00% of R. dominica adults, indicating a higher biocidal activity in comparison with L. siculum oil, while toward the other species, no significant differences in mortality were recorded. Calendula maritima oil could be, then, considered a promising candidate for further tests as an alternative biocide toward S. oryzae and R. dominica. The possibility that the relatively high content of oxygenated sesquiterpenoids in C. maritima essential oil determines its higher biocidal activity is discussed.

Zobrazit více v PubMed

Hasan M.M., Phillips T.W. Mass-rearing of the redlegged ham beetle, Necrobia rufipes De Geer (Coleoptera: Cleridae) for laboratory research. J. Stored Prod. Res. 2010;46:38–42. doi: 10.1016/j.jspr.2009.08.002. DOI

Kumar D., Kalita P. Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods. 2017;6:8. doi: 10.3390/foods6010008. PubMed DOI PMC

Semeao A.A., Campbell J.F., Hutchinson J.S., Whitworth R.J., Sloderbeck P.E. Spatio-temporal distribution of stored-product insects around food processing and storage facilities. Agric. Ecosyst. Environ. 2013;165:151–162. doi: 10.1016/j.agee.2012.11.013. DOI

Nayak M.K., Daglish G.J. Recent Advances in Stored Product Protection. Springer; Berlin, Heidelberg: 2018. Importance of stored product insects; pp. 1–17. DOI

Stejskal V., Vendl T., Aulicky R., Athanassiou C. Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored-product and food-industry pest control. Insects. 2021;12:590. doi: 10.3390/insects12070590. PubMed DOI PMC

Attia M.A., Wahba T.F., Shaarawy N., Moustafa F.I., Guedes R.N.C., Dewer Y. Stored grain pest prevalence and insecticide resistance in Egyptian populations of the red flour beetle Tribolium castaneum (Herbst) and the rice weevil Sitophilus oryzae (L.) J. Stored Prod. Res. 2020;87:101611. doi: 10.1016/j.jspr.2020.101611. DOI

Han W., Tian Y., Shen X. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview. Chemosphere. 2018;192:59–65. doi: 10.1016/j.chemosphere.2017.10.149. PubMed DOI

Badr A.M. Organophosphate toxicity: Updates of malathion potential toxic effects in mammals and potential treatments. Environ. Sci. Pollut. Res. 2020;27:21. doi: 10.1007/s11356-020-08937-4. PubMed DOI

Campolo O., Giunti G., Russo A., Palmeri V., Zappalà L. Essential oils in stored product insect pest control. J. Food Qual. 2018;6906105:1–18. doi: 10.1155/2018/6906105. DOI

Kavallieratos N.G., Boukouvala M.C., Ntalli N., Skourti A., Karagianni E.S., Nika E.P., Kontodimas D.C., Cappellacci L., Petrelli R., Cianfaglione K., et al. Effectiveness of eight essential oils against two key stored-product beetles, Prostephanus truncatus (Horn) and Trogoderma granarium Everts. Food Chem. Toxicol. 2020;139:111255. doi: 10.1016/j.fct.2020.111255. PubMed DOI

Isman M.B. Botanical insecticides in the twenty-first century-fulfilling their promise? Annu. Rev. Entomol. 2020;65:233–249. doi: 10.1146/annurev-ento-011019-025010. PubMed DOI

Tlak Gajger I., Dar S.A. Plant allelochemicals as sources of insecticides. Insects. 2021;12:189. doi: 10.3390/insects12030189. PubMed DOI PMC

Régnault-Roger C., Vincent C., Arnason J.T. Essential oil in insect control: Low-risk products in a high-stakes world. Annu. Rev. Entomol. 2021;57:405–424. doi: 10.1146/annurev-ento-120710-100554. PubMed DOI

Miresmailli S., Isman M.B. Botanical insecticides inspired by plant-herbivore chemical interactions. Trends Plant Sci. 2014;19:29–35. doi: 10.1016/j.tplants.2013.10.002. PubMed DOI

Hummelbrunner L.A., Isman M.B. Acute, sublethal, antifeedant, and synergistic effects of monoterpenoid essential oil compounds on the tobacco cutworm, Spodoptera litura (Lep.; Noctuidae) J. Agric. Food Chem. 2001;49:715–720. doi: 10.1021/jf000749t. PubMed DOI

