Circadian Rhythms and Sleep Are Dependent Upon Expression Levels of Key Ubiquitin Ligase Ube3a

. 2022 ; 16 () : 837523. [epub] 20220323

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35401134

Grantová podpora
P50 HD103537 NICHD NIH HHS - United States
R01 NS104497 NINDS NIH HHS - United States

Normal neurodevelopment requires precise expression of the key ubiquitin ligase gene Ube3a. Comparing newly generated mouse models for Ube3a downregulation (models of Angelman syndrome) vs. Ube3a upregulation (models for autism), we find reciprocal effects of Ube3a gene dosage on phenotypes associated with circadian rhythmicity, including the amount of locomotor activity. Consistent with results from neurons in general, we find that Ube3a is imprinted in neurons of the suprachiasmatic nuclei (SCN), the pacemaking circadian brain locus, despite other claims that SCN neurons were somehow exceptional to these imprinting rules. In addition, Ube3a-deficient mice lack the typical drop in wake late in the dark period and have blunted responses to sleep deprivation. Suppression of physical activity by light in Ube3a-deficient mice is not due to anxiety as measured by behavioral tests and stress hormones; quantification of stress hormones may provide a mechanistic link to sleep alteration and memory deficits caused by Ube3a deficiency, and serve as an easily measurable biomarker for evaluating potential therapeutic treatments for Angelman syndrome. We conclude that reduced Ube3a gene dosage affects not only neurodevelopment but also sleep patterns and circadian rhythms.

Zobrazit více v PubMed

Albrecht U., Sutcliffe J. S., Cattanach B. M., Beechey C. V., Armstrong D., Eichele G., et al. (1997). Imprinted expression of the murine Angelman syndrome gene, PubMed DOI

Angoa-Pérez M., Kane M. J., Briggs D. I., Francescutti D. M., Kuhn D. M. (2013). Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. PubMed DOI PMC

Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. PubMed

Born H. A., Dao A. T., Levine A. T., Lee W. L., Mehta N. M., Mehra S., et al. (2017). Strain-dependence of the angelman syndrome phenotypes in Ube3a maternal deficiency mice. PubMed DOI PMC

Brenner M., Kisseberth W. C., Su Y., Besnard F., Messing A. (1994). GFAP promoter directs astrocyte-specific expression in transgenic mice. PubMed DOI PMC

Colas D., Wagstaff J., Fort P., Salvert D., Sarda N. (2005). Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. PubMed DOI

Copping N. A., Silverman J. L. (2021). Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome. PubMed DOI PMC

den Bakker H., Sidorov M. S., Fan Z., Lee D. J., Bird L. M., Chu C. J., et al. (2018). Abnormal coherence and sleep composition in children with Angelman syndrome: a retrospective EEG study. PubMed DOI PMC

Dindot S. V., Antalffy B. A., Bhattacharjee M. B., Beaudet A. L. (2008). The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. PubMed DOI

Dodge A., Peters M. M., Greene H. E., Dietrick C., Botelho R., Chung D., et al. (2020). Generation of a novel rat model of Angelman Syndrome with a complete Ube3a gene deletion. PubMed DOI PMC

Edgar D. M., Kilduff T. S., Martin C. E., Dement W. C. (1991). Influence of running wheel activity on free-running sleep/wake and drinking circadian rhythms in mice. PubMed

Ehlen J. C., Jones K. A., Pinckney L., Gray C. L., Burette S., Weinberg R. J., et al. (2015). Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact. PubMed DOI PMC

España R. A., McCormack S. L., Mochizuki T., Scammell T. E. (2007). Running promotes wakefulness and increases cataplexy in orexin knockout mice. PubMed DOI PMC

España R. A., Scammell T. E. (2011). Sleep neurobiology from a clinical perspective. PubMed DOI PMC

Foote S. L., Aston-Jones G., Bloom F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. PubMed DOI PMC

Forrest K. M., Young H., Dale R. C., Gill D. S. (2009). Benefit of corticosteroid therapy in Angelman syndrome. PubMed DOI

Goldman S. E., Bichell T. J., Surdyka K., Malow B. A. (2012). Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. PubMed DOI PMC

Gossan N. C., Zhang F., Guo B., Jin D., Yoshitane H., Yao A., et al. (2014). The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. PubMed DOI PMC

Grier M. D., Carson R. P., Lagrange A. H. (2015). Toward a broader view of Ube3a in a mouse model of Angelman syndrome: expression in brain, spinal cord, sciatic nerve and glial cells. PubMed DOI PMC

Gustin R. M., Bichell T. J., Bubser M., Daily J., Filonova I., Mrelashvili D., et al. (2010). Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. PubMed DOI PMC

Huang H. S., Burns A. J., Nonneman R. J., Baker L. K., Riddick N. V., Nikolova V. D., et al. (2013). Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. PubMed DOI PMC

Ikegami K., Shigeyoshi Y., Masubuchi S. (2020). Circadian regulation of IOP rhythm by dual pathways of glucocorticoids and the sympathetic nervous system. PubMed DOI PMC

Jiang Y. H., Armstrong D., Albrecht U., Atkins C. M., Noebels J. L., Eichele G., et al. (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. PubMed DOI

Jiang Y. H., Pan Y., Zhu L., Landa L., Yoo J., Spencer C., et al. (2010). Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PubMed DOI PMC

Jones K. A., Han J. E., DeBruyne J. P., Philpot B. D. (2016). Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. PubMed DOI PMC

Judson M. C., Sosa-Pagan J. O., Del Cid W. A., Han J. E., Philpot B. D. (2014). Allelic specificity of Ube3a expression in the mouse brain during postnatal development. PubMed DOI PMC

