Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use?
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
19-08153Y
Grantová Agentura České Republiky
PubMed
33113828
PubMed Central
PMC7692316
DOI
10.3390/membranes10110305
PII: membranes10110305
Knihovny.cz E-resources
- Keywords
- dense membranes, emerging contaminants, water quality,
- Publication type
- Journal Article MeSH
Membrane technologies are nowadays widely used; especially various types of filtration or reverse osmosis in households, desalination plants, pharmaceutical applications etc. Facing water pollution, they are also applied to eliminate emerging contaminants from water. Incomplete knowledge directs the composition of membranes towards more and more dense materials known for their higher selectivity compared to porous constituents. This paper evaluates advantages and disadvantages of well-known membrane materials that separate on the basis of particle size, usually exposed to a large amount of water, versus dense hydrophobic membranes with target transport of emerging contaminants through a selective barrier. In addition, the authors present several membrane processes employing the second type of membrane.
See more in PubMed
Aus der Beek T., Weber F.A., Bergmann A., Hickmann S., Ebert I., Hein A., Küster A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI
Cairns J., Dickson K.L., Maki A.W. Estimating the hazard of chemical substances to aquatic life. Hydrobiologia. 1979;64:157–166. doi: 10.1007/BF00023191. DOI
Halling-Sørensen B., Nielsen S.N., Lanzky P., Ingerslev F., Lützhøft H.H., Jørgensen S. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere. 1998;36:357–393. doi: 10.1016/S0045-6535(97)00354-8. PubMed DOI
Chander V., Sharma B., Negi V., Aswal R.S., Singh P., Singh R., Dobhal R. Pharmaceutical compounds in drinking water. J. Xenobiotics. 2016;6:5774. doi: 10.4081/xeno.2016.5774. PubMed DOI PMC
Mooney D., Richards K.G., Danaher M., Grant J., Gill L., Mellander P.E., Coxon C.E. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Sci. Total Environ. 2020;746:141116. doi: 10.1016/j.scitotenv.2020.141116. PubMed DOI
Lin X., Xu J., Keller A.A., He L., Gu Y., Zheng W., Sun D., Lu Z., Huang J., Huang X., et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020;744:140977. doi: 10.1016/j.scitotenv.2020.140977. PubMed DOI
Mazille F., Schoettl T., Klamerth N., Malato S., Pulgarin C. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Res. 2010;44:3029–3038. doi: 10.1016/j.watres.2010.02.026. PubMed DOI
Matamoros V., Caiola N., Rosales V., Hernández O., Ibáñez C. The role of rice fields and constructed wetlands as a source and a sink of pesticides and contaminants of emerging concern: Full-scale evaluation. Ecol. Eng. 2020;156:105971. doi: 10.1016/j.ecoleng.2020.105971. DOI
Badea S.L., Geana E.I., Niculescu V.C., Ionete R.E. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. Sci. Total Environ. 2020;722:137914. doi: 10.1016/j.scitotenv.2020.137914. PubMed DOI
Diuzheva A., Dejmkova H., Fischer J., Andruch V. Simultaneous determination of three carbamate pesticides using vortex-assisted liquid-liquid microextraction combined with HPLC-amperometric detection. Microchem. J. 2019;150:104071. doi: 10.1016/j.microc.2019.104071. DOI
Vieira W.T., de Farias M.B., Spaolonzi M.P., da Silva M.G.C., Vieira M.G.A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett. 2020;18:1113–1143. doi: 10.1007/s10311-020-01000-1. DOI
Jung C., Son A., Her N., Zoh K.D., Cho J., Yoon Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem. 2015;27:1–11. doi: 10.1016/j.jiec.2014.12.035. DOI
Wang J.L., Wang S.Z. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016;182:620–640. doi: 10.1016/j.jenvman.2016.07.049. PubMed DOI
Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017;323:361–380. doi: 10.1016/j.cej.2017.04.106. DOI
Yang Y., Ok Y.S., Kim K.H., Kwon E.E., Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017;596:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI
