Platinum Nanoparticles Immobilized on Electrospun Membranes for Catalytic Oxidation of Volatile Organic Compounds

. 2023 Jan 14 ; 13 (1) : . [epub] 20230114

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36676917

Grantová podpora
TN01000048 Technology Agency of the Czech Republic
Strategy AV21 "Foods for the Future" Czech Academy of Sciences
LM2018119 and LM2018110 Ministry of Education, Youth and Sports of the Czech Republic

Structured catalytic membranes with high porosity and a low pressure drop are particularly suitable for industrial processes carried out at high space velocities. One of these processes is the catalytic total oxidation of volatile organic compounds, which is an economically feasible and environmentally friendly way of emission abatement. Noble metal catalysts are typically preferred due to high activity and stability. In this paper, the preparation of a thermally stable polybenzimidazole electrospun membrane, which can be used as a support for a platinum catalyst applicable in the total oxidation of volatile organic compounds, is reported for the first time. In contrast to commercial pelletized catalysts, high porosity of the membrane allowed for easy accessibility of the platinum active sites to the reactants and the catalytic bed exhibited a low pressure drop. We have shown that the preparation conditions can be tuned in order to obtain catalysts with a desired platinum particle size. In the gas-phase oxidation of ethanol, acetone, and toluene, the catalysts with Pt particle sizes 2.1 nm and 26 nm exhibited a lower catalytic activity than that with a Pt particle size of 12 nm. Catalysts with a Pt particle size of 2.1 nm and 12 nm were prepared by equilibrium adsorption, and the higher catalytic activity of the latter catalyst was ascribed to more reactive adsorbed oxygen species on larger Pt nanoparticles. On the other hand, the catalyst with a Pt particle size of 26 nm was prepared by a solvent evaporation method and contained less active polycrystalline platinum. Last but not least, the catalyst containing only 0.08 wt.% of platinum achieved high conversion (90%) of all the model volatile organic compounds at moderate temperatures (lower than 335 °C), which is important for reducing the costs of the abatement technology.

Zobrazit více v PubMed

Official Journal of the European Union Home Page. [(accessed on 15 November 2022)]. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2004:143:0087:0096:EN:PDF.

Official Journal of the European Union Home Page. [(accessed on 15 November 2022)]. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:334:0017:0119:en:PDF.

Kaštánek F., Topka P., Soukup K., Maléterová Y., Demnerová K., Kaštánek P., Šolcová O. Remediation of Contaminated Soils by Thermal Desorption; Effect of Benzoyl Peroxide Addition. J. Clean Prod. 2016;125:309–313. doi: 10.1016/j.jclepro.2016.03.134. DOI

Gaálová J., Topka P. Gold and Ceria as Catalysts for VOC Abatement: A Review. Catalysts. 2021;11:789. doi: 10.3390/catal11070789. DOI

Topka P., Dvořáková M., Kšírová P., Perekrestov R., Čada M., Balabánová J., Koštejn M., Jirátová K., Kovanda F. Structured Cobalt Oxide Catalysts for VOC Abatement: The effect of preparation method. Environ. Sci. Pollut. Res. 2020;27:7608–7617. doi: 10.1007/s11356-019-06974-2. PubMed DOI

Topka P., Jirátová K., Dvořáková M., Balabánová J., Koštejn M., Kovanda F. Hydrothermal Deposition as a Novel Method for the Preparation of Co-Mn Mixed Oxide Catalysts Supported on Stainless Steel Meshes: Application to VOC Oxidation. Environ. Sci. Pollut. Res. 2022;29:5172–5183. doi: 10.1007/s11356-021-15906-y. PubMed DOI

Jirátová K., Perekrestov R., Dvořáková M., Balabánová J., Koštejn M., Veselý M., Čada M., Topka P., Pokorná D., Hubička Z., et al. Modification of Cobalt Oxide Electrochemically Deposited on Stainless Steel Meshes with Co-Mn Thin Films Prepared by Magnetron Sputtering: Effect of Preparation Method and Application to Ethanol Oxidation. Catalysts. 2021;11:1453. doi: 10.3390/catal11121453. DOI

Gaálová J., Bourassi M., Soukup K., Trávníčková T., Bouša D., Sundararajan S., Losada O., Kasher R., Friess K., Sofer Z. Modified Single-Walled Carbon Nanotube Membranes for the Elimination of Antibiotics from Water. Membranes. 2021;11:720. doi: 10.3390/membranes11090720. PubMed DOI PMC

Bourassi M., Pasichnyk M., Oesch O., Sundararajan S., Trávničková T., Soukup K., Kasher R., Gaálová J. Glycidyl and Methyl Methacrylate UV-Grafted PDMS Membrane Modification toward Tramadol Membrane Selectivity. Membranes. 2021;11:752. doi: 10.3390/membranes11100752. PubMed DOI PMC

Matei E., Covaliu-Mierla C.I., Ţurcanu A.A., Râpă M., Predescu A.M., Predescu C. Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes. 2022;12:67. doi: 10.3390/membranes12010067. PubMed DOI PMC

Nasir A.M., Awang N., Jaafar J., Ismail A.F., Othman M.H.D., Rahman M.A., Aziz F., Yajid M.A.M. Recent Progress on Fabrication and Application of Electrospun Nanofibrous Photocatalytic Membranes for Wastewater Treatment: A Review. J. Water Process Eng. 2021;40:101878. doi: 10.1016/j.jwpe.2020.101878. DOI

