Glycidyl and Methyl Methacrylate UV-Grafted PDMS Membrane Modification toward Tramadol Membrane Selectivity
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-08153Y
Grantová Agentura České Republiky
3237/19
Israel Science Foundation (ISF)
PubMed
34677519
PubMed Central
PMC8538421
DOI
10.3390/membranes11100752
PII: membranes11100752
Knihovny.cz E-zdroje
- Klíčová slova
- UV-grafting modification, membrane separation, pharmaceutical’s pertraction, selective membrane, water depollution,
- Publikační typ
- časopisecké články MeSH
Pharmaceutical wastewater pollution has reached an alarming stage, as many studies have reported. Membrane separation has shown great performance in wastewater treatment, but there are some drawbacks and undesired byproducts of this process. Selective membranes could be used for pollutant investigation sensors or even for pollutant recovery. The polydimethylsiloxane (PDMS) membrane was first tested on separated and mixed antibiotic (ATB) water solutions containing sulfamethoxazole (SM), trimethoprim (TMP), and tetracycline (TET). Then, the bare and ultra-violet grafted (UV-grafted) PDMS membranes (MMA-DMAEMA 10, GMA-DMAEMA 5, and GMA-DMAEMA 10) were tested in tramadol (TRA) separation, where the diffusion coefficient was evaluated. Finally, the membranes were tested in pertraction with a mixture of SM, TMP, TET, and TRA. The membranes were characterized using the following methods: contact angle measurement, FTIR, SEM/EDX, and surface and pore analysis. The main findings were that TET was co-eluted during mixed ATB pertraction, and GMA-DMAEMA 5 was found to selectively permeate TRA over the present ATBs.
Zobrazit více v PubMed
Diaz-Sosa V.R., Tapia-Salazar M., Wanner J., Cardenas-Chavez D.L. Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic) Water. 2020;12:1079. doi: 10.3390/w12041079. DOI
Hanna N., Sun P., Sun Q., Li X., Yang X., Ji X., Zou H., Ottoson J., Nilsson L.E., Berglund B., et al. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ. Int. 2018;114:131–142. doi: 10.1016/j.envint.2018.02.003. PubMed DOI
Kondor A.C., Jakab G., Vancsik A., Filep T., Szeberenyi J., Szabo L., Maasz G., Ferincz A., Dobosy P., Szalai Z. Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of riverbank filtration. Environ. Pollut. 2020;265:114893. doi: 10.1016/j.envpol.2020.114893. PubMed DOI
Conde-Cid M., Núñez-Delgado A., Fernández-Sanjurjo M.J., Álvarez-Rodríguez E., Fernández-Calviño D., Arias-Estévez M. Tetracycline and Sulfonamide Antibiotics in Soils: Presence, Fate and Environmental Risks. Processes. 2020;8:1479. doi: 10.3390/pr8111479. PubMed DOI
Rodriguez-Mozaz S., Vaz-Moreira I., Della Giustina S.V., Llorca M., Barceló D., Schubert S., Berendonk T.U., Michael-Kordatou I., Fatta-Kassinos D., Martinez J.L., et al. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ. Int. 2020;140:105733. doi: 10.1016/j.envint.2020.105733. PubMed DOI
Antonopoulou Μ., Thoma A., Konstantinou F., Vlastos D., Hela D. Assessing the human risk and the environmental fate of pharmaceutical Tramadol. Sci. Total Environ. 2020;710:135396. doi: 10.1016/j.scitotenv.2019.135396. PubMed DOI
Baek I.H., Kim Y., Baik S., Kim J. Investigation of the Synergistic Toxicity of Binary Mixtures of Pesticides and Pharmaceuticals on Aliivibrio fischeri in Major River Basins in South Korea. Int. J. Environ. Res. Public Health. 2019;16:208. doi: 10.3390/ijerph16020208. PubMed DOI PMC
Zbair M., Ainassaari K., Drif A., Ojala S., Bottlinger M., Pirila M., Keiski R.L., Bensitel M., Brahmi R. Toward new benchmark adsorbents: Preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ. Sci. Pollut. Res. Int. 2018;25:1869–1882. doi: 10.1007/s11356-017-0634-6. PubMed DOI
Zbair M., Ainassaari K., El Assal Z., Ojala S., El Ouahedy N., Keiski R.L., Bensitel M., Brahmi R. Steam activation of waste biomass: Highly microporous carbon, optimization of bisphenol A, and diuron adsorption by response surface methodology. Environ. Sci. Pollut. Res. Int. 2018;25:35657–35671. doi: 10.1007/s11356-018-3455-3. PubMed DOI PMC
