Progress on Incorporating Zeolites in Matrimid®5218 Mixed Matrix Membranes towards Gas Separation

. 2018 Jun 14 ; 8 (2) : . [epub] 20180614

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29904036

Membranes, as perm-selective barriers, have been widely applied for gas separation applications. Since some time ago, pure polymers have been used mainly for the preparation of membranes, considering different kinds of polymers for such preparation. At this point, polyimides (e.g., Matrimid®5218) are probably one of the most considered polymers for this purpose. However, the limitation on the performance relationship of polymeric membranes has promoted their enhancement through the incorporation of different inorganic materials (e.g., zeolites) into their matrix. Therefore, the aim of this work is to provide an overview about the progress of zeolite embedding in Matrimid®5218, aiming at the preparation of mixed matrix membranes for gas separation. Particular attention is paid to the relevant experimental results and current findings. Finally, we describe the prospects and future trends in the field.

Zobrazit více v PubMed

Guiver M.D., Robertson G.P., Dai Y., Bilodeau F., Kang Y.S., Lee K.J., Jho J.Y., Won J. Structural characterization and gas-transport properties of brominated Matrimid polyimide. J. Polym. Sci. Part A Polym. Chem. 2002;40:4193–4204. doi: 10.1002/pola.10516. DOI

Castro-Muñoz R., Galiano F., Fíla V., Drioli E., Figoli A. Matrimid® 5218 dense membrane for the separation of azeotropic MeOH-MTBE mixtures by pervaporation. Sep. Purif. Technol. 2018;199:27–36. doi: 10.1016/j.seppur.2018.01.045. DOI

Brunetti A., Scura F., Barbieri G., Drioli E. Membrane technologies for CO2 separation. J. Membr. Sci. 2010;359:115–125. doi: 10.1016/j.memsci.2009.11.040. DOI

Castro-Muñoz R., Martin-Gil V., Ahmad M.Z., Fíla V. Matrimid® 5218 in preparation of membranes for gas separation—Current state-of-the-art. Chem. Eng. Commun. 2017;205:161–192. doi: 10.1080/00986445.2017.1378647. DOI

Kosinov N., Gascon J., Kapteijn F., Hensen E.J.M. Recent developments in zeolite membranes for gas separation. J. Membr. Sci. 2016;499:65–79. doi: 10.1016/j.memsci.2015.10.049. DOI

Aroon M.A., Ismail A.F., Matsuura T., Montazer-Rahmati M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010;75:229–242. doi: 10.1016/j.seppur.2010.08.023. DOI

Scholes C., Tao W.X., Stevens G.W., Kentish S. Sorption of methane, nitrogen, carbon dioxide, and water in Matrimid 5218. J. Appl. Polym. Sci. 2010;117:2284–2289. doi: 10.1002/app.32148. DOI

Robeson L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991;62:165–185. doi: 10.1016/0376-7388(91)80060-J. DOI

Robeson L.M. The upper bound revisited. J. Membr. Sci. 2008;320:390–400. doi: 10.1016/j.memsci.2008.04.030. DOI

Recio R., Lozano A., Pradanos P., Marcos A., Tejerina F., Hernandez A. Effect of fractional free volume and Tg on gas separation through membranes made with different glassy polymers. J. Appl. Polym. Sci. 2008;107:1039–1046. doi: 10.1002/app.26542. DOI

Castro-Muñoz R., Fíla V., Dung C.T. Mixed matrix membranes based on PIMs for gas permeation: Principles, synthesis, and current status. Chem. Eng. Commun. 2017;204:295–309. doi: 10.1080/00986445.2016.1273832. DOI

Dechnik J., Sumby C.J., Janiak C. Enhancing mixed-matrix membrane performance with metal-organic framework additives. Cryst. Growth Des. 2017;17:4467–4488. doi: 10.1021/acs.cgd.7b00595. DOI

Tanh Jeazet H.B., Staudt C., Janiak C. Metal-organic frameworks in mixed-matrix membranes for gas separation. Dalton Trans. 2012;41:14003. doi: 10.1039/c2dt31550e. PubMed DOI