Barrios-Estrada C., Rostro-Alanis M.D., Munoz-Gutierrez B.D., Iqbal H.M.N., Kannan S., Parra-Saldivar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018;612:1516–1531. doi: 10.1016/j.scitotenv.2017.09.013. PubMed DOI
Kanakaraju D., Glass B.D., Oelgemoller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018;219:189–207. doi: 10.1016/j.jenvman.2018.04.103. PubMed DOI
Kim S., Chu K.H., Al-Hamadani Y.A.J., Park C.M., Jang M., Kim D.H., Yu M., Heo J., Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018;335:896–914. doi: 10.1016/j.cej.2017.11.044. DOI
Galindo-Miranda J.M., Guizar-Gonzalez C., Becerril-Bravo E.J., Moeller-Chavez G., Leon-Becerril E., Vallejo-Rodriguez R. Occurrence of emerging contaminants in environmental surface waters and their analytical methodology—A review. Water Sci. Technol. Water Supply. 2019;19:1871–1884. doi: 10.2166/ws.2019.087. DOI
Buser H.R., Poiger T., Muller M.D. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ. Sci. Technol. 1999;33:2529–2535. doi: 10.1021/es981014w. DOI
Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant. Environ. Sci. Pollut. Res. 2014;21:7578–7585. doi: 10.1007/s11356-014-2654-9. PubMed DOI
Rozman D., Hrkal Z., Váňa M., Vymazal J., Boukalová Z. Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic. Water. 2017;9:218. doi: 10.3390/w9030218. DOI
Santos J.L., Aparicio I., Alonso E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain) Environ. Int. 2007;33:596–601. doi: 10.1016/j.envint.2006.09.014. PubMed DOI
Ternes T.A., Herrmann N., Bonerz M., Knacker T., Siegrist H., Joss A. A rapid method to measure the solid-water distribution coefficient (K-d) for pharmaceuticals and musk fragrances in sewage sludge. Water Res. 2004;38:4075–4084. doi: 10.1016/j.watres.2004.07.015. PubMed DOI
Vymazal J., Bfezinova T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015;75:11–20. doi: 10.1016/j.envint.2014.10.026. PubMed DOI
Vymazal J., Brezinova T., Kozeluh M. Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Sci. Total Environ. 2015;536:625–631. doi: 10.1016/j.scitotenv.2015.07.077. PubMed DOI
Vymazal J., Brezinova T.D., Kozeluh M., Kule L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017;98:354–364. doi: 10.1016/j.ecoleng.2016.08.010. DOI
Kumar P., Bansal V., Kim K.H., Kwon E.E. Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 2018;62:130–145. doi: 10.1016/j.jiec.2017.12.051. DOI
Zhuo N., Lan Y.Q., Yang W.B., Yang Z., Li X.M., Zhou X., Liu Y., Shen J.C., Zhang X.T. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep. Purif. Technol. 2017;177:272–280. doi: 10.1016/j.seppur.2016.12.041. DOI
Sophia A.C., Lima E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018;150:1–17. doi: 10.1016/j.ecoenv.2017.12.026. PubMed DOI
Cukierman A.L., Nunell G.V., Bonelli P.R. Removal of emerging pollutants from water through adsorption onto carbon-based materials. In: Mishra A.K., Anawar H.M.D., Drouiche N., editors. Emerging and Nanomaterial Contaminants in Wastewater. Elsevier; Amsterdam, The Netherlands: 2019. pp. 159–213. Chapter 7. DOI
Delgado-Moreno L., Bazhari S., Nogales R., Romero E. Innovative application of biobed bioremediation systems to remove emerging contaminants: Adsorption, degradation and bioaccesibility. Sci. Total Environ. 2019;651:990–997. doi: 10.1016/j.scitotenv.2018.09.268. PubMed DOI
Gil A., Taoufik N., García A.M., Korili S.A. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environ. Technol. 2019;40:3017–3030. doi: 10.1080/09593330.2018.1464066. PubMed DOI
Chen W.-H., Huang J.-R. Adsorption of organic including pharmaceutical and inorganic contaminants in water toward graphene-based materials. In: Hernández-Maldonado A.J., Blaney L., editors. Contaminants of Emerging Concern in Water and Wastewater. Butterworth-Heinemann; Oxford, UK: 2020. pp. 93–113. Chapter 3. DOI
Dhaka S., Kumar R., Deep A., Kurade M.B., Ji S.-W., Jeon B.-H. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 2019;380:330–352. doi: 10.1016/j.ccr.2018.10.003. DOI
Yin C.-Y. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 2010;45:1437–1444. doi: 10.1016/j.procbio.2010.05.030. DOI