Zhang Q.H., Schneidmiller R.G., Hoover D.R. Essential oils and their compositions as spatial repellents for pestiferous social wasps. Pest Manag. Sci. 2013;69:542–552. doi: 10.1002/ps.3411. PubMed DOI

Kostyukovsky M., Rafaeli A., Gileadi C., Demchenko N., Shaaya E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002;58:1101–1106. doi: 10.1002/ps.548. PubMed DOI

Arora D., Rani A., Sharma A. A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn. Rev. 2013;7:179–187. doi: 10.4103/0973-7847.120520. PubMed DOI PMC

Ohle H. Beiträge zur Taxonomie der Gattung Calendula II. Taxonomische revision der südeuropäischen perennierende Calendula-Sippen. Feddes Rep. 1974;85:245–283. doi: 10.1002/fedr.19740850402. DOI

Conti F., Abbate G., Alessandrini A., Blasi C. An Annotated Checklist of the Italian Vascular Flora. Palombi; Rome, Italy: 2005. p. 278.

Pignatti S. Flora d’Italia. 2nd ed. Volume 3. Edagricole; Bologna, Italy: 2018. pp. 618–621.

Spinozzi E., Maggi F., Bonacucina G., Pavela R., Boukouvala M.C., Kavallieratos N.G., Canale A., Romano D., Desneux N., Wilke A.B.B., et al. Apiaceae essential oils and their constituents as insecticides against mosquitoes-A review. Ind. Crops Prod. 2021;171:113892. doi: 10.1016/j.indcrop.2021.113892. DOI

Badalamenti N., Ilardi V., Bruno M., Pavela R., Boukouvala M.C., Kavallieratos N.G., Maggi F., Canale A., Benelli G. Chemical composition and broad-spectrum insecticidal activity of the flower essential oil from an ancient sicilian food plant, Ridolfia segetum. Agriculture. 2021;11:304. doi: 10.3390/agriculture11040304. DOI

Pavela R., Maggi F., Cianfaglione K., Canale A., Benelli G. Promising insecticidal efficacy of the essential oils from the halophyte Echinophora spinosa (Apiaceae) growing in Corsica Island, France. Environ. Sci. Pollut. Res. 2020;27:14454–14464. doi: 10.1007/s11356-019-04980-y. PubMed DOI

Tavassoli M., Shayeghi M., Abai M.R., Vatandoost H., Khoobdel M., Salari M., Ghaderi A., Rafi F. Repellency effects of essential oils of myrtle (Myrtus communis), Marigold (Calendula officinalis) compared with DEET against Anopheles stephensi on human volunteers. Iran. J. Arthropod-Borne Dis. 2011;5:10. PubMed PMC

Ullah R., Ibrar M., Shah S., Hameed I. Phytotoxic, cytotoxic and insecticidal activities of Calendula arvensis L. J. Biotechnol. Pharm. Res. 2012;3:104–111.

Trematerra P., Fontana F., Mancini M., Sciarretta A. Influence of intact and damaged cereal kernels on the behaviour of rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae) J. Stored Prod. Res. 1999;35:265–276. doi: 10.1016/S0022-474X(99)00010-7. DOI

Arthur F.H., Ondier G.O., Siebenmorgen T.J. Impact of Rhyzopertha dominica (F.) on quality parameters of milled rice. J. Stored Prod. Res. 2012;48:137–142. doi: 10.1016/j.jspr.2011.10.010. DOI

Hasan M.M., Athanassiou C.G., Schilling M.W., Phillips T.W. Biology and management of the red-legged ham beetle, Necrobia rufipes DeGeer (Coleoptera: Cleridae) J. Stored Prod. Res. 2020;88:101635. doi: 10.1016/j.jspr.2020.101635. DOI

Guarino S., Basile S., Caimi M., Carratello A., Manachini B., Peri E. Insect pests of the Herbarium of the Palermo botanical garden and evaluation of semiochemicals for the control of the key pest Lasioderma serricorne F. (Coleoptera: Anobiidae) J. Cult. Herit. 2020;43:37–44. doi: 10.1016/j.culher.2019.10.009. DOI

Guarino S., Basile S., Arif M.A., Manachini B., Peri E. Odorants of Capsicum spp. dried fruits as candidate attractants for Lasioderma serricorne F. (Coleoptera: Anobiidae) Insects. 2021;12:61. doi: 10.3390/insects12010061. PubMed DOI PMC

