Removal of Ibuprofen from Water by Different Types Membranes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
N°19-08153Y
Czech Science Foundation
MEYS CR, LM 2018103
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34883586
PubMed Central
PMC8659068
DOI
10.3390/polym13234082
PII: polym13234082
Knihovny.cz E-zdroje
- Klíčová slova
- atomic layer deposition, dense polymer membrane, ibuprofen, water treatment,
- Publikační typ
- časopisecké články MeSH
Ibuprofen separation from water by adsorption and pertraction processes has been studied, comparing 16 different membranes. Tailor-made membranes based on Matrimid, Ultem, and diaminobenzene/diaminobenzoic acid with various contents of zeolite and graphene oxide, have been compared to the commercial polystyrene, polypropylene, and polydimethylsiloxane polymeric membranes. Experimental results revealed lower ibuprofen adsorption onto commercial membranes than onto tailor-made membranes (10-15% compared to 50-70%). However, the mechanical stability of commercial membranes allowed the pertraction process application, which displayed a superior quantity of ibuprofen eliminated. Additionally, the saturation of the best-performing commercial membrane, polydimethylsiloxane, was notably prevented by atomic layer deposition of (3-aminopropyl)triethoxysilane.
Zobrazit více v PubMed
Buser H.R., Poiger T., Muller M.D. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ. Sci. Technol. 1999;33:2529–2535. doi: 10.1021/es981014w. DOI
Rozman D., Hrkal Z., Váňa M., Vymazal J., Boukalová Z. Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic. Water. 2017;9:218. doi: 10.3390/w9030218. DOI
Brozinski J.-M., Lahti M., Meierjohann A., Oikari A., Kronberg L. The Anti-Inflammatory Drugs Diclofenac, Naproxen and Ibuprofen are found in the Bile of Wild Fish Caught Downstream of a Wastewater Treatment Plant. Environ. Sci. Technol. 2013;47:342–348. doi: 10.1021/es303013j. PubMed DOI
Lonappan L., Brar S.K., Das R.K., Verma M., Surampalli R.Y. Diclofenac and its transformation products: Environmental occurrence and toxicity—A review. Environ. Int. 2016;96:127–138. doi: 10.1016/j.envint.2016.09.014. PubMed DOI
Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant. Environ. Sci. Pollut. Res. 2014;21:7578–7585. doi: 10.1007/s11356-014-2654-9. PubMed DOI
Roberts P.H., Thomas K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006;356:143–153. doi: 10.1016/j.scitotenv.2005.04.031. PubMed DOI
Dvořáková Březinova T., Vymazal J., Koželuh M., Kule L. Occurrence and removal of ibuprofen and its metabolites in full-scale constructed wetlands treating municipal wastewater. Ecol. Eng. 2018;120:1–5. doi: 10.1016/j.ecoleng.2018.05.020. DOI
Obotey Ezugbe E., Rathilal S. Membrane Technologies in Wastewater Treatment: A Review. Membranes. 2020;10:89. doi: 10.3390/membranes10050089. PubMed DOI PMC
Acero J.L., Benitez F.J., Teva F., Leal A.I. Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem. Eng. J. 2010;163:264–272. doi: 10.1016/j.cej.2010.07.060. DOI
Yangali-Quintanilla V., Maeng S.K., Fujioka T., Kennedy M., Amy G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J. Membr. Sci. 2010;362:334–345. doi: 10.1016/j.memsci.2010.06.058. DOI
Radjenović J., Petrović M., Ventura F., Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008;42:3601–3610. doi: 10.1016/j.watres.2008.05.020. PubMed DOI
Urtiaga A.M., Pérez G., Ibáñez R., Ortiz I. Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination. 2013;331:26–34. doi: 10.1016/j.desal.2013.10.010. DOI
Yangali Quintanilla V., Maeng S.K., Fujioka T., Kennedy M., Li Z., Amy G. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalination Water Treat. 2011;34:50–56. doi: 10.5004/dwt.2011.2860. DOI
Nghiem L.D., Hawkes S. Effects of membrane fouling on the nanofiltration of pharmaceutically active compounds (PhACs): Mechanisms and role of membrane pore size. Sep. Purif. Technol. 2007;57:176–184. doi: 10.1016/j.seppur.2007.04.002. DOI
