Modified Single-Walled Carbon Nanotube Membranes for the Elimination of Antibiotics from Water
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
N°19-08153Y
Grantová Agentura České Republiky
PubMed
34564537
PubMed Central
PMC8465475
DOI
10.3390/membranes11090720
PII: membranes11090720
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotics, carbon nanotube membranes, pertraction, polymer,
- Publikační typ
- časopisecké články MeSH
The hydrophilic and hydrophobic single-walled carbon nanotube membranes were prepared and progressively applied in sorption, filtration, and pertraction experiments with the aim of eliminating three antibiotics-tetracycline, sulfamethoxazole, and trimethoprim-as a single pollutant or as a mixture. The addition of SiO2 to the single-walled carbon nanotubes allowed a transparent study of the influence of porosity on the separation processes. The mild oxidation, increasing hydrophilicity, and reactivity of the single-walled carbon nanotube membranes with the pollutants were suitable for the filtration and sorption process, while non-oxidized materials with a hydrophobic layer were more appropriate for pertraction. The total pore volume increased with an increasing amount of SiO2 (from 743 to 1218 mm3/g) in the hydrophilic membranes. The hydrophobic layer completely covered the carbon nanotubes and SiO2 nanoparticles and provided significantly different membrane surface interactions with the antibiotics. Single-walled carbon nanotubes adsorbed the initial amount of antibiotics in less than 5 h. A time of 2.3 s was sufficient for the filtration of 98.8% of sulfamethoxazole, 95.5% of trimethoprim, and 87.0% of tetracycline. The thicker membranes demonstrate a higher adsorption capacity. However, the pertraction was slower than filtration, leading to total elimination of antibiotics (e.g., 3 days for tetracycline). The diffusion coefficient of the antibiotics varies between 0.7-2.7 × 10-10, depending on the addition of SiO2 in perfect agreement with the findings of the textural analysis and scanning electron microscopy observations. Similar to filtration, tetracycline is retained by the membranes more than sulfamethoxazole and trimethoprim.
Zobrazit více v PubMed
Lin X., Xu J., Keller A.A., He L., Gu Y., Zheng W., Sun D., Lu Z., Huang J., Huang X., et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020;744:140977. doi: 10.1016/j.scitotenv.2020.140977. PubMed DOI
Lencioni V., Bellamoli F., Paoli F. Multi-level effects of emerging contaminants on macroinvertebrates in Alpine streams: From DNA to the ecosystem. Ecol. Indic. 2020;117:106660. doi: 10.1016/j.ecolind.2020.106660. DOI
Nazaret S., Aminov R. Role and prevalence of antibiosis and the related resistance genes in the environment. Front. Microbiol. 2014;5:520. doi: 10.3389/fmicb.2014.00520. PubMed DOI PMC
Daughton C.G., Ternes T.A. Pharmaceuticals and personal care products in the environment: Agents of subtle change? Environ. Health Perspect. 1999;107((Suppl. 6)):907–938. doi: 10.1289/ehp.99107s6907. PubMed DOI PMC
Kosma C.I., Lambropoulou D.A., Albanis T.A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J. Hazard. Mater. 2010;179:804–817. doi: 10.1016/j.jhazmat.2010.03.075. PubMed DOI
Liu J.L., Wong M.H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013;59:208–224. doi: 10.1016/j.envint.2013.06.012. PubMed DOI
Madikizela L.M., Ncube S., Chimuka L. Analysis, occurrence and removal of pharmaceuticals in African water resources: A current status. J. Environ. Manag. 2020;253:109741. doi: 10.1016/j.jenvman.2019.109741. PubMed DOI
Al-Odaini N.A., Zakaria M.P., Yaziz M.I., Surif S., Abdulghani M. The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. Int. J. Environ. Anal. Chem. 2013;93:245–264. doi: 10.1080/03067319.2011.592949. DOI