Edde P.A. A review of the biology and control of Rhyzopertha dominica (F.) the lesser grain borer. J. Stored Prod. Res. 2012;48:1–18. doi: 10.1016/j.jspr.2011.08.007. DOI

Gad H.A., Al-Anany M.S., Abdelgaleil S.A. Enhancement the efficacy of spinosad for the control Sitophilus oryzae by combined application with diatomaceous earth and Trichoderma harzianum. J. Stored Prod. Res. 2020;88:101663. doi: 10.1016/j.jspr.2020.101663. DOI

Edde P.A. Biology, ecology, and control of Lasioderma serricorne (F.) (Coleoptera: Anobiidae): A review. J. Econ. Entomol. 2019;112:1011–1031. doi: 10.1093/jee/toy428. PubMed DOI

Savoldelli S., Jucker C., Peri E., Arif M.A., Guarino S. Necrobia rufipes (De Geer) infestation in pet food packaging and setup of a monitoring trap. Insects. 2020;11:623. doi: 10.3390/insects11090623. PubMed DOI PMC

Golebiowska Z. The feeding and fecundity of Sitophilus granarius (L.), Sitophilus orvzae (L.) and Rhyzopertha dominica (F.) in wheat grain. J. Stored Prod. Res. 1969;5:143–155. doi: 10.1016/0022-474X(69)90056-3. DOI

Padın S., Dal Bello G., Fabrizio M. Grain loss caused by Tribolium castaneum, Sitophilus oryzae and Acanthoscelides obtectus in stored durum wheat and beans treated with Beauveria bassiana. J. Stored Prod. Res. 2002;38:69–74. doi: 10.1016/S0022-474X(00)00046-1. DOI

Paolini J., Barboni T., Desjobert J.M., Djabou N., Muselli A., Costa J. Chemical composition, intraspecies variation and seasonal variation in essential oils of Calendula arvensis L. Biochem. Syst. Ecol. 2010;38:865–874. doi: 10.1016/j.bse.2010.07.009. DOI

Ak G., Zengin G., Ceylan R., Fawzi Mahomoodally M., Jugreet S., Mollica A., Stefanucci A. Chemical composition and biological activities of essential oils from Calendula officinalis L. flowers and leaves. Flavour Fragr. J. 2021;36:554–563. doi: 10.1002/ffj.3661. DOI

Raal A., Orav A., Nesterovitsch J., Maidla K. Analysis of carotenoids, flavonoids and essential oil of Calendula officinalis cultivars growing in Estonia. Nat. Prod. Commun. 2016;11:1157–1160. doi: 10.1177/1934578X1601100831. PubMed DOI

Okoh O.O., Sadimenko A.A., Asekun O.T., Afolayan A.J. The effects of drying on the chemical components of essential oils of Calendula officinalis L. Afr. J. Biotechnol. 2008;7:1500–1502.

Chalchat J.C., Garry R.P., Michet A. Chemical composition of essential oil of Calendula officinalis L. Flavour Fragr. J. 1991;6:189–192. doi: 10.1002/ffj.2730060306. DOI

Tosun G., Yayli B., Arslan T., Yasar A., Alpay Karaoglu S., Yayl N. Comparative essential oil analysis of Calendula arvensis L. extracted by hydrodistillation and microwave distillation and antimicrobial activities. Asian J. Chem. 2012;24:1955–1958.

Hussein K.T. Suppressive effects of Calendula micrantha essential oil and gibberelic acid (PGR) on repro ductive potential of the Mediterranean fruit fly Ceratitis capitata Wied. (Diptera: Tephritidae) J. Egypt. Soc. Parasitol. 2005;35:365–377. PubMed

Ourabia I., Réda D., Samira T., Nasserdine S., Djamila F.D. Determination of essential oil composition, phenolic content, and antioxidant, antibacterial and antifungal activities of marigold (Calendula officinalis L.) cultivated in Algeria. Carpathian J. Food Sci. Technol. 2019;11:93–110. doi: 10.34302/crpjfst/2019.11.2.8. DOI

Gazim Z.C., Rezende C.M., Fraga S.R., Filho B.P.D., Nakamura C.V., Cortez D.A.G. Analysis of the essential oils from Calendula officinalis growing in Brazil using three different extraction procedures. Braz. J. Pharm. Sci. 2008;44:391–395. doi: 10.1590/S1516-93322008000300008. DOI