Dong G., Li H., Chen V. Challenges and opportunities for mixed-matrix membranes for gas separation. J. Mater. Chem. A. 2013;1:4610. doi: 10.1039/c3ta00927k. DOI

Goh P.S., Ismail A.F., Sanip S.M., Ng B.C., Aziz M. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep. Purif. Technol. 2011;81:243–264. doi: 10.1016/j.seppur.2011.07.042. DOI

Wee S.L., Tye C.T., Bhatia S. Membrane separation process-Pervaporation through zeolite membrane. Sep. Purif. Technol. 2008;63:500–516. doi: 10.1016/j.seppur.2008.07.010. DOI

Huang Z., Shi Y., Wen R., Guo Y.H., Su J.F., Matsuura T. Multilayer poly(vinyl alcohol)-zeolite 4A composite membranes for ethanol dehydration by means of pervaporation. Sep. Purif. Technol. 2006;51:126–136. doi: 10.1016/j.seppur.2006.01.005. DOI

Castro-Muñoz R., Galiano F., Fíla V., Drioli E., Figoli A. Mixed matrix membranes (MMMs) for ethanol purification through pervaporation: Current state of the art. Rev. Chem. Eng. 2019 doi: 10.1515/revce-2017-0115. DOI

Rasouli Y., Abbasi M., Hashemifard S.A. Investigation of in-line coagulation-MF hybrid process for oily wastewater treatment by using novel ceramic membranes. J. Clean. Prod. 2017;161:545–559. doi: 10.1016/j.jclepro.2017.05.134. DOI

Peng L., Xu X., Yao X., Liu H., Gu X. Fabrication of novel hierarchical ZSM-5 zeolite membranes with tunable mesopores for ultrafiltration. J. Membr. Sci. 2018;549:446–455. doi: 10.1016/j.memsci.2017.12.039. DOI

Dong L.X., Huang X.C., Wang Z., Yang Z., Wang X.M., Tang C.Y. A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles. Sep. Purif. Technol. 2016;166:230–239. doi: 10.1016/j.seppur.2016.04.043. DOI

Wang Y., Zou X., Sun L., Rong H., Zhu G. A zeolite-like aluminophosphate membrane with molecular-sieving property for water desalination. Chem. Sci. 2018;9:2533–2539. doi: 10.1039/C7SC04974A. PubMed DOI PMC

Goh P.S., Ismail A.F. A review on inorganic membranes for desalination and wastewater treatment. Desalination. 2018;434:60–80. doi: 10.1016/j.desal.2017.07.023. DOI

Mukhopadhyay M., Lakhotia S.R., Ghosh A.K., Bindal R.C., Mukhopadhyay M., Lakhotia S.R., Ghosh A.K., Bindal R.C. Removal of arsenic from aqueous media using zeolite/chitosan nanocomposite membrane. Sep. Sci. Technol. 2018:1–7. doi: 10.1080/01496395.2018.1459704. DOI

Garofalo A., Carnevale M.C., Donato L., Drioli E., Alharbi O., Aljlil S.A., Criscuoli A., Algieri C. Scale-up of MFI zeolite membranes for desalination by vacuum membrane distillation. Desalination. 2016;397:205–212. doi: 10.1016/j.desal.2016.07.010. DOI

Mahon D., Claudio G., Eames P.C. An experimental investigation to assess the potential of using MgSO4 impregnation and Mg2+ ion exchange to enhance the performance of 13X molecular sieves for interseasonal domestic thermochemical energy storage. Energy Convers. Manag. 2017;150:870–877. doi: 10.1016/j.enconman.2017.03.080. DOI

Shan J.H., Chen L., Sun L.B., Liu X.Q. Adsorptive removal of thiophene by cu-modified mesoporous silica MCM-48 derived from direct synthesis. Energy Fuels. 2011;25:3093–3099. doi: 10.1021/ef200472j. DOI

Ayele L., Pérez-Pariente J., Chebude Y., Diaz I. Synthesis of zeolite A using kaolin from Ethiopia and its application in detergents. New J. Chem. 2016;40:3440–3446. doi: 10.1039/C5NJ03097H. DOI

