Circadian Rhythms and Sleep Are Dependent Upon Expression Levels of Key Ubiquitin Ligase Ube3a
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
R01 NS104497
NINDS NIH HHS - United States
PubMed
35401134
PubMed Central
PMC8989470
DOI
10.3389/fnbeh.2022.837523
Knihovny.cz E-zdroje
- Klíčová slova
- Angelman syndrome, UBE3A (E6AP), autism, circadian, imprinting, neurodevelopmental disorders, sleep, ubiquitin ligase,
- Publikační typ
- časopisecké články MeSH
Normal neurodevelopment requires precise expression of the key ubiquitin ligase gene Ube3a. Comparing newly generated mouse models for Ube3a downregulation (models of Angelman syndrome) vs. Ube3a upregulation (models for autism), we find reciprocal effects of Ube3a gene dosage on phenotypes associated with circadian rhythmicity, including the amount of locomotor activity. Consistent with results from neurons in general, we find that Ube3a is imprinted in neurons of the suprachiasmatic nuclei (SCN), the pacemaking circadian brain locus, despite other claims that SCN neurons were somehow exceptional to these imprinting rules. In addition, Ube3a-deficient mice lack the typical drop in wake late in the dark period and have blunted responses to sleep deprivation. Suppression of physical activity by light in Ube3a-deficient mice is not due to anxiety as measured by behavioral tests and stress hormones; quantification of stress hormones may provide a mechanistic link to sleep alteration and memory deficits caused by Ube3a deficiency, and serve as an easily measurable biomarker for evaluating potential therapeutic treatments for Angelman syndrome. We conclude that reduced Ube3a gene dosage affects not only neurodevelopment but also sleep patterns and circadian rhythms.
Department of Biological Sciences Vanderbilt University Nashville TN United States
Department of Molecular and Human Genetics Baylor College of Medicine Houston TX United States
Department of Neurology Beth Israel Deaconess Medical Center Boston MA United States
Zobrazit více v PubMed
Albrecht U., Sutcliffe J. S., Cattanach B. M., Beechey C. V., Armstrong D., Eichele G., et al. (1997). Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat. Genet. 17 75–78. 10.1038/ng0997-75 PubMed DOI
Angoa-Pérez M., Kane M. J., Briggs D. I., Francescutti D. M., Kuhn D. M. (2013). Marble burying and nestlet shredding as tests of repetitive, compulsive-like behaviors in mice. J. Visual. Exp. 82:e50978. 10.3791/50978 PubMed DOI PMC
Aston-Jones G., Cohen J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu. Rev. Neurosci. 28 403–450. PubMed
Born H. A., Dao A. T., Levine A. T., Lee W. L., Mehta N. M., Mehra S., et al. (2017). Strain-dependence of the angelman syndrome phenotypes in Ube3a maternal deficiency mice. Sci. Rep. 7 1–15. 10.1038/s41598-017-08825-x PubMed DOI PMC
Brenner M., Kisseberth W. C., Su Y., Besnard F., Messing A. (1994). GFAP promoter directs astrocyte-specific expression in transgenic mice. J. Neurosci. 14 1030–1037. 10.1523/JNEUROSCI.14-03-01030.1994 PubMed DOI PMC
Colas D., Wagstaff J., Fort P., Salvert D., Sarda N. (2005). Sleep disturbances in Ube3a maternal-deficient mice modeling Angelman syndrome. Neurobiol. Dis. 20 471–478. 10.1016/j.nbd.2005.04.003 PubMed DOI
Copping N. A., Silverman J. L. (2021). Abnormal electrophysiological phenotypes and sleep deficits in a mouse model of Angelman Syndrome. Mol. Autism 12 1–14. 10.1186/s13229-021-00416-y PubMed DOI PMC
den Bakker H., Sidorov M. S., Fan Z., Lee D. J., Bird L. M., Chu C. J., et al. (2018). Abnormal coherence and sleep composition in children with Angelman syndrome: a retrospective EEG study. Mol. Autism 9 1–12. 10.1186/s13229-018-0214-8 PubMed DOI PMC