Fang T.H., Nan F.H., Chin T.S., Feng H.M. The occurrence and distribution of pharmaceutical compounds in the effluents of a major sewage treatment plant in Northern Taiwan and the receiving coastal waters. Mar. Pollut. Bull. 2012;64:1435–1444. doi: 10.1016/j.marpolbul.2012.04.008. PubMed DOI
Ying G.G., He L.Y., Ying A.J., Zhang Q.Q., Liu Y.S., Zhao J.L. China Must Reduce Its Antibiotic Use. Environ. Sci. Technol. 2017;51:1072–1073. doi: 10.1021/acs.est.6b06424. PubMed DOI
Tang K.L., Caffrey N.P., Nobrega D.B., Cork S.C., Ronksley P.E., Barkema H.W., Polachek A.J., Ganshorn H., Sharma N., Kellner J.D., et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health. 2017;1:E316–E327. doi: 10.1016/S2542-5196(17)30141-9. PubMed DOI PMC
Finley R.L., Collignon P., Larsson D.G.J., McEwen S.A., Li X.Z., Gaze W.H., Reid-Smith R., Timinouni M., Graham D.W., Topp E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clin. Infect. Dis. 2013;57:704–710. doi: 10.1093/cid/cit355. PubMed DOI
Le T.H., Ng C., Tran N.H., Chen H.J., Gin K.Y.H. Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Res. 2018;145:498–508. doi: 10.1016/j.watres.2018.08.060. PubMed DOI
Yang Y., Ok Y.S., Kim K.-H., Kwon E.E., Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017;596:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI
Patel A., Bell M., O’Connor C., Inchley A., Wibawa J., Lane M.E. Delivery of ibuprofen to the skin. Int. J. Pharm. 2013;457:9–13. doi: 10.1016/j.ijpharm.2013.09.019. PubMed DOI
Van Boeckel T.P., Gandra S., Ashok A., Caudron Q., Grenfell B.T., Levin S.A., Laxminarayan R. Global antibiotic consumption 2000 to 2010: An analysis of national pharmaceutical sales data. Lancet Infect. Dis. 2014;14:742–750. doi: 10.1016/S1473-3099(14)70780-7. PubMed DOI
Cohlan S.Q., Bevelander G., Tiamsic T. Growth Inhibition of Prematures Receiving Tetracycline: A Clinical and Laboratory Investigation of Tetracycline-Induced Bone Fluorescence. Am. J. Dis. Child. 1963;105:453–461. doi: 10.1001/archpedi.1963.02080040455005. DOI
Smilack J.D. Trimethoprim-Sulfamethoxazole. Mayo Clin. Proc. 1999;74:730–734. doi: 10.4065/74.7.730. PubMed DOI
Khan N.A., Ahmed S., Farooqi I.H., Ali I., Vambol V., Changani F., Youse M., Vambol S., Khan S.U., Khan A.H. Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: A critical review. TrAC Trends Anal. Chem. 2020;129:115921. doi: 10.1016/j.trac.2020.115921. DOI
Wang J.L., Chu L.B., Wojnarovits L., Takacs E. Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Sci. Total Environ. 2020;744:140997. doi: 10.1016/j.scitotenv.2020.140997. PubMed DOI
Watkinson A.J., Murby E.J., Costanzo S.D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007;41:4164–4176. doi: 10.1016/j.watres.2007.04.005. PubMed DOI
Leung H.W., Minh T.B., Murphy M.B., Lam J.C.W., So M.K., Martin M., Lam P.K.S., Richardson B.J. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China. Environ. Int. 2012;42:1–9. doi: 10.1016/j.envint.2011.03.004. PubMed DOI
Laxminarayan R., Duse A., Wattal C., Zaidi A.K.M., Wertheim H.F.L., Sumpradit N., Vlieghe E., Hara G.L., Gould I.M., Goossens H., et al. Antibiotic resistance—the need for global solutions. Lancet Infect. Dis. 2013;13:1057–1098. doi: 10.1016/S1473-3099(13)70318-9. PubMed DOI
Li J.Y., Wen J., Chen Y., Wang Q., Yin J. Antibiotics in cultured freshwater products in Eastern China: Occurrence, human health risks, sources, and bioaccumulation potential. Chemosphere. 2020;264:128441. doi: 10.1016/j.chemosphere.2020.128441. PubMed DOI
Kovalakova P., Cizmas L., McDonald T.J., Marsalek B., Feng M.B., Sharma V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere. 2020;251:126351. doi: 10.1016/j.chemosphere.2020.126351. PubMed DOI