Zhu J., Shao C., Li X., Han C., Yang S., Ma J., Li X., Liu Y. Immobilization of ZnO/Polyaniline Heterojunction on Electrospun Polyacrylonitrile Nanofibers and Enhanced Photocatalytic Activity. Mater. Chem. Phys. 2018;214:507–515. doi: 10.1016/j.matchemphys.2018.04.053. DOI

Soukup K., Hejtmánek V., Šolcová O. Determination of Microstructural Characteristics of Advanced Biocompatible Nanofibrous Membranes. Micropor. Mesopor. Mat. 2020;304:1–7. doi: 10.1016/j.micromeso.2019.02.015. DOI

Cao A., Lu R., Veser G. Stabilizing Metal Nanoparticles for Heterogeneous Catalysis. Phys. Chem. Chem. Phys. 2010;12:13499–13510. doi: 10.1039/c0cp00729c. PubMed DOI

Balcar H., Topka P., Žilková N., Perez-Pariente J., Čejka J. Metathesis of Linear Alpha-Olefins with MoO3 Supported on MCM-41 Catalyst. In: Sayari A., Jaroniec M., editors. Nanoporous Materials IV. Studies in Surface Science and Catalysis. Volume 155. Elsevier; Amsterdam, The Netherlands: 2005. pp. 795–802.

Yonezawa T., Imamura K., Kimizuka N. Direct Preparation and Size Control of Palladium Nanoparticle Hydrosols by Water-Soluble Isocyanide Ligands. Langmuir. 2001;17:4701–4703. doi: 10.1021/la0101954. DOI

Itoh H., Naka K., Chujo Y. Synthesis of Palladium Clusters with Surface Initiator for Polymerization of 2-Methyl-2-Oxazoline. Polym. Bull. 2001;46:357–362. doi: 10.1007/s002890170043. DOI

Hirai H., Yakaru N.I., Seta Y., Hodosima S. Characterization of Palladium Nanoparticles Protected with Polymer as Hydrogenation Catalyst. React. Funct. Polym. 1998;37:121–131. doi: 10.1016/S1381-5148(97)00169-7. DOI

Soukup K., Petráš D., Topka P., Slobodian P., Šolcová O. Preparation and Characterization of Electrospun Poly(p-Phenylene Oxide) Membranes. Catal. Today. 2012;193:165–171. doi: 10.1016/j.cattod.2012.03.019. DOI

Demir M.M., Gulgun M.A., Menceloglu Y.Z., Erman B., Abramchuk S.S., Makhaeva V.G., Khorkhlov A.R., Matveeva V.G., Sulman M.G. Palladium Nanoparticles by Electrospinning from Poly(Acronitrile-Co-Acrylic Acid)–PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules. 2004;37:1787–1792. doi: 10.1021/ma035163x. DOI

Ebert K., Bengtson G., Just R., Oehring M., Fritsch D. Catalytically Active Poly (amideimide) Nanofibre Mats with High Activity Tested in the Hydrogenation of Methyl-cis-9-Octadecenoate. Appl. Catal. A-Gen. 2008;346:72–78. doi: 10.1016/j.apcata.2008.05.009. DOI

Wendorff J.H., Agarwal S., Greiner A. Electrospinning. Materials, Processing, and Applications. Wiley-VCH; Weinheim, Germany: 2012.

Ramakrishna S., Fujihara K., Teo W.-E., Lim T.-C., Ma Z. An Introduction to Electrospinning and Nanofibers. World Scientific Publishing; Singapore: 2005.

Elmarco Company. [(accessed on 7 November 2022)]. Available online: http://www.elmarco.cz.

Soukup K., Topka P., Hejtmánek V., Petráš D., Valeš V., Šolcová O. Noble Metal Catalysts Supported on Nanofibrous Polymeric Membranes for Environmental Applications. Catal. Today. 2014;236:3–11. doi: 10.1016/j.cattod.2014.03.040. DOI

Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI

de Boer J.H., Lippens B.C., Linsen B.G., Broekhoff J.C.P., van den Heuvel A., Osinga T.J. The t-Curve of Multimolecular N2-Adsorption. J. Colloid Interface Sci. 1966;21:405–414. doi: 10.1016/0095-8522(66)90006-7. DOI

Barrett E.P., Joyner L.G., Halenda P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI

Roberts B.F. A Procedure for Estimating Pore Volume and Area Distributions from Sorption Isotherms. J. Colloid Interface Sci. 1967;23:266–273. doi: 10.1016/0021-9797(67)90111-7. DOI

Jura G., Harkins W.D. A New Adsorption Isotherm Which is Valid Over a Very Wide Range of Pressure. J. Chem. Phys. 1943;11:430–431. doi: 10.1063/1.1723870. DOI

Soukup K., Petráš D., Klusoň P., Šolcová O. Nanofiber Membranes—Evaluation of Gas Transport. Catal. Today. 2010;156:316–321. doi: 10.1016/j.cattod.2010.05.016. DOI

Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAS Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Topka P., Hejtmánek V., Cruz G.J.F., Šolcová O., Soukup K. Activated Carbon from Renewable Material as an Efficient Support for Palladium Oxidation Catalysts. Chem. Eng. Technol. 2019;42:851–858. doi: 10.1002/ceat.201800611. DOI

Liotta L.F. Catalytic Oxidation of Volatile Organic Compounds on Supported Noble Metals. Appl. Catal. B. 2010;100:403–412. doi: 10.1016/j.apcatb.2010.08.023. DOI

Lauterbach J., Rotermund H.H. Gas-Phase Coupling in the Co Oxidation Reaction on Polycrystalline Platinum. Catal. Lett. 1994;27:27–32. doi: 10.1007/BF00806974. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...