Čejka J., Centi G., Perez-Pariente J., Roth W.J. Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catal. Today. 2012;179:2–15. doi: 10.1016/j.cattod.2011.10.006. DOI

Zones S.I. Translating new materials discoveries in zeolite research to commercial manufacture. Microporous Mesoporous Mater. 2011;144:1–8. doi: 10.1016/j.micromeso.2011.03.039. DOI

Davis M.E. Zeolites from a materials chemistry perspective. Chem. Mater. 2014;26:239–245. doi: 10.1021/cm401914u. DOI

Flanigen E.M. Chapter 2 zeolites and molecular sieves an historical perspective. Stud. Surf. Sci. Catal. 1991;58:13–34. doi: 10.1016/S0167-2991(08)63599-5. DOI

Millini R., Bellussi G. Zeolites in Catalysis. Royal Society of Chemistry; London, UK: 2017. Zeolite Science and Perspectives; pp. 1–36.

Luna A.D.J.M., de León G.C., García Rodríguez S.P., Fuentes López N.C., Pérez Camacho O., Perera Mercado Y.A. Na+/Ca2+aqueous ion exchange in natural clinoptilolite zeolite for polymer-zeolite composite membranes production and their CH4/CO2/N2 separation performance. J. Nat. Gas Sci. Eng. 2018;54:47–53. doi: 10.1016/j.jngse.2018.03.007. DOI

Ahmad N.N.R., Leo C.P., Mohammad A.W., Ahmad A.L. Interfacial sealing and functionalization of polysulfone/SAPO-34 mixed matrix membrane using acetate-based ionic liquid in post-impregnation for CO2capture. Sep. Purif. Technol. 2018;197:439–448. doi: 10.1016/j.seppur.2017.12.054. DOI

Tahir Z., Ilyas A., Li X., Bilad M.R., Vankelecom I.F.J., Khan A.L. Tuning the gas separation performance of fluorinated and sulfonated PEEK membranes by incorporation of zeolite 4A. J. Appl. Polym. Sci. 2018;135 doi: 10.1002/app.45952. DOI

Afarani H.T., Sadeghi M., Moheb A. The gas separation performance of polyurethane-zeolite mixed matrix membranes. Adv. Polym. Technol. 2016;37 doi: 10.1002/adv.21672. DOI

Vieira G.S., Moreira F.K.V., Matsumoto R.L.S., Michelon M., Filho F.M., Hubinger M.D. Influence of nanofiltration membrane features on enrichment of jussara ethanolic extract (Euterpe edulis) in anthocyanins. J. Food Eng. 2018;226:31–41. doi: 10.1016/j.jfoodeng.2018.01.013. DOI

Amooghin A.E., Omidkhah M., Kargari A. Enhanced CO2 transport properties of membranes by embedding nano-porous zeolite particles into Matrimid[registered sign]5218 matrix. RSC Adv. 2015;5:8552–8565. doi: 10.1039/C4RA14903C. DOI

Fernández-Barquín A., Casado-Coterillo C., Valencia S., Irabien A. Mixed matrix membranes for O2/N2 separation: The influence of temperature. Membranes. 2016;6 doi: 10.3390/membranes6020028. PubMed DOI PMC

Tavolaro A., Drioli E. Zeolite membranes. Adv. Mater. 1999;11:975–996. doi: 10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0. DOI

Tomita T., Nakayama K., Sakai H. Gas separation characteristics of DDR type zeolite membrane. Microporous Mesoporous Mater. 2004;68:71–75. doi: 10.1016/j.micromeso.2003.11.016. DOI

Zheng Y., Hu N., Wang H., Bu N., Zhang F., Zhou R. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4and C2H4/C2H6 separation. J. Membr. Sci. 2015;475:303–310. doi: 10.1016/j.memsci.2014.10.048. DOI

Malakhov A.O., Knyazeva E.E., Novitsky E.G. Gas transport properties of LiA type zeolite-filled poly(trimethylsilylpropyne) membranes. Pet. Chem. 2015;55:708–715. doi: 10.1134/S0965544115090066. DOI

Jia M.-D., Peinemann K.-V., Behling R.-D. Ceramic zeolite composite membranes. J. Membr. Sci. 1993;82:15–26. doi: 10.1016/0376-7388(93)85089-F. DOI

Yong H.H., Park H.C., Kang Y.S., Won J., Kim W.N. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. J. Membr. Sci. 2001;188:151–163. doi: 10.1016/S0376-7388(00)00659-1. DOI

Mulder M. Basic Principles of Membrane Technology. Kluwer Academic Publishers; London, UK: 1991.