Rizzo L., Manaia C., Merlin C., Schwartz T., Dagot C., Ploy M.C., Michael I., Fatta-Kassinos D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013;447:345–360. doi: 10.1016/j.scitotenv.2013.01.032. PubMed DOI
Camargo C.M., García A., Riquelme A., Otero W., Camargo C.A., Hernandez-García T., Candia R., Bruce M.G., Rabkin C.S. The Problem of Helicobacter pylori Resistance to Antibiotics: A Systematic Review in Latin America. Am. J. Coll. Gastroenterol. 2014;109:485. doi: 10.1038/ajg.2014.24. PubMed DOI PMC
Thiebault T. Sulfamethoxazole/Trimethoprim ratio as a new marker in raw wastewaters: A critical review. Sci. Total Environ. 2020;715:136916. doi: 10.1016/j.scitotenv.2020.136916. PubMed DOI
Xu L., Zhang H., Xiong P., Zhu Q., Liao C., Jiang G. Occurrence, fate, and risk assessment of typical tetracycline antibiotics in the aquatic environment: A review. Sci. Total Environ. 2021;753:141975. doi: 10.1016/j.scitotenv.2020.141975. PubMed DOI
Liu X.H., Zhang G.D., Liu Y., Lu S.Y., Qin P., Guo X.C., Bi B., Wang L., Xi B.D., Wu F.C., et al. Occurrence and fate of antibiotics and antibiotic resistance genes in typical urban water of Beijing, China. Environ. Pollut. 2019;246:163–173. doi: 10.1016/j.envpol.2018.12.005. PubMed DOI
Castiglioni S., Bagnati R., Fanelli R., Pomati F., Calamari D., Zuccato E. Removal of pharmaceuticals in sewage treatment plants in Italy. Environ. Sci. Technol. 2006;40:357–363. doi: 10.1021/es050991m. PubMed DOI
Korzeniewska E., Korzeniewska A., Harnisz M. Antibiotic resistant Escherichia coli in hospital and municipal sewage and their emission to the environment. Ecotoxicol. Environ. Saf. 2013;91:96–102. doi: 10.1016/j.ecoenv.2013.01.014. PubMed DOI
Prasannamedha G., Kumar P.S. A review on contamination and removal of sulfamethoxazole from aqueous solution using cleaner techniques: Present and future perspective. J. Clean Prod. 2020;250:119553. doi: 10.1016/j.jclepro.2019.119553. DOI
Sassi H., Lafaye G., Ben Amor H., Gannouni A., Jeday M.R., Barbier J. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 2018;12:2. doi: 10.1007/s11783-017-0971-1. DOI
Kaissouni F., Brahmi R., Zbair M., Lafaye G., El Assal Z., Pirault-Roy L., Junior J.B., Elaissi A., Bensitel M., Baalala M. Catalytic wet air oxidation of high BPA concentration over iron-based catalyst supported on orthophosphate. Environ. Sci. Pollut. Res. Int. 2020;27:32533–32543. doi: 10.1007/s11356-020-09176-3. PubMed DOI
Zbair M., Bottlinger M., Ainassaari K., Ojala S., Stein O., Keiski R.L., Bensitel M., Brahmi R. Hydrothermal Carbonization of Argan Nut Shell: Functional Mesoporous Carbon with Excellent Performance in the Adsorption of Bisphenol A and Diuron. Waste Biomass Valor. 2020;11:1565–1584. doi: 10.1007/s12649-018-00554-0. DOI
El Ouahedy N., Zbair M., Ojala S., Brahmi R., Pirault-Roy L. Porous carbon materials derived from olive kernels: Application in adsorption of organic pollutants. Environ. Sci. Pollut. Res. Int. 2020;27:29967–29982. doi: 10.1007/s11356-020-09268-0. PubMed DOI
Wang S., Ma X.X., Liu Y.L., Yi X.S., Du G.C., Li J. Fate of antibiotics, antibiotic-resistant bacteria, and cell-free antibiotic-resistant genes in full-scale membrane bioreactor wastewater treatment plants. Bioresour. Technol. 2020;302:122825. doi: 10.1016/j.biortech.2020.122825. PubMed DOI
Xiao K., Liang S., Wang X.M., Chen C.S., Huang X. Current state and challenges of full-scale membrane bioreactor applications: A critical review. Bioresour. Technol. 2019;271:473–481. doi: 10.1016/j.biortech.2018.09.061. PubMed DOI
Karaszova M., Bourassi M., Gaalova J. Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use? Membranes. 2020;10:305. doi: 10.3390/membranes10110305. PubMed DOI PMC