Villaseñor-Basulto D.L., Astudillo-Sánchez P.D., del Real-Olvera J., Bandala E.R. Wastewater treatment using Moringa oleifera Lam seeds: A review. J. Water Process Eng. 2018;23:151–164. doi: 10.1016/j.jwpe.2018.03.017. DOI
Anguille S., Moulin P., Testa F. Device for Extraction of Pollutants by Multichannel Tubular Membrane. 10,137,385. U.S. Patent. 2018 Nov 27;
Maoqi F. Biochar Treatment of Contaminated Water. 10,246,347. U.S. Patent. 2019 Apr 2;
Nickelsen M.G., Woodard S.E. Sustainable System and Method for Removing and Concentrating per-and Polyfluoroalkyl Substances (PFAS) from Water. 10,287,185. U.S. Patent. 2019 May 14;
Suri R.P., Bhattarai B. Silica Particles Coated with β-Cyclodextrin for the Removal of Emerging Contaminants from Wastewater. 9,828,458. U.S. Patent. 2017 Nov 28;
Velazquez F.R., Alos V.F., Perez O.P. Synthesis of Biocomposite Alginate-Chitosan-Magnetite Nanoparticle Beads for Removal of Organic Persistent Contaminants from Water Systems. 10,569,253. U.S. Patent. 2020 Feb 25;
Yu M. Ultrathin, Graphene-Based Membranes for Water Treatment and Methods of their Formation and Use. 10,092,882. U.S. Patent. 2018 Oct 9;
Espindola J.C., Vilar V.J.P. Innovative light -driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: A review. Chem. Eng. J. 2020;394 doi: 10.1016/j.cej.2020.124865. DOI
Rizzo L., Malato S., Antakyali D., Beretsou V.G., Dolic M.B., Gernjak W., Heath E., Ivancev-Tumbas I., Karaolia P., Ribeiro A.R.L., et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019;655:986–1008. doi: 10.1016/j.scitotenv.2018.11.265. PubMed DOI
El Assal Z., Ojala S., Zbair M., Echchtouki H., Nevanpera T., Pitkaaho S., Pirault-Roy L., Bensitel M., Brahmi R., Keiski R.L. Catalytic abatement of dichloromethane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies. J. Clean. Prod. 2019;228:814–823. doi: 10.1016/j.jclepro.2019.04.073. DOI
Da Silva F.L., Laitinen T., Pirila M., Keiski R.L., Ojala S. Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA) From Wastewaters by TiO2, In2O3 and Ga2O3 Catalysts. Top. Catal. 2017;60:1345–1358. doi: 10.1007/s11244-017-0819-8. DOI
Sassi H., Lafaye G., Ben Amor H., Gannouni A., Jeday M.R., Barbier J. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 2018;12:2. doi: 10.1007/s11783-017-0971-1. DOI
Espindola J.C., Cristovao R.O., Araujo S.R.F., Neuparth T., Santos M.M., Montes R., Quintana J.B., Rodil R., Boaventura R.A.R., Vilar V.J.P. An innovative photoreactor, FluHelik, to promote UVC/H2O2 photochemical reactions: Tertiary treatment of an urban wastewater. Sci. Total Environ. 2019;667:197–207. doi: 10.1016/j.scitotenv.2019.02.335. PubMed DOI
Di Cesare A., De Carluccio M., Eckert E.M., Fontaneto D., Fiorentino A., Corno G., Prete P., Cucciniello R., Proto A., Rizzo L. Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H2O2 vs UVC/H2O2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. Water Res. 2020;184:116194. doi: 10.1016/j.watres.2020.116194. PubMed DOI
Diez A.M., Moreira F.C., Marinho B.A., Espindola J.C.A., Paulista L.O., Sanroman M.A., Pazos M., Boaventura R.A.R., Vilar V.J.P. A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support. Chem. Eng. J. 2018;343:597–606. doi: 10.1016/j.cej.2018.03.041. DOI
Stathoulopoulos A., Mantzavinos D., Frontistis Z. Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. Water. 2020;12:1530. doi: 10.3390/w12061530. DOI
Steinle-Darling E., Zedda M., Plumlee M.H., Ridgway H.F., Reinhard M. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Water Res. 2007;41:3959–3967. doi: 10.1016/j.watres.2007.05.034. PubMed DOI
Yoon Y., Westerhoff P., Snyder S.A., Wert E.C. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 2006;270:88–100. doi: 10.1016/j.memsci.2005.06.045. DOI
Nghiem L.D., Schafer A.I., Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005;39:7698–7705. doi: 10.1021/es0507665. PubMed DOI
Singh R., Hankins N. Emerging Membrane Technology for Sustainable Water Treatment. Elsevier; Amsterdam, The Netherlands: 2016.