El-Seedi H.R., Azeem M., Khalil N.S., Sakr H.H., Khalifa S.A.M., Awang K., Saeed A., Farag M.A., Al Ajmi M.F., Pålsson K., et al. Essential oils of aromatic Egyptian plants repel nymphs of the tick Ixodes ricinus (Acari: Ixodidae) Exp. Appl. Acarol. 2017;73:139–157. doi: 10.1007/s10493-017-0165-3. PubMed DOI PMC

Khalid K.A., El-Ghora A.K. The effect of presowing low temperature on essential oil content and chemical composition of Calendula officinalis. J. Essent. Oil-Bear. Plants. 2006;9:32–41. doi: 10.1080/0972060X.2006.10643467. DOI

Sahingil D. GC/MS-Olfactometric Characterization of the volatile compounds, determination antimicrobial and antioxidant activity of essential oil from flowers of Calendula (Calendula officinalis L.) J. Essent. Oil-Bear. Plants. 2019;22:1–10. doi: 10.1080/0972060X.2019.1703829. DOI

Tirillini B., Pagiotti R., Angelini P., Pintore G., Chessa M., Menghini L. Chemical composition and fungicidal activity of the essential oil of Laserpitium garganicum from Italy. Chem. Nat. Compd. 2009;45:103–105. doi: 10.1007/s10600-009-9237-x. DOI

Stanković N., Mihajilov-Krstev T., Zlatković B., Matejić J., Stankov Jovanović V., Kocić B., Čomić L. Comparative study of composition, antioxidant, and antimicrobial activities of essential oils of selected aromatic plants from Balkan Peninsula. Planta Med. 2016;82:650–661. doi: 10.1055/s-0042-101942. PubMed DOI

Popovic V.B., Petrovic S.D., Milenkovic M.T., Drobac M.M., Couladis M.A., Niketic M.S. Composition and antimicrobial activity of the essential oils of Laserpitium latifolium L. and L. ochridanum Micevski (Apiaceae) Chem. Biodivers. 2015;12:170–177. doi: 10.1002/cbdv.201400127. PubMed DOI

Evergetis E., Michaelakis A., Haroutounian S.A. Essential Oils of Umbelliferae Family Taxa as Potent Agents for Mosquito Control. In: Larramendy M.L., Soloneski L., editors. Integrated Pest Management and Pest Control. InTech–OpenAccess Publisher; Rijeka, Croatia: 2012. [(accessed on 8 December 2021)]. pp. 613–637. Available online: https://www.intechopen.com/books/874.

Petrović S., Pavlović M., Pavlović V., Tzakou O., Milenković M., Vučićević D., Niketić M. Composition and antimicrobial activity of essential oils from flower and leaf of Laserpitium zernyi Hayek. J. Essent. Oil Res. 2009;21:467–470. doi: 10.1080/10412905.2009.9700220. DOI

Dastan D., Salehi P., Maroofi H. Chemical composition, antioxidant, and antimicrobial activities on Laserpitium carduchorum Hedge & Lamond essential oil and extracts during various growing stages. Chem. Biodivers. 2016;13:1397–1403. doi: 10.1002/cbdv.201600087. PubMed DOI

Mitic V., Stankov-Jovanoviæ V., Djordjevic A., Ilic M., Simonovic S., Stojanovic G. Chemical composition of the essential oil of Laserpitium latifolium from Serbia. Nat. Prod. Commun. 2015;10:649–651. doi: 10.1177/1934578X1501000430. PubMed DOI

Baser K.H.C., Duman H. Composition of the essential oil of Laserpitium petrophilum Boiss. et Heldr. J. Essent. Oil Res. 1997;9:707–708. doi: 10.1080/10412905.1997.9700818. DOI

Maggi F., Bartolucci F., Conti F. Chemical variability in volatile composition between several Italian accessions of Siler montanum (S. montanum subsp. montanum and S. montanum subsp. siculum) Biochem. System. Ecol. 2017;70:14–21. doi: 10.1016/j.bse.2016.10.020. DOI

Jankowska B., Wilk A. Effect of pot marigold (Calendula officinalis L.) and cypress spurge (Euphorbia cyparissias L.) plant water extracts on the occurrence of pest insects on white cabbage. Folia Hortic. 2011;23:21–28. doi: 10.2478/v10245-011-0004-7. DOI

Jankowska M., Rogalska J., Wyszkowska J., Stankiewicz M. Molecular targets for components of essential oils in the insect nervous system—A review. Molecules. 2017;23:34. doi: 10.3390/molecules23010034. PubMed DOI PMC