Kyzas G.Z., Kostoglou M. Green Adsorbents for Wastewaters: A Critical Review. Materials. 2014;7:333–364. doi: 10.3390/ma7010333. PubMed DOI PMC
Sassi H., Lafaye G., Ben Amor H., Gannouni A., Jeday M.R., Barbier J. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 2017;12:2. doi: 10.1007/s11783-017-0971-1. DOI
Kárászová M., Bourassi M., Gaálová J. Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? Membranes. 2020;10:305. doi: 10.3390/membranes10110305. PubMed DOI PMC
Rashed A.O., Merenda A., Kondo T., Lima M., Razal J., Kong L., Huynh C., Dumée L.F. Carbon nanotube membranes—Strategies and challenges towards scalable manufacturing and practical separation applications. Sep. Purif. Technol. 2021;257:117929. doi: 10.1016/j.seppur.2020.117929. DOI
Doan H.N., Phong Vo P., Hayashi K., Kinashi K., Sakai W., Tsutsumi N. Recycled PET as a PDMS-Functionalized electrospun fibrous membrane for oil-water separation. J. Environ. Chem. Eng. 2020;8:103921. doi: 10.1016/j.jece.2020.103921. DOI
Liu Y., Hu T., Zhao J., Lu L., Muhammad Y., Lan P., He R., Zou Y., Tong Z. Synthesis and application of PDMS/OP-POSS membrane for the pervaporative recovery of n-butyl acetate and ethyl acetate from aqueous media. J. Membr. Sci. 2019;591:117324. doi: 10.1016/j.memsci.2019.117324. DOI
Gaálová J., Michel M., Bourassi M., Ladewig B.P., Kasal P., Jindřich J., Izák P. Nafion membranes modified by cationic cyclodextrin derivatives for enantioselective separation. Sep. Purif. Technol. 2021;266:118538. doi: 10.1016/j.seppur.2021.118538. DOI
Bourassi A., Martín E., Bourre M., Fíla V., Gaálová J. Separation of Diethyl Phthalate From Water by Pervaporation. WSEAS Trans. Environ. Dev. 2021;17:81–88. doi: 10.37394/232015.2021.17.9. DOI
Mohammadi T., Aroujalian A., Bakhshi A. Pervaporation of dilute alcoholic mixtures using PDMS membrane. Chem. Eng. Sci. 2005;60:1875–1880. doi: 10.1016/j.ces.2004.11.039. DOI
Upadhyaya L., Qian X., Ranil Wickramasinghe S. Chemical modification of membrane surface—Overview. Curr. Opin. Chem. Eng. 2018;20:13–18. doi: 10.1016/j.coche.2018.01.002. DOI
Wang H., Lu X., Lu X., Wang Z., Ma J., Wang P. Improved surface hydrophilicity and antifouling property of polysulfone ultrafiltration membrane with poly(ethylene glycol) methyl ether methacrylate grafted graphene oxide nanofillers. Appl. Surf. Sci. 2017;425:603–613. doi: 10.1016/j.apsusc.2017.06.292. DOI
Regev C., Belfer S., Holenberg M., Fainstein R., Parola A.H., Kasher R. Fabrication of poly(ethylene glycol) particles with a micro-spherical morphology on polymeric fibers and its application in high flux water filtration. Sep. Purif. Technol. 2019;210:729–736. doi: 10.1016/j.seppur.2018.08.068. DOI
Raza W., Lee J., Raza N., Luo Y., Kim K.-H., Yang J. Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J. Ind. Eng. Chem. 2019;71:1–18. doi: 10.1016/j.jiec.2018.11.024. DOI
Herzberg M., Sweity A., Fau-Brami M., Brami M., Fau-Kaufman Y., Kaufman Y., Fau-Freger V., Freger V., Fau-Oron G., Oron G., et al. Surface properties and reduced biofouling of graft-copolymers that possess oppositely charged groups. Biomacromolecules. 2011;12:1169–1177. doi: 10.1021/bm101470y. PubMed DOI
Eshet I., Freger V., Kasher R., Herzberg M., Lei J., Ulbricht M. Chemical and physical factors in design of antibiofouling polymer coatings. Biomacromolecules. 2011;12:2681–2685. doi: 10.1021/bm200476g. PubMed DOI
Gaálová J., Yalcinkaya F., Cuřínová P., Kohout M., Yalcinkaya B., Koštejn M., Jirsák J., Stibor I., Bara J.E., Van der Bruggen B., et al. Separation of racemic compound by nanofibrous composite membranes with chiral selector. J. Membr. Sci. 2020;596:117728. doi: 10.1016/j.memsci.2019.117728. DOI
Nassar A., Ahmed N., Haseeb M., Abdel-Rahman A., Nasser R. Article open access synthesis and evaluation of terpolymers as viscosity index improvers and pour point depressants. Pet. Coal. 2017;59:442–451.