Sagawa N., Shikata T. Are all polar molecules hydrophilic? Hydration numbers of nitro compounds and nitriles in aqueous solution. Phys. Chem. Chem. Phys. 2014;16:13262–13270. doi: 10.1039/C4CP01280A. PubMed DOI
Arola K., Ward A., Mänttäri M., Kallioinen M., Batstone D. Transport of pharmaceuticals during electrodialysis treatment of wastewater. Water Res. 2019;161:496–504. doi: 10.1016/j.watres.2019.06.031. PubMed DOI
He J., Li Y., Cai X., Chen K., Zheng H., Wang C., Zhang K., Lin D., Kong L., Liu J. Study on the removal of organic micropollutants from aqueous and ethanol solutions by HAP membranes with tunable hydrophilicity and hydrophobicity. Chemosphere. 2017;174:380–389. doi: 10.1016/j.chemosphere.2017.02.008. PubMed DOI
Jermann D., Pronk W., Boller M., Schäfer A.I. The role of NOM fouling for the retention of estradiol and ibuprofen during ultrafiltration. J. Membr. Sci. 2009;329:75–84. doi: 10.1016/j.memsci.2008.12.016. DOI
Kárászová M., Bourassi M., Gaálová J. Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? Membranes. 2020;10:305. doi: 10.3390/membranes10110305. PubMed DOI PMC
Căprărescu S., Zgârian R.G., Tihan G.T., Purcar V., Eftimie Totu E., Modrogan C., Chiriac A.-L., Nicolae C.A. Biopolymeric Membrane Enriched with Chitosan and Silver for Metallic Ions Removal. Polymers. 2020;12:1792. doi: 10.3390/polym12081792. PubMed DOI PMC
Caprarescu S., Radu A.-L., Purcar V., Sarbu A., Vaireanu D.-I., Ianchis R., Ghiurea M. Removal of Copper Ions from Simulated Wastewaters Using Different Bicomponent Polymer Membranes. Water Air Soil Pollut. 2014;225:2079. doi: 10.1007/s11270-014-2079-6. DOI
José C., Briand L.E., Michlig N., Repetti M.R., Benedetich C., Cornaglia L.M., Bosko M.L. Isolation of ibuprofen enantiomers and racemic esters through electrodialysis. J. Membr. Sci. 2021;618:118714. doi: 10.1016/j.memsci.2020.118714. DOI
Tristán C., Fallanza M., Ibáñez R., Ortiz I. Reverse Electrodialysis: Potential Reduction in Energy and Emissions of Desalination. Appl. Sci. 2020;10:7317. doi: 10.3390/app10207317. DOI
Sun L., Chen Q., Lu H., Wang J., Zhao J., Li P. Electrodialysis with porous membrane for bioproduct separation: Technology, features, and progress. Food Res. Int. 2020;137:109343. doi: 10.1016/j.foodres.2020.109343. PubMed DOI
Ma L., Gutierrez L., Van Vooren T., Vanoppen M., Kazemabad M., Verliefde A., Cornelissen E. Fate of organic micropollutants in reverse electrodialysis: Influence of membrane fouling and channel clogging. Desalination. 2021;512:115114. doi: 10.1016/j.desal.2021.115114. DOI
Campione A., Gurreri L., Ciofalo M., Micale G., Tamburini A., Cipollina A. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination. 2018;434:121–160. doi: 10.1016/j.desal.2017.12.044. DOI
Xie M., Nghiem L.D., Price W.E., Elimelech M. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Res. 2012;46:2683–2692. doi: 10.1016/j.watres.2012.02.023. PubMed DOI
Song L., Heiranian M., Elimelech M. True driving force and characteristics of water transport in osmotic membranes. Desalination. 2021;520:115360. doi: 10.1016/j.desal.2021.115360. DOI
Zuo K., Wang K., DuChanois R.M., Fang Q., Deemer E.M., Huang X., Xin R., Said I.A., He Z., Feng Y., et al. Selective membranes in water and wastewater treatment: Role of advanced materials. Mater. Today. 2021 doi: 10.1016/j.mattod.2021.06.013. DOI
Gaálová J., Bourassi M., Soukup K., Trávníčková T., Bouša D., Sundararajan S., Losada O., Kasher R., Friess K., Sofer Z. Modified Single-Walled Carbon Nanotube Membranes for the Elimination of Antibiotics from Water. Membranes. 2021;11:720. doi: 10.3390/membranes11090720. PubMed DOI PMC
Gaálová J., Michel M., Bourassi M., Ladewig B.P., Kasal P., Jindřich J., Izák P. Nafion membranes modified by cationic cyclodextrin derivatives for enantioselective separation. Sep. Purif. Technol. 2021;266:118538. doi: 10.1016/j.seppur.2021.118538. DOI