Xie Z., Li N., Wang Q., Bolto B. Emerging Technologies for Sustainable Desalination Handbook. Elsevier; Amsterdam, The Netherlands: 2018. Desalination by pervaporation; pp. 205–226.
Eyvaz M., Yüksel E. Desalination and Water Treatment. IntechOpen; London, UK: 2018.
Acero J.L., Benitez F.J., Teva F., Leal A.I. Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem. Eng. J. 2010;163:264–272. doi: 10.1016/j.cej.2010.07.060. DOI
Urtiaga A.M., Pérez G., Ibáñez R., Ortiz I. Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination. 2013;331:26–34. doi: 10.1016/j.desal.2013.10.010. DOI
Radjenović J., Petrović M., Ventura F., Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008;42:3601–3610. doi: 10.1016/j.watres.2008.05.020. PubMed DOI
D’Haese A., Le-Clech P., Van Nevel S., Verbeken K., Cornelissen E.R., Khan S.J., Verliefde A.R.D. Trace organic solutes in closed-loop forward osmosis applications: Influence of membrane fouling and modeling of solute build-up. Water Res. 2013;47:5232–5244. doi: 10.1016/j.watres.2013.06.006. PubMed DOI
Wang L., Albasi C., Faucet-Marquis V., Pfohl-Leszkowicz A., Dorandeu C., Marion B., Causserand C. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res. 2009;43:4115–4122. doi: 10.1016/j.watres.2009.06.007. PubMed DOI
Silvestre W.P., Baldasso C., Tessaro I.C. Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydr. Polym. 2020;247:116676. doi: 10.1016/j.carbpol.2020.116676. PubMed DOI
Zeng H.Z., Liu S.J., Wang J., Li Y.B., Zhu L., Xu M., Wang C.W. Hydrophilic SPEEK/PES composite membrane for pervaporation desalination. Sep. Purif. Technol. 2020;250:117265. doi: 10.1016/j.seppur.2020.117265. DOI
Cheng X.X., Pan F.S., Wang M.R., Li W.D., Song Y.M., Liu G.H., Yang H., Gao B.X., Wu H., Jiang Z.Y. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017;541:329–346. doi: 10.1016/j.memsci.2017.07.009. DOI
Liu G.P., Wei W., Wu H., Dong X.L., Jiang M., Jin W.Q. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J. Membr. Sci. 2011;373:121–129. doi: 10.1016/j.memsci.2011.02.042. DOI
Wu Y., Fu X., Tian G., Xuehong G., Liu Z. Pervaporation of phenol wastewater with PEBA–PU blend membrane. Desalin. Water Treat. 2018;102:101–109. doi: 10.5004/dwt.2018.21861. DOI
Halakoo E., Feng X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Sep. Purif. Technol. 2020;234:116077. doi: 10.1016/j.seppur.2019.116077. DOI
Crespo J.G., Brazinha C. 1-Fundamentals of pervaporation. In: Basile A., Figoli A., Khayet M., editors. Pervaporation, Vapour Permeation and Membrane Distillation. Woodhead Publishing; Oxford, UK: 2015. pp. 3–17. DOI
Van der Bruggen B., Luis P. Chapter Four—Pervaporation. In: Tarleton S., editor. Progress in Filtration and Separation. Academic Press; Oxford, UK: 2015. pp. 101–154. DOI
Dhangar K., Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020;738:140320. doi: 10.1016/j.scitotenv.2020.140320. PubMed DOI
Van der Bruggen B., Schaep J., Wilms D., Vandecasteele C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 1999;156:29–41. doi: 10.1016/S0376-7388(98)00326-3. DOI
Yangali-Quintanilla V., Maeng S.K., Fujioka T., Kennedy M., Li Z.Y., Amy G. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalin. Water Treat. 2011;34:50–56. doi: 10.5004/dwt.2011.2860. DOI
Nghiem L.D., Schafer A.I., Elimelech M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Membr. Sci. 2006;286:52–59. doi: 10.1016/j.memsci.2006.09.011. DOI
Childress A.E., Elimelech M. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ. Sci. Technol. 2000;34:3710–3716. doi: 10.1021/es0008620. DOI
Yangali-Quintanilla V., Maeng S.K., Fujioka T., Kennedy M., Amy G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J. Membr. Sci. 2010;362:334–345. doi: 10.1016/j.memsci.2010.06.058. DOI