Dindot S. V., Antalffy B. A., Bhattacharjee M. B., Beaudet A. L. (2008). The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 17 111–118. 10.1093/hmg/ddm288 PubMed DOI
Dodge A., Peters M. M., Greene H. E., Dietrick C., Botelho R., Chung D., et al. (2020). Generation of a novel rat model of Angelman Syndrome with a complete Ube3a gene deletion. Autism Res. 13 397–409. 10.1002/aur.2267 PubMed DOI PMC
Edgar D. M., Kilduff T. S., Martin C. E., Dement W. C. (1991). Influence of running wheel activity on free-running sleep/wake and drinking circadian rhythms in mice. Physiol. Behav. 50 373–378. PubMed
Ehlen J. C., Jones K. A., Pinckney L., Gray C. L., Burette S., Weinberg R. J., et al. (2015). Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact. J. Neurosci. 35 13587–13598. 10.1523/JNEUROSCI.2194-15.2015 PubMed DOI PMC
España R. A., McCormack S. L., Mochizuki T., Scammell T. E. (2007). Running promotes wakefulness and increases cataplexy in orexin knockout mice. Sleep 30 1417–1425. 10.1093/sleep/30.11.1417 PubMed DOI PMC
España R. A., Scammell T. E. (2011). Sleep neurobiology from a clinical perspective. Sleep 34 845–858. 10.5665/SLEEP.1112 PubMed DOI PMC
Foote S. L., Aston-Jones G., Bloom F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proc. Nat. Acad. Sci. 77 3033–3037. 10.1073/pnas.77.5.3033 PubMed DOI PMC
Forrest K. M., Young H., Dale R. C., Gill D. S. (2009). Benefit of corticosteroid therapy in Angelman syndrome. J. Child Neurol. 24 952–958. 10.1177/0883073808331344 PubMed DOI
Goldman S. E., Bichell T. J., Surdyka K., Malow B. A. (2012). Sleep in children and adolescents with Angelman syndrome: association with parent sleep and stress. J. Intell. Disabil. Res. 56 600–608. 10.1111/j.1365-2788.2011.01499.x PubMed DOI PMC
Gossan N. C., Zhang F., Guo B., Jin D., Yoshitane H., Yao A., et al. (2014). The E3 ubiquitin ligase UBE3A is an integral component of the molecular circadian clock through regulating the BMAL1 transcription factor. Nucleic Acids Res. 42 5765–5775. 10.1093/nar/gku225 PubMed DOI PMC
Grier M. D., Carson R. P., Lagrange A. H. (2015). Toward a broader view of Ube3a in a mouse model of Angelman syndrome: expression in brain, spinal cord, sciatic nerve and glial cells. PloS One 10:e0124649. 10.1371/journal.pone.0124649 PubMed DOI PMC
Gustin R. M., Bichell T. J., Bubser M., Daily J., Filonova I., Mrelashvili D., et al. (2010). Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol. Dis. 39 283–291. 10.1016/j.nbd.2010.04.012 PubMed DOI PMC
Huang H. S., Burns A. J., Nonneman R. J., Baker L. K., Riddick N. V., Nikolova V. D., et al. (2013). Behavioral deficits in an Angelman syndrome model: effects of genetic background and age. Behav. Brain Res. 243 79–90. 10.1016/j.bbr.2012.12.052 PubMed DOI PMC
Ikegami K., Shigeyoshi Y., Masubuchi S. (2020). Circadian regulation of IOP rhythm by dual pathways of glucocorticoids and the sympathetic nervous system. Invest. Ophthalmol. Visual Sci. 61:26. 10.1167/iovs.61.3.26 PubMed DOI PMC
Jiang Y. H., Armstrong D., Albrecht U., Atkins C. M., Noebels J. L., Eichele G., et al. (1998). Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21 799–811. 10.1016/s0896-6273(00)80596-6 PubMed DOI
Jiang Y. H., Pan Y., Zhu L., Landa L., Yoo J., Spencer C., et al. (2010). Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3. PloS One 5:e12278. 10.1371/journal.pone.0012278 PubMed DOI PMC
Jones K. A., Han J. E., DeBruyne J. P., Philpot B. D. (2016). Persistent neuronal Ube3a expression in the suprachiasmatic nucleus of Angelman syndrome model mice. Sci. Rep. 6 1–13. 10.1038/srep28238 PubMed DOI PMC
Judson M. C., Sosa-Pagan J. O., Del Cid W. A., Han J. E., Philpot B. D. (2014). Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J. Comp. Neurol. 522 1874–1896. 10.1002/cne.23507 PubMed DOI PMC