Bourassi M., Pasichnyk M., Oesch O., Sundararajan S., Trávničková T., Soukup K., Kasher R., Gaálová J. Glycidyl and Methyl Methacrylate UV-Grafted PDMS Membrane Modification toward Tramadol Membrane Selectivity. Membranes. 2021;11:752. doi: 10.3390/membranes11100752. PubMed DOI PMC
Bourassi M., Martin E., Bourre M., Fila V., Gaálová J. Separation of Diethyl Phthalate From Water by Pervaporation. WSEAS Trans. Environ. Dev. 2021;17:81–87. doi: 10.37394/232015.2021.17.9. DOI
Xiong G., Cao Y., Guo Z., Jia Q., Tian F., Liu L. The roles of different titanium species in TS-1 zeolite in propylene epoxidation studied by in situ UV Raman spectroscopy. Phys. Chem. Chem. Phys. 2016;18:190–196. doi: 10.1039/C5CP05268H. PubMed DOI
Banerjee P., Das P., Zaman A., Das P. Application of graphene oxide nanoplatelets for adsorption of Ibuprofen from aqueous solutions: Evaluation of process kinetics and thermodynamics. Process Saf. Environ. Prot. 2016;101:45–53. doi: 10.1016/j.psep.2016.01.021. DOI
Oba S.N., Ighalo J.O., Aniagor C.O., Igwegbe C.A. Removal of ibuprofen from aqueous media by adsorption: A comprehensive review. Sci. Total Environ. 2021;780:146608. doi: 10.1016/j.scitotenv.2021.146608. PubMed DOI
Childress A.E., Elimelech M. Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics. Environ. Sci. Technol. 2000;34:3710–3716. doi: 10.1021/es0008620. DOI
Nghiem L.D., Schäfer A.I., Elimelech M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Membr. Sci. 2006;286:52–59. doi: 10.1016/j.memsci.2006.09.011. DOI
Kim S., Chu K.H., Al-Hamadani Y.A.J., Park C.M., Jang M., Kim D.-H., Yu M., Heo J., Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018;335:896–914. doi: 10.1016/j.cej.2017.11.044. DOI
Bellona C., Drewes J. The role of membrane surface charge and solute physic-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 2005;249:227–234. doi: 10.1016/j.memsci.2004.09.041. DOI
Coday B.D., Yaffe B.G.M., Xu P., Cath T.Y. Rejection of Trace Organic Compounds by Forward Osmosis Membranes: A Literature Review. Environ. Sci. Technol. 2014;48:3612–3624. doi: 10.1021/es4038676. PubMed DOI
Elam J.W., Routkevitch D., Mardilovich P.P., George S.M. Conformal Coating on Ultrahigh-Aspect-Ratio Nanopores of Anodic Alumina by Atomic Layer Deposition. Chem. Mater. 2003;15:3507–3517. doi: 10.1021/cm0303080. DOI
Dvorak F., Zazpe R., Krbal M., Sopha H., Prikryl J., Ng S., Hromadko L., Bures F., Macak J.M. One-dimensional anodic TiO2 nanotubes coated by atomic layer deposition: Towards advanced applications. Appl. Mater. Today. 2019;14:1–20. doi: 10.1016/j.apmt.2018.11.005. DOI
Brožová L., Zazpe R., Otmar M., Přikryl J., Bulánek R., Žitka J., Krejčíková S., Izák P., Macak J.M. Chiral Templating of Polycarbonate Membranes by Pinene Using the Modified Atomic Layer Deposition Approach. Langmuir. 2020;36:12723–12734. doi: 10.1021/acs.langmuir.0c02373. PubMed DOI
Martin-Gil V., López A., Hrabanek P., Mallada R., Vankelecom I.F.J., Fila V. Study of different titanosilicate (TS-1 and ETS-10) as fillers for Mixed Matrix Membranes for CO2/CH4 gas separation applications. J. Membr. Sci. 2017;523:24–35. doi: 10.1016/j.memsci.2016.09.041. DOI
Ahmad M.Z., Martin-Gil V., Supinkova T., Lambert P., Castro-Muñoz R., Hrabanek P., Kocirik M., Fila V. Novel MMM using CO2 selective SSZ-16 and high-performance 6FDA-polyimide for CO2/CH4 separation. Sep. Purif. Technol. 2021;254:117582. doi: 10.1016/j.seppur.2020.117582. DOI
Castro-Muñoz R., Fíla V., Dung C.T. Mixed Matrix Membranes Based on PIMs for Gas Permeation: Principles, Synthesis, and Current Status. Chem. Eng. Commun. 2017;204:295–309. doi: 10.1080/00986445.2016.1273832. DOI
Castro-Muñoz R., Galiano F., de la Iglesia Ó., Fíla V., Téllez C., Coronas J., Figoli A. Graphene oxide—Filled polyimide membranes in pervaporative separation of azeotropic methanol–MTBE mixtures. Sep. Purif. Technol. 2019;224:265–272. doi: 10.1016/j.seppur.2019.05.034. DOI