Fick A. Erwiderung auf einige Stellen der Abhandlung: ”Ueber die Diffusion von Flüssigkeiten; vonFr. Beilstein. Eur. J. Org. Chem. 1857;102:97–101. doi: 10.1002/jlac.18571020112. DOI

Baker R.W.R.W. Membrane Technology and Applications. John Wiley & Sons, Ltd.; Chichester, UK: 2012.

Chung T.S., Jiang L.Y., Li Y., Kulprathipanja S. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci. 2007;32:483–507. doi: 10.1016/j.progpolymsci.2007.01.008. DOI

Alexander Stern S. Polymers for gas separations: The next decade. J. Membr. Sci. 1994;94:1–65. doi: 10.1016/0376-7388(94)00141-3. DOI

Wijmans J.G., Baker R.W. The solution-diffusion model: A review. J. Membr. Sci. 1995;107:1–21. doi: 10.1016/0376-7388(95)00102-I. DOI

Bastani D., Esmaeili N., Asadollahi M. Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review. J. Ind. Eng. Chem. 2013;19:375–393. doi: 10.1016/j.jiec.2012.09.019. DOI

Rezakazemi M., Ebadi Amooghin A., Montazer-Rahmati M.M., Ismail A.F., Matsuura T. State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Prog. Polym. Sci. 2014;39:817–861. doi: 10.1016/j.progpolymsci.2014.01.003. DOI

Matsui M., Kiyozumi Y., Yamamoto T., Mizushina Y., Mizukami F., Sakaguchi K. Selective adsorption of biopolymers on zeolites. Chem. A Eur. J. 2001;7:1555–1560. doi: 10.1002/1521-3765(20010401)7:7<1555::AID-CHEM1555>3.0.CO;2-O. PubMed DOI

Li Y., Chung T.S., Cao C., Kulprathipanja S. The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes. J. Membr. Sci. 2005;260:45–55. doi: 10.1016/j.memsci.2005.03.019. DOI

Mahajan R., Burns R., Schaeffer M., Koros W.J. Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci. 2002;86:881–890. doi: 10.1002/app.10998. DOI

Pechar T.W., Kim S., Vaughan B., Marand E., Baranauskas V., Riffle J., Jeong H.K., Tsapatsis M. Preparation and characterization of a poly(imide siloxane) and zeolite L mixed matrix membrane. J. Membr. Sci. 2006;277:210–218. doi: 10.1016/j.memsci.2005.10.031. DOI

Chen X.Y., Nik O.G., Rodrigue D., Kaliaguine S. Mixed matrix membranes of aminosilanes grafted FAU/EMT zeolite and cross-linked polyimide for CO2/CH4 separation. Polymer. 2012;53:3269–3280. doi: 10.1016/j.polymer.2012.03.017. DOI

Shu S., Husain S., Koros W.J. A general strategy for adhesion enhancement in polymeric composites by formation of nanostructured particle surfaces. J. Phys. Chem. C. 2007;111:652–657. doi: 10.1021/jp065711j. DOI

Dorosti F., Omidkhah M.R., Pedram M.Z., Moghadam F. Fabrication and characterization of polysulfone/polyimide-zeolite mixed matrix membrane for gas separation. Chem. Eng. J. 2011;171:1469–1476. doi: 10.1016/j.cej.2011.05.081. DOI

Jiang L.Y., Chung T.S., Cao C., Huang Z., Kulprathipanja S. Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes. J. Membr. Sci. 2005;252:89–100. doi: 10.1016/j.memsci.2004.12.004. DOI