Jung M., Lee E. K. (2021). RNA–Binding Protein HuD as a versatile factor in neuronal and non–neuronal systems. Biology 10:361. 10.3390/biology10050361 PubMed DOI PMC
Kim A., Fujimoto M., Hwa V., Backeljauw P., Dauber A. (2018). Adrenal insufficiency, sex reversal, and Angelman Syndrome due to uniparental disomy unmasking a mutation in CYP11A1. Hormone Res. Paediat. 89 205–210. 10.1159/000487638 PubMed DOI PMC
Krishnan V., Stoppel D. C., Nong Y., Johnson M. A., Nadler M. J., Ozkaynak E., et al. (2017). Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1. Nature 543 507–512. 10.1038/nature21678 PubMed DOI PMC
Laan L. A., Haeringen A., Brouwer O. F. (1999). Angelman syndrome: a review of clinical and genetic aspects. Clin. Neurol. Neurosurg. 101 161–170. PubMed
Le Minh N., Damiola F., Tronche F., Schütz G., Schibler U. (2001). Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20 7128–7136. 10.1093/emboj/20.24.7128 PubMed DOI PMC
Lehman N. L. (2009). The ubiquitin proteasome system in neuropathology. Acta Neuropathol. 118 329–347. 10.1007/s00401-009-0560-x PubMed DOI PMC
Liska K., Sladek M., Houdek P., Shrestha N., Luzna V., Ralph M. R., et al. (2021). High sensitivity of circadian clock in the hippocampal dentate gyrus to glucocorticoid-and GSK3beta-dependent signals. Neuroendocrinology. 2021:689. 10.1159/000517689 PubMed DOI
Loffreda A., Nizzardo M., Arosio A., Ruepp M. D., Calogero R. A., Volinia S., et al. (2020). miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog. Neurobiol. 190:101803. 10.1016/j.pneurobio PubMed DOI
Morin L. P., Hefton S., Studholme K. M. (2011). Neurons identified by NeuN/Fox-3 immunoreactivity have a novel distribution in the hamster and mouse suprachiasmatic nucleus. Brain Res. 1421 44–51. 10.1016/j.brainres.2011.09.015 PubMed DOI PMC
Morris E. L., Patton A. P., Chesham J. E., Crisp A., Adamson A., Hastings M. H. (2021). Single-cell transcriptomics of suprachiasmatic nuclei reveal a Prokineticin-driven circadian network. EMBO J. 6:e108614. 10.15252/embj.2021108614 PubMed DOI PMC
Nakao M., Sutcliffe J. S., Durtschi B., Mutirangura A., Ledbetter D. H., Beaudet A. L. (1994). Imprinting analysis of three genes in the Prader-Willi/Angelman region: SNRPN, E6-associated protein, and PAR-2 (D15S225E). Hum. Mol. Genet. 3 309–315. 10.1093/hmg/3.2.309 PubMed DOI
Okano H. J., Darnell R. B. (1997). A hierarchy of Hu RNA binding proteins in developing and adult neurons. J. Neurosci. 17 3024–3037. 10.1523/JNEUROSCI.17-09-03024.1997 PubMed DOI PMC
Pelc K., Cheron G., Boyd S. G., Dan B. (2008). Are there distinctive sleep problems in Angelman syndrome? Sleep Med. 9 434–441. 10.1016/j.sleep.2007.07.001 PubMed DOI
Reppert S. M., Weaver D. R. (2002). Coordination of circadian timing in mammals. Nature 418 935–941. 10.1038/nature00965 PubMed DOI
Robb S. A., Pohl K. R., Baraitser M., Wilson J., Brett E. M. (1989). The ‘happy puppet’ syndrome of Angelman: review of the clinical features. Arch. Dis. Childhood 64 83–86. 10.1136/adc.64.1.83 PubMed DOI PMC
Roozendaal B. (2002). Stress and memory: opposing effects of glucocorticoids on memory consolidation and memory retrieval. Neurobiol. Learn. Memory 78 578–595. PubMed
Scammell T. E., Arrigoni E., Lipton J. O. (2017). Neural circuitry of wakefulness and sleep. Neuron 93 747–765. 10.1016/j.neuron.2017.01.014 PubMed DOI PMC
Schwartz W. J., Klerman E. B. (2019). Circadian neurobiology and the physiologic regulation of sleep and wakefulness. Neurol. Clin. 37 475–486. 10.1016/j.ncl.2019.03.001 PubMed DOI PMC
Shi S. Q., Bichell T. J., Ihrie R. A., Johnson C. H. (2015). Ube3a imprinting impairs circadian robustness in Angelman syndrome models. Curr. Biol. 25 537–545. 10.1016/j.cub.2014.12.047 PubMed DOI PMC