Stawski D., Nowak A. Thermal properties of poly(N,N-dimethylaminoethyl methacrylate) PLoS ONE. 2019;14:e0217441. doi: 10.1371/journal.pone.0217441. PubMed DOI PMC
Yin J.-J., Wahid F., Zhang Q., Tao Y.-C., Zhong C., Chu L.-Q. Facile Incorporation of Silver Nanoparticles into Quaternized Poly(2-(Dimethylamino)Ethyl Methacrylate) Brushes as Bifunctional Antibacterial Coatings. Macromol. Mater. Eng. 2017;302:1700069. doi: 10.1002/mame.201700069. DOI
Johnson L.M., Gao L., Shields Iv C.W., Smith M., Efimenko K., Cushing K., Genzer J., López G.P. Elastomeric microparticles for acoustic mediated bioseparations. J. Nanobiotechnol. 2013;11:22. doi: 10.1186/1477-3155-11-22. PubMed DOI PMC
Dalhatu S. Ultrasonic assisted synthesis and characterization of chitosan graf with 2- (dimethylaminoethylmethacrylate) (dmaema) Cs-g-pdmaema. J. Phys. Sci. 2021;3:1–10.
Shtreimer Kandiyote N., Avisdris T., Arnusch C.J., Kasher A.-O. Grafted Polymer Coatings Enhance Fouling Inhibition by an Antimicrobial Peptide on Reverse Osmosis Membranes. Langmuir. 2019;35:1935–1943. doi: 10.1021/acs.langmuir.8b03851. PubMed DOI
Dinari A., Abdollahi M., Sadeghizadeh M. Design and fabrication of dual responsive lignin-based nanogel via “grafting from” atom transfer radical polymerization for curcumin loading and release. Sci. Rep. 2021;11:1962. doi: 10.1038/s41598-021-81393-3. PubMed DOI PMC
Yang B., Wang C., Cheng X., Zhang Y., Li W., Wang J., Tian Z., Chu W., Korshin G.V., Guo H. Interactions between the antibiotic tetracycline and humic acid: Examination of the binding sites, and effects of complexation on the oxidation of tetracycline. Water Res. 2021;202:117379. doi: 10.1016/j.watres.2021.117379. PubMed DOI
Liao Q., Rong H., Zhao M., Luo H., Chu Z., Wang R. Interaction between tetracycline and microorganisms during wastewater treatment: A review. Sci. Total Environ. 2021;757:143981. doi: 10.1016/j.scitotenv.2020.143981. PubMed DOI
Gaálová J., Bourassi M., Soukup K., Trávníčková T., Bouša D., Sundararajan S., Losada O., Kasher R., Friess K., Sofer Z. Modified Single-Walled Carbon Nanotube Membranes for the Elimination of Antibiotics from Water. Membranes. 2021;11:720. doi: 10.3390/membranes11090720. PubMed DOI PMC
Kujawski W., Ostrowska-Gumkowska B. Preparation and Properties of Organophilic Membranes for Pervaporation of Water-Organics Mixtures. Sep. Sci. Technol. 2003;38:3669–3687. doi: 10.1081/SS-120024223. DOI
Cocchi G., De Angelis M.G., Doghieri F. Solubility and diffusivity of liquids for food and pharmaceutical applications in crosslinked polydimethylsiloxane (PDMS) films: II. Experimental data on mixtures. J. Membr. Sci. 2015;492:612–619. doi: 10.1016/j.memsci.2015.04.062. DOI
Abu Shawish H.M., Saadeh S.M., Al-Dalou A.R., Ghalwa N.A., Assi A.A.A. Optimization of tramadol–PVC membrane electrodes using miscellaneous plasticizers and ion-pair complexes. Mater. Sci. Eng. C. 2011;31:300–306. doi: 10.1016/j.msec.2010.09.014. DOI
Jahromi Z., Mirzaei E., Savardashtaki A., Afzali M., Afzali Z. A rapid and selective electrochemical sensor based on electrospun carbon nanofibers for tramadol detection. Microchem. J. 2020;157:104942. doi: 10.1016/j.microc.2020.104942. DOI