Gaire S., Scharf M.E., Gondhalekar A.D. Toxicity and neurophysiological impacts of plant essential oil components on bed bugs (Cimicidae: Hemiptera) Sci. Rep. 2019;9:3961. doi: 10.1038/s41598-019-40275-5. PubMed DOI PMC

Marques D.M., Rocha J.F., De Almeida T.S., Mota E.F. Essential oils of Caatinga plants with deletary action for Aedes Aegypti: A review. S. Afr. J. 2021;143:69–78. doi: 10.1016/j.sajb.2021.08.004. DOI

Gross A.D., Temeyer K.B., Day T.A., Pérez de León A.A., Kimber M.J., Coats J.R. Interaction of plant essential oil terpenoids with the southern cattle tick tyramine receptor: A potential biopesticide target. Chem. Biol. Interact. 2017;263:1–6. doi: 10.1016/j.cbi.2016.12.009. PubMed DOI

Olmedo R., Herrera J.M., Lucini E.I., Zunino M.P., Pizzolitto R.P., Dambolena J.S., Zygadlo J.A. Aceite esencial de Tagetes filifolia contra Tribolium castaneum y su relación con la actividad acetilcolinesterasa y peroxidación de lípidos. AgriScientia. 2015;32:113–121. doi: 10.31047/1668.298x.v32.n2.16562. DOI

Castillo-Morales R.M., Carreño Otero A.L., Mendez-Sanchez S.C., da Silva M.A.N., Stashenko E.E., Duque J.E. Mitochondrial affectation, DNA damage and AChE inhibition induced by Salvia officinalis essential oil on Aedes aegypti larvae. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2019;221:29–37. doi: 10.1016/j.cbpc.2019.03.006. PubMed DOI

Guarino S., Abbate L., Mercati F., Fatta Del Bosco S., Motisi A., Arif M.A., Cencetti G., Palagano E., Michelozzi M. Citrus varieties with different tolerance grades to Tristeza virus show dissimilar volatile terpene profiles. Agronomy. 2021;11:1120. doi: 10.3390/agronomy11061120. DOI

Gu H.J., Cheng S.S., Huang C.G., Chen W.J., Chang S.T. Mosquito larvicidal activities of extractives from black heartwood-type Cryptomeria japonica. Parasitol. Res. 2009;105:1455–1458. doi: 10.1007/s00436-009-1550-6. PubMed DOI

Tamdem G.M., Ntonga P.A., Tsila H.G., Tonga C., Nkouandou P.M., Djeukam C.A., Ngaha R., Hondt O.E.N., Mbongue R., Soh W.T., et al. Biological activities of the essential oils of Cupressus macrocarpa, Lantana camara and Psidium littorale against Plasmodium falciparum Welch, 1897 and Anopheles gambiae Giles, 1902. J. Entomol. Zool. Stud. 2020;8:854–862. doi: 10.22271/j.ento.2020.v8.i6l.7949. DOI

Espinoza J., Urzúa A., Bandele L., Quiroz A., Echeverría J., González-Teuber M. Antifeedant effects of essential oil, extracts, and isolated sesquiterpenes from Pilgerodendron uviferum (D. Don) florin heartwood on red clover borer Hylastinus obscurus (Coleoptera: Curculionidae) Molecules. 2018;23:1282. doi: 10.3390/molecules23061282. PubMed DOI PMC

Zhang W.J., Yang K., You C.X., Wang C.F., Geng Z.F., Su Y., Wang Y., Du S.S., Deng Z.W. Contact toxicity and repellency of the essential oil from Mentha haplocalyx Briq. against Lasioderma serricorne. Chem. Biodivers. 2015;12:832–839. doi: 10.1002/cbdv.201400245. PubMed DOI

Teke M.A., Mutlu Ç. Insecticidal and behavioral effects of some plant essential oils against Sitophilus granarius L. and Tribolium castaneum (Herbst) J. Plant Dis. Prot. 2021;128:109–119. doi: 10.1007/s41348-020-00377-z. DOI

Bachrouch O., Jemâa J.B., Talou T., Marzouk B., Abderraba M. Fumigant toxicity of Pistacia lentiscus essential oil against Tribolium castaneum and Lasioderma serricorne. Bull. Insectology. 2010;63:129–135.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...