Coday B.D., Yaffe B.G.M., Xu P., Cath T.Y. Rejection of Trace Organic Compounds by Forward Osmosis Membranes: A Literature Review. Environ. Sci. Technol. 2014;48:3612–3624. doi: 10.1021/es4038676. PubMed DOI
Lee Y.E., Jang A. Effect of forward osmosis (membrane) support layer fouling by organic matter in synthetic seawater solution. Desalin. Water Treat. 2016;57:24595–24605. doi: 10.1080/19443994.2016.1157990. DOI
Linares R.V., Yangali-Quintanilla V., Li Z.Y., Amy G. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res. 2011;45:6737–6744. doi: 10.1016/j.watres.2011.10.037. PubMed DOI
Agenson K.O., Urase T. Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Sep. Purif. Technol. 2007;55:147–156. doi: 10.1016/j.seppur.2006.11.010. DOI
Joo S.H., Tansel B. Novel technologies for reverse osmosis concentrate treatment: A review. J. Environ. Manag. 2015;150:322–335. doi: 10.1016/j.jenvman.2014.10.027. PubMed DOI
Kaminski W., Marszalek J., Tomczak E. Water desalination by pervaporation–Comparison of energy consumption. Desalination. 2018;433:89–93. doi: 10.1016/j.desal.2018.01.014. DOI
Araki S., Gondo D., Yamamoto H. Pervaporation properties and a semi-empirical model for removal of VOCs from water using a propyl functionalized silica membrane. Desalin. Water Treat. 2019;143:17–23. doi: 10.5004/dwt.2019.23080. DOI
Higuchi A., Yoon B.O., Asano T., Nakaegawa K., Miki S., Hara M., He Z.J., Pinnau I. Separation of endocrine disruptors from aqueous solutions by pervaporation. J. Membr. Sci. 2002;198:311–320. doi: 10.1016/S0376-7388(01)00671-8. DOI
Higuchi A., Yoon B.O., Kaneko T., Ham M., Maekawa M., Nohmi T. Separation of endocrine disruptors from aqueous solutions by pervaporation: Dioctylphthalate and butylated hydroxytoluene in mineral water. J. Appl. Polym. Sci. 2004;94:1737–1742. doi: 10.1002/app.21093. DOI
Wang Q., Li N., Bolto B., Hoang M., Xie Z. Desalination by pervaporation: A review. Desalination. 2016;387:46–60. doi: 10.1016/j.desal.2016.02.036. DOI
Egea-Corbacho A., Gutierrez S., Quiroga J.M. Removal of emerging contaminants from wastewater through pilot plants using intermittent sand/coke filters for its subsequent reuse. Sci. Total Environ. 2019;646:1232–1240. doi: 10.1016/j.scitotenv.2018.07.399. PubMed DOI
Yan T., Ye Y.Y., Ma H.M., Zhang Y., Guo W.S., Du B., Wei Q., Wei D., Ngo H.H. A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem. Eng. J. 2018;348:143–156. doi: 10.1016/j.cej.2018.04.166. DOI
Dharupaneedi S.P., Nataraj S.K., Nadagouda M., Reddy K.R., Shukla S.S., Aminabhavi T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019;210:850–866. doi: 10.1016/j.seppur.2018.09.003. PubMed DOI PMC
Taheran M., Brar S.K., Verma M., Surampalli R.Y., Zhang T.C., Valero J.R. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 2016;547:60–77. doi: 10.1016/j.scitotenv.2015.12.139. PubMed DOI
Bellona C., Drewes J.E. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 2005;249:227–234. doi: 10.1016/j.memsci.2004.09.041. DOI
Xu P., Drewes J.E., Kim T.U., Bellona C., Amy G. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci. 2006;279:165–175. doi: 10.1016/j.memsci.2005.12.001. DOI
Nghiem L.D., Coleman P.J., Espendiller C. Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination. 2010;250:682–687. doi: 10.1016/j.desal.2009.03.025. DOI
Bellona C., Marts M., Drewes J.E. The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Sep. Purif. Technol. 2010;74:44–54. doi: 10.1016/j.seppur.2010.05.006. DOI
Nghiem L.D., Schafer A.I., Elimelech M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol. 2004;38:1888–1896. doi: 10.1021/es034952r. PubMed DOI
Sgroi M., Anumol T., Roccaro P., Vagliasindi F.G.A., Snyder S.A. Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter. Water Res. 2018;145:667–677. doi: 10.1016/j.watres.2018.09.018. PubMed DOI