Jiang L.Y., Chung T.S., Kulprathipanja S. An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. J. Membr. Sci. 2006;276:113–125. doi: 10.1016/j.memsci.2005.09.041. DOI

Jiang L.Y., Chung T.S., Rajagopalan R. Dual-layer hollow carbon fiber membranes for gas separation consisting of carbon and mixed matrix layers. Carbon. 2007;45:166–172. doi: 10.1016/j.carbon.2006.07.008. DOI

Jiang L.Y., Chung T.S., Kulprathipanja S. Fabrication of Mixed Matrix Hollow Fibers with Intimate Polymer–Zeolite Interface for Gas Separation. AIChe J. 2006;52:2898–2908. doi: 10.1002/aic.10909. DOI

Ismail A.F., Rahim R.A., Rahman W.A.W.A. Characterization of polyethersulfone/Matrimid® 5218 miscible blend mixed matrix membranes for O2/N2 gas separation. Sep. Purif. Technol. 2008;63:200–206. doi: 10.1016/j.seppur.2008.05.007. DOI

Zhang Y., Balkus K.J., Musselman I.H., Ferraris J.P. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 nanoparticles. J. Membr. Sci. 2008;325:28–39. doi: 10.1016/j.memsci.2008.04.063. DOI

Zhang Y., Musselman I.H., Ferraris J.P., Balkus K.J. Gas permeability properties of mixed-matrix matrimid membranes containing a carbon aerogel: A material with both micropores and mesopores. Ind. Eng. Chem. Res. 2008;47:2794–2802. doi: 10.1021/ie0713689. DOI

Bakhtiari O., Mosleh S., Khosravi T., Mohammadi T. Preparation, characterization and gas permeation of polyimide mixed matrix membranes. J. Membr. Sci. Technol. 2011;1:1–6. doi: 10.4172/2155-9589.1000102. DOI

Chaidou C.I., Pantoleontos G., Koutsonikolas D.E., Kaldis S.P., Sakellaropoulos G.P. Gas separation properties of polyimide-zeolite mixed matrix membranes. Sep. Sci. Technol. 2012;47:950–962. doi: 10.1080/01496395.2011.645263. DOI

Ahmad J., Hägg M.B. Development of matrimid/zeolite 4A mixed matrix membranes using low boiling point solvent. Sep. Purif. Technol. 2013;115:190–197. doi: 10.1016/j.seppur.2013.04.049. DOI

Peydayesh M., Asarehpour S., Mohammadi T., Bakhtiari O. Preparation and characterization of SAPO-34—Matrimid® 5218 mixed matrix membranes for CO2/CH4 separation. Chem. Eng. Res. Des. 2013;91:1335–1342. doi: 10.1016/j.cherd.2013.01.022. DOI

Loloei M., Omidkhah M., Moghadassi A., Amooghin A.E. Preparation and characterization of Matrimid® 5218 based binary and ternary mixed matrix membranes for CO2 separation. Int. J. Greenh. Gas Control. 2015;39:225–235. doi: 10.1016/j.ijggc.2015.04.016. DOI

Rahmani M., Kazemi A., Talebnia F. Matrimid mixed matrix membranes for enhanced CO2/CH4 separation. J. Polym. Eng. 2016;36:499–511. doi: 10.1515/polyeng-2015-0176. DOI

Peydayesh M., Mohammadi T., Bakhtiari O. Effective hydrogen purification from methane via polyimide Matrimid® 5218-Deca-dodecasil 3R type zeolite mixed matrix membrane. Energy. 2017;141:2100–2107. doi: 10.1016/j.energy.2017.11.101. DOI

Carter D., Tezel F.H., Kruczek B., Kalipcilar H. Investigation and comparison of mixed matrix membranes composed of polyimide matrimid with ZIF-8, silicalite, and SAPO-34. J. Membr. Sci. 2017;544:35–46. doi: 10.1016/j.memsci.2017.08.068. DOI

Bernardo P., Drioli E., Golemme G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009;48:4638–4663. doi: 10.1021/ie8019032. DOI