Shi S. Q., Johnson C. H. (2019). Circadian biology and sleep in monogenic neurological disorders and its potential application in drug discovery. Curr. Opin. Behav. Sci. 25 23–30. 10.1016/j.cobeha.2018.06.006 PubMed DOI PMC
Sidorov M. S., Deck G. M., Dolatshahi M., Thibert R. L., Bird L. M., Chu C. J., et al. (2017). Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis. J. Neurodevelop. Disord. 9:17. 10.1186/s11689-017-9195-8 PubMed DOI PMC
Smith A., Wiles C., Haan E., McGill J., Wallace G., Dixon J., et al. (1996). Clinical features in 27 patients with Angelman syndrome resulting from DNA deletion. J. Med. Genet. 33 107–112. 10.1136/jmg.33.2.107 PubMed DOI PMC
Smith S. E., Zhou Y. D., Zhang G., Jin Z., Stoppel D. C., Anderson M. P. (2011). Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice. Sci. Transl. Med. 3:97. 10.1126/scitranslmed.3002627 PubMed DOI PMC
Sonzogni M., Wallaard I., Santos S. S., Kingma J., du Mee D., van Woerden G. M. (2018). A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants. Mol. Autism 9 1–19. 10.1186/s13229-018-0231-7 PubMed DOI PMC
Sumová A., Sládek M., Jáè M., Illnerová H. (2002). The circadian rhythm of Per1 gene product in the rat suprachiasmatic nucleus and its modulation by seasonal changes in daylength. Brain Res. 947 260–270. 10.1016/s0006-8993(02)02933-5 PubMed DOI
Sutcliffe J. S., Jiang Y. H., Galijaard R. J., Matsuura T., Fang P., Kubota T. C., et al. (1997). The E6-AP ubiquitin-protein ligase (UBE3A) gene is localized within a narrowed Angelman syndrome critical region. Genome Res. 7 368–377. 10.1101/gr.7.4.368 PubMed DOI PMC
Takaesu Y., Komada Y., Inoue Y. (2012). Melatonin profile and its relation to circadian rhythm sleep disorders in Angelman syndrome patients. Sleep Med. 13 1164–1170. 10.1016/j.sleep.2012.06.015 PubMed DOI
Thomas A., Burant A., Bui N., Graham D., Yuva-Paylor L. A., Paylor R. (2009). Marble burying reflects a repetitive and perseverative behavior more than novelty-induced anxiety. Psychopharmacology 204 361–373. 10.1007/s00213-009-1466-y PubMed DOI PMC
Trickett J., Heald M., Oliver C. (2017). Sleep in children with Angelman syndrome: parental concerns and priorities. Res. Dev. Disabil. 69 105–115. 10.1016/j.ridd.2017.07.017 PubMed DOI
van Woerden G. M., Harris K. D., Hojjati M. R., Gustin R. M., Qiu S., de Avila Freire R., et al. (2007). Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation. Nature Neurosci. 10 280–282. 10.1038/nn1845 PubMed DOI
Weeber E. J., Jiang Y. H., Elgersma Y., Varga A. W., Carrasquillo Y., Brown S. E., et al. (2003). Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J. Neurosci. 23 2634–2644. 10.1523/JNEUROSCI.23-07-02634.2003 PubMed DOI PMC
Wen S., Ma D., Zhao M., Xie L., Wu Q., Gou L., et al. (2020). Spatiotemporal single-cell analysis of gene expression in the mouse suprachiasmatic nucleus. Nature Neurosci. 23 456–467. 10.1038/s41593-020-0586-x PubMed DOI
Williams C. A., Beaudet A. L., Clayton-Williams C. A., Beaudet A. L., Clayton-Smith J., Knoll J. H., et al. (2006). Angelman syndrome 2005: updated consensus for diagnostic criteria. Am. J. Med. Genet. Part A 140 413–418. 10.1002/ajmg.a.31074 PubMed DOI
Xu P., Berto S., Kulkarni A., Jeong B., Joseph C., Cox K. H., et al. (2021). NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior. Neuron. 109 3268–3282. 10.1016/j.neuron.2021.07.026 PubMed DOI PMC
Yamasaki K., Joh K., Ohta T., Masuzaki H., Ishimaru T., Mukai T., et al. (2003). Neurons but not glial cells show reciprocal imprinting of sense and antisense transcripts of Ube3a. Human Mol. Genet. 12 837–847. 10.1093/hmg/ddg106 PubMed DOI
Yoo S. H., Yamazaki S., Lowrey P. L., Shimomura K., Ko C. H., Buhr E. D., et al. (2004). PERIOD2:: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Nat. Acad. Sci. 101 5339–5346. 10.1073/pnas.0308709101 PubMed DOI PMC