Jain A., Ahmad M.Z., Linkès A., Martin-Gil V., Castro-Muñoz R., Izak P., Sofer Z., Hintz W., Fila V. 6FDA-DAM:DABA Co-Polyimide Mixed Matrix Membranes with GO and ZIF-8 Mixtures for Effective CO2/CH4 Separation. Nanomaterials. 2021;11:668. doi: 10.3390/nano11030668. PubMed DOI PMC
Zuo J., Chung T.-S., O’Brien G.S., Kosar W. Hydrophobic/hydrophilic PVDF/Ultem® dual-layer hollow fiber membranes with enhanced mechanical properties for vacuum membrane distillation. J. Membr. Sci. 2017;523:103–110. doi: 10.1016/j.memsci.2016.09.030. DOI
Kim R.I., Shin J.H., Lee J.S., Lee J.-H., Lee A.S., Hwang S.S. Tunable Crystalline Phases in UV-Curable PEG-Grafted Ladder-Structured Silsesquioxane/Polyimide Composites. Materials. 2020;13:2295. doi: 10.3390/ma13102295. PubMed DOI PMC
Fatyeyeva K., Dahi A., Chappey C., Langevin D., Valleton J.-M., Poncin-Epaillard F., Marais S. Effect of cold plasma treatment on surface properties and gas permeability of polyimide films. RSC Adv. 2014;4:31036–31046. doi: 10.1039/C4RA03741C. DOI
Fouladivanda M., Karimi-Sabet J., Abbasi F., Moosavian M.A. Step-by-step improvement of mixed-matrix nanofiber membrane with functionalized graphene oxide for desalination via air-gap membrane distillation. Sep. Purif. Technol. 2021;256:117809. doi: 10.1016/j.seppur.2020.117809. DOI
Serrano D.P., Calleja G., Botas J.A., Gutierrez F.J. Characterization of adsorptive and hydrophobic properties of silicalite-1, ZSM-5, TS-1 and Beta zeolites by TPD techniques. Sep. Purif. Technol. 2007;54:1–9. doi: 10.1016/j.seppur.2006.08.013. DOI
Paul S.C., Githinji L.J., Ankumah R.O., Willian K.R., Pritchett G. Sorption Behavior of Ibuprofen and Naproxen in Simulated Domestic Wastewater. Water Air Soil Pollut. 2014;225:1–11. doi: 10.1007/s11270-013-1821-9. DOI
Zinadini S., Zinatizadeh A.A., Rahimi M., Vatanpour V., Zangeneh H. Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Membr. Sci. 2014;453:292–301. doi: 10.1016/j.memsci.2013.10.070. DOI
Hwang Y., Heo Y., Yoo Y., Kim J. The addition of functionalized graphene oxide to polyetherimide to improve its thermal conductivity and mechanical properties. Polym. Adv. Technol. 2014;25:1155–1162. doi: 10.1002/pat.3369. DOI
Moretti G., Salvi A.M., Guascito M.R., Langerame F. An XPS study of microporous and mesoporous titanosilicates. Surf. Interface Anal. 2004;36:1402–1412. doi: 10.1002/sia.1931. DOI
Castro-Muñoz R., Fíla V. Progress on Incorporating Zeolites in Matrimid(®)5218 Mixed Matrix Membranes towards Gas Separation. Membranes. 2018;8:30. doi: 10.3390/membranes8020030. PubMed DOI PMC
De Luca P., Bernaudo I., Elliani R., Tagarelli A., Nagy J.B., Macario A. Industrial Waste Treatment by ETS-10 Ion Exchanger Material. Materials. 2018;11:2316. doi: 10.3390/ma11112316. PubMed DOI PMC
Jedynak K., Szczepanik B., Rędzia N., Slomkiewicz P., Kolbus A., Rogala P. Ordered Mesoporous Carbons for Adsorption of Paracetamol and Non-Steroidal Anti-Inflammatory Drugs: Ibuprofen and Naproxen from Aqueous Solutions. Water. 2019;11:1099. doi: 10.3390/w11051099. DOI
Ng S.-F., Jennifer R., Dominic S., Eccleston G. A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells. Pharmaceutics. 2010;2:209. doi: 10.3390/pharmaceutics2020209. PubMed DOI PMC
Sarveiya V., Templeton J.F., Benson H.A.E. Ion-pairs of ibuprofen: Increased membrane diffusion. J. Pharm. Pharmacol. 2004;56:717–724. doi: 10.1211/0022357023448. PubMed DOI
Mohseni-Bandpei A., Eslami A., Kazemian H., Zarrabi M., Al-Musawi T.J. A high density 3-aminopropyltriethoxysilane grafted pumice-derived silica aerogel as an efficient adsorbent for ibuprofen: Characterization and optimization of the adsorption data using response surface methodology. Environ. Technol. Innov. 2020;18:100642. doi: 10.1016/j.eti.2020.100642. DOI
Farrington K., Regan F. Molecularly imprinted sol gel for ibuprofen: An analytical study of the factors influencing selectivity. Talanta. 2009;78:653–659. doi: 10.1016/j.talanta.2008.12.013. PubMed DOI