Mozia S., Sienkiewicz P., Szymanski K., Zgrzebnicki M., Darowna D., Czyzewski A., Morawski A.W. Influence of Ag/titanate nanotubes on physicochemical, antifouling and antimicrobial properties of mixed-matrix polyethersulfone ultrafiltration membranes. J. Chem. Technol. Biotechnol. 2019;94:2497–2511. doi: 10.1002/jctb.6039. DOI
Nielsen L., Biggs M.J., Skinner W., Bandosz T.J. The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon. 2014;80:419–432. doi: 10.1016/j.carbon.2014.08.081. DOI
Bohdziewicz J., Kaminska G. Kinetics and equilibrium of the sorption of bisphenol A by carbon nanotubes from wastewater. Water Sci. Technol. 2013;68:1306–1314. doi: 10.2166/wst.2013.373. PubMed DOI
Boháčová M., Zetková K., Knotek P., Bouša D., Friess K., Číhal P., Lanč M., Hrdlička Z., Sofer Z. Mildly oxidized SWCNT as new potential support membrane material for effective H2/CO2 separation. Appl. Mater. Today. 2019;15:335–342. doi: 10.1016/j.apmt.2019.02.014. DOI
Sofer Z., Bouša D., Luxa J., Mazanek V., Pumera M. Few-layer black phosphorus nanoparticles. Chem. Commun. 2016;52:1563–1566. doi: 10.1039/C5CC09150K. PubMed DOI
Regev C., Belfer S., Holenberg M., Fainstein R., Parola A.H., Kasher R. Fabrication of poly(ethylene glycol) particles with a micro-spherical morphology on polymeric fibers and its application in high flux water filtration. Sep. Purif. Technol. 2019;210:729–736. doi: 10.1016/j.seppur.2018.08.068. DOI
Shtreimer Kandiyote N., Avisdris T., Arnusch C.J., Kasher R. Grafted Polymer Coatings Enhance Fouling Inhibition by an Antimicrobial Peptide on Reverse Osmosis Membranes. Langmuir. 2019;35:1935–1943. doi: 10.1021/acs.langmuir.8b03851. PubMed DOI
Gaálová J., Yalcinkaya F., Cuřínová P., Kohout M., Yalcinkaya B., Koštejn M., Jirsák J., Stibor I., Bara J.E., Van der Bruggen B., et al. Separation of racemic compound by nanofibrous composite membranes with chiral selector. J. Membr. Sci. 2020;596:117728. doi: 10.1016/j.memsci.2019.117728. DOI
Garrett E.R., Chemburkar P.B. Evaluation, Control, and Prediction of Drug Diffusion Through Polymeric Membranes II: Diffusion of Aminophenones Through Silastic Membranes: A Test of the pH-Partition Hypothesis. J. Pharm. Sci. 1968;57:949–959. doi: 10.1002/jps.2600570607. PubMed DOI
Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
de Boer J.H., Lippens B.C., Linsen B.G., Broekhoff J.C.P., van den Heuvel A., Osinga T.J. Thet-curve of multimolecular N2-adsorption. J. Colloid Interface Sci. 1966;21:405–414. doi: 10.1016/0095-8522(66)90006-7. DOI
Barrett E.P., Joyner L.G., Halenda P.P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J. Am. Chem. Soc. 1951;73:373–380. doi: 10.1021/ja01145a126. DOI
Roberts B.F. A procedure for estimating pore volume and area distributions from sorption isotherms. J. Colloid Interface Sci. 1967;23:266–273. doi: 10.1016/0021-9797(67)90111-7. DOI
Marcano D.C., Kosynkin D.V., Berlin J.M., Sinitskii A., Sun Z., Slesarev A., Alemany L.B., Lu W., Tour J.M. Improved Synthesis of Graphene Oxide. ACS Nano. 2010;4:4806–4814. doi: 10.1021/nn1006368. PubMed DOI
Liu Y., Wilcox J. Effects of Surface Heterogeneity on the Adsorption of CO2 in Microporous Carbons. Environ. Sci. Technol. 2012;46:1940–1947. doi: 10.1021/es204071g. PubMed DOI
Cheng X.Q., Wang Z.X., Zhang Y., Zhang Y., Ma J., Shao L. Bio-inspired loose nanofiltration membranes with optimized separation performance for antibiotics removals. J. Membr. Sci. 2018;554:385–394. doi: 10.1016/j.memsci.2018.03.005. DOI
Liu M.-K., Liu Y.-Y., Bao D.-D., Zhu G., Yang G.-H., Geng J.-F., Li H.-T. Effective Removal of Tetracycline Antibiotics from Water using Hybrid Carbon Membranes. Sci. Rep. 2017;7:43717. doi: 10.1038/srep43717. PubMed DOI PMC
Wang Y., Zucker I., Boo C., Elimelech M. Removal of Emerging Wastewater Organic Contaminants by Polyelectrolyte Multilayer Nanofiltration Membranes with Tailored Selectivity. ACS ES&T Eng. 2021;1:404–414. doi: 10.1021/acsestengg.0c00160. DOI