Norahim N., Yaisanga P., Faungnawakij K., Charinpanitkul T., Klaysom C. Recent membrane developments for CO2 separation and capture. Chem. Eng. Technol. 2018:211–223. doi: 10.1002/ceat.201700406. DOI

Corma A., Navarro M.T., Pariente J.P. Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J. Chem. Soc. Chem. Commun. 1994:147–148. doi: 10.1039/c39940000147. DOI

Karlsson A., Stöcker M., Schmidt R. Composites of micro- and mesoporous materials: Simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach. Microporous Mesoporous Mater. 1999;27:181–192. doi: 10.1016/S1387-1811(98)00252-2. DOI

Khan A.L., Klaysom C., Gahlaut A., Khan A.U., Vankelecom I.F.J. Mixed matrix membranes comprising of Matrimid and -SO3H functionalized mesoporous MCM-41 for gas separation. J. Membr. Sci. 2013;447:73–79. doi: 10.1016/j.memsci.2013.07.011. DOI

Ebadi Amooghin A., Omidkhah M., Sanaeepur H., Kargari A. Preparation and characterization of Ag+ ion-exchanged zeolite-Matrimid® 5218 mixed matrix membrane for CO2/CH4 separation. J. Energy Chem. 2016;25:450–462. doi: 10.1016/j.jechem.2016.02.004. DOI

Mundstock A., Friebe S., Caro J. On comparing permeation through Matrimid®-based mixed matrix and multilayer sandwich FAU membranes: H2/CO2 separation, support functionalization and ion exchange. Int. J. Hydrogen Energy. 2017;42:279–288. doi: 10.1016/j.ijhydene.2016.10.161. DOI

Gong H., Lee S.S., Bae T.H. Mixed-matrix membranes containing inorganically surface-modified 5A zeolite for enhanced CO2/CH4 separation. Microporous Mesoporous Mater. 2017;237:82–89. doi: 10.1016/j.micromeso.2016.09.017. DOI

Amooghin A.E., Sanaeepur H., Omidkhah M., Kargari A. “Ship-in-a-bottle”, a new synthesis strategy for preparing novel hybrid host-guest nano-composites for highly selective membrane gas separation. J. Mater. Chem. A. 2018;6:1751–1771. doi: 10.1039/C7TA08081F. DOI

Figueroa J.D., Fout T., Plasynski S., McIlvried H., Srivastava R.D. Advances in CO2 capture technology-The U.S. Department of Energy—s Carbon Sequestration Program. Int. J. Greenh. Gas Control. 2008;2:9–20. doi: 10.1016/S1750-5836(07)00094-1. DOI

Alonso A., Moral-Vico J., Abo Markeb A., Busquets-Fité M., Komilis D., Puntes V., Sánchez A., Font X. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane. Sci. Total Environ. 2017;595:51–62. doi: 10.1016/j.scitotenv.2017.03.229. PubMed DOI

Li Y., Yi H., Tang X., Li F., Yuan Q. Adsorption separation of CO2/CH4 gas mixture on the commercial zeolites at atmospheric pressure. Chem. Eng. J. 2013;229:50–56. doi: 10.1016/j.cej.2013.05.101. DOI

Saha D., Bao Z. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and Zeolite 5A. Environ. Sci. Technol. 2010;44:1820–1826. doi: 10.1021/es9032309. PubMed DOI

Cavenati S., Grande C.A., Rodrigues A.E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. J. Chem. Eng. Data. 2004;49:1095–1101. doi: 10.1021/je0498917. DOI

Talesh S.S.A., Fatemi S., Hashemi S.J., Ghasemi M. Effect of Si/Al ratio on CO2-CH4 adsorption and selectivity in synthesized SAPO-34. Sep. Sci. Technol. 2010;45:1295–1301. doi: 10.1080/01496391003684414. DOI

Rangnekar N., Mittal N., Elyassi B., Caro J., Tsapatsis M. Zeolite membranes—A review and comparison with MOFs. Chem. Soc. Rev. 2015;44:7128–7154. doi: 10.1039/C5CS00292C. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...