Jung M., Lee E. K. (2021). RNA–Binding Protein HuD as a versatile factor in neuronal and non–neuronal systems. PubMed DOI PMC

Kim A., Fujimoto M., Hwa V., Backeljauw P., Dauber A. (2018). Adrenal insufficiency, sex reversal, and Angelman Syndrome due to uniparental disomy unmasking a mutation in CYP11A1. PubMed DOI PMC

Krishnan V., Stoppel D. C., Nong Y., Johnson M. A., Nadler M. J., Ozkaynak E., et al. (2017). Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. PubMed DOI PMC

Laan L. A., Haeringen A., Brouwer O. F. (1999). Angelman syndrome: a review of clinical and genetic aspects. PubMed

Le Minh N., Damiola F., Tronche F., Schütz G., Schibler U. (2001). Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. PubMed DOI PMC

Lehman N. L. (2009). The ubiquitin proteasome system in neuropathology. PubMed DOI PMC

Liska K., Sladek M., Houdek P., Shrestha N., Luzna V., Ralph M. R., et al. (2021). High sensitivity of circadian clock in the hippocampal dentate gyrus to glucocorticoid-and GSK3beta-dependent signals. PubMed DOI

Loffreda A., Nizzardo M., Arosio A., Ruepp M. D., Calogero R. A., Volinia S., et al. (2020). miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. PubMed DOI

Morin L. P., Hefton S., Studholme K. M. (2011). Neurons identified by NeuN/Fox-3 immunoreactivity have a novel distribution in the hamster and mouse suprachiasmatic nucleus. PubMed DOI PMC

Morris E. L., Patton A. P., Chesham J. E., Crisp A., Adamson A., Hastings M. H. (2021). Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. PubMed DOI PMC

Nakao M., Sutcliffe J. S., Durtschi B., Mutirangura A., Ledbetter D. H., Beaudet A. L. (1994). Imprinting analysis of three genes in the Prader-Willi/Angelman region: PubMed DOI

Okano H. J., Darnell R. B. (1997). A hierarchy of Hu RNA binding proteins in developing and adult neurons. PubMed DOI PMC

Pelc K., Cheron G., Boyd S. G., Dan B. (2008). Are there distinctive sleep problems in Angelman syndrome? PubMed DOI

Reppert S. M., Weaver D. R. (2002). Coordination of circadian timing in mammals. PubMed DOI

Robb S. A., Pohl K. R., Baraitser M., Wilson J., Brett E. M. (1989). The ‘happy puppet’ syndrome of Angelman: review of the clinical features. PubMed DOI PMC

Roozendaal B. (2002). Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. PubMed

Scammell T. E., Arrigoni E., Lipton J. O. (2017). Neural circuitry of wakefulness and sleep. PubMed DOI PMC

Schwartz W. J., Klerman E. B. (2019). Circadian neurobiology and the physiologic regulation of sleep and wakefulness. PubMed DOI PMC

Shi S. Q., Bichell T. J., Ihrie R. A., Johnson C. H. (2015). Ube3a imprinting impairs circadian robustness in Angelman syndrome models. PubMed DOI PMC

Shi S. Q., Johnson C. H. (2019). Circadian biology and sleep in monogenic neurological disorders and its potential application in drug discovery. PubMed DOI PMC

Sidorov M. S., Deck G. M., Dolatshahi M., Thibert R. L., Bird L. M., Chu C. J., et al. (2017). Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. PubMed DOI PMC

Smith A., Wiles C., Haan E., McGill J., Wallace G., Dixon J., et al. (1996). Clinical features in 27 patients with Angelman syndrome resulting from DNA deletion. PubMed DOI PMC

Smith S. E., Zhou Y. D., Zhang G., Jin Z., Stoppel D. C., Anderson M. P. (2011). Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. PubMed DOI PMC

Sonzogni M., Wallaard I., Santos S. S., Kingma J., du Mee D., van Woerden G. M. (2018). A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. PubMed DOI PMC

Sumová A., Sládek M., Jáè M., Illnerová H. (2002). The circadian rhythm of Per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. PubMed DOI

Sutcliffe J. S., Jiang Y. H., Galijaard R. J., Matsuura T., Fang P., Kubota T. C., et al. (1997). The E6-AP ubiquitin-protein ligase ( PubMed DOI PMC

Takaesu Y., Komada Y., Inoue Y. (2012). Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. PubMed DOI

Thomas A., Burant A., Bui N., Graham D., Yuva-Paylor L. A., Paylor R. (2009). Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. PubMed DOI PMC

Trickett J., Heald M., Oliver C. (2017). Sleep in children with Angelman syndrome: parental concerns and priorities. PubMed DOI

van Woerden G. M., Harris K. D., Hojjati M. R., Gustin R. M., Qiu S., de Avila Freire R., et al. (2007). Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. PubMed DOI

Weeber E. J., Jiang Y. H., Elgersma Y., Varga A. W., Carrasquillo Y., Brown S. E., et al. (2003). Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. PubMed DOI PMC

Wen S., Ma D., Zhao M., Xie L., Wu Q., Gou L., et al. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. PubMed DOI

Williams C. A., Beaudet A. L., Clayton-Williams C. A., Beaudet A. L., Clayton-Smith J., Knoll J. H., et al. (2006). Angelman syndrome 2005: updated consensus for diagnostic criteria. PubMed DOI

Xu P., Berto S., Kulkarni A., Jeong B., Joseph C., Cox K. H., et al. (2021). NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. PubMed DOI PMC

Yamasaki K., Joh K., Ohta T., Masuzaki H., Ishimaru T., Mukai T., et al. (2003). Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. PubMed DOI

Yoo S. H., Yamazaki S., Lowrey P. L., Shimomura K., Ko C. H., Buhr E. D., et al. (2004). PERIOD2:: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...