Vergili I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 2013;127:177–187. doi: 10.1016/j.jenvman.2013.04.036. PubMed DOI
Romanos G.E., Athanasekou C.P., Likodimos V., Aloupogiannis P., Falaras P. Hybrid Ultrafiltration/Photocatalytic Membranes for Efficient Water Treatment. Ind. Eng. Chem. Res. 2013;52:13938–13947. doi: 10.1021/ie303475b. DOI
Papageorgiou S.K., Katsaros F.K., Favvas E.P., Romanos G.E., Athanasekou C.P., Beltsios K.G., Tzialla O.I., Falaras P. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Res. 2012;46:1858–1872. doi: 10.1016/j.watres.2012.01.005. PubMed DOI
Athanasekou C.P., Romanos G.E., Katsaros F.K., Kordatos K., Likodimos V., Falaras P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J. Membr. Sci. 2012;392:192–203. doi: 10.1016/j.memsci.2011.12.028. DOI
Romanos G.E., Athanasekou C.P., Katsaros F.K., Kanellopoulos N.K., Dionysiou D.D., Likodimos V., Falaras P. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J. Hazard. Mater. 2012;211:304–316. doi: 10.1016/j.jhazmat.2011.09.081. PubMed DOI
Lin J.C.T., Lee D.J., Huang C.P. Membrane Fouling Mitigation: Membrane Cleaning. Sep. Sci. Technol. 2010;45:858–872. doi: 10.1080/01496391003666940. DOI
Warsinger D.M., Chakraborty S., Tow E.W., Plumlee M.H., Bellona C., Loutatidou S., Karimi L., Mikelonis A.M., Achilli A., Ghassemi A., et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2016;81:209–237. doi: 10.1016/j.progpolymsci.2018.01.004. PubMed DOI PMC
Pesqueira J.F.J.R., Pereira M.F.R., Silva A.M.T. Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. J. Clean. Prod. 2020;261:1210178. doi: 10.1016/j.jclepro.2020.121078. DOI
Tarpani R.R.Z., Azapagic A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs) J. Environ. Manag. 2018;215:258–272. doi: 10.1016/j.jenvman.2018.03.047. PubMed DOI
Rahman S.M., Eckelman M.J., Onnis-Hayden A., Gu A.Z. Comparative Life Cycle Assessment of Advanced Wastewater Treatment Processes for Removal of Chemicals of Emerging Concern. Environ. Sci. Technol. 2018;52:11346–11358. doi: 10.1021/acs.est.8b00036. PubMed DOI
Li Y., Zhang S.X., Zhang W.L., Xiong W., Ye Q.L., Hou X., Wang C., Wang P.F. Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. J. Environ. Manag. 2019;238:442–450. doi: 10.1016/j.jenvman.2019.01.118. PubMed DOI
Castro-Munoz R. Pervaporation: The emerging technique for extracting aroma compounds from food systems. J. Food Eng. 2019;253:27–39. doi: 10.1016/j.jfoodeng.2019.02.013. DOI
Silvestre W.P., Livinalli N.F., Baldasso C., Tessaro I.C. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019;93:42–52. doi: 10.1016/j.tifs.2019.09.003. DOI
Jyoti G., Keshav A., Anandkumar J. Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. J. Eng. 2015;2015:927068. doi: 10.1155/2015/927068. DOI
Meng D.P., Dai Y., Xu Y., Wu Y.M., Cui P.Z., Zhu Z.Y., Ma Y.X., Wang Y.L. Energy, economic and environmental evaluations for the separation of ethyl acetate/ethanol/water mixture via distillation and pervaporation unit. Process Saf. Environ. Prot. 2020;140:14–25. doi: 10.1016/j.psep.2020.04.039. DOI
Mei X., Ding Y., Li P.P., Xu L.J., Wang Y., Guo Z.W., Shen W.T., Yang Y., Wang Y.H., Xiao Y.Y., et al. A novel system for zero-discharge treatment of high-salinity acetonitrile-containing wastewater: Combination of pervaporation with a membrane-aerated bioreactor. Chem. Eng. J. 2020;384:123338. doi: 10.1016/j.cej.2019.123338. DOI
Wang Y., Mei X., Ma T.F., Xue C.J., Wu M.D., Ji M., Li Y.G. Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation. J. Clean. Prod. 2018;197:742–749. doi: 10.1016/j.jclepro.2018.06.239. DOI
Tgarguifa A., Abderafi S., Bounahmidi T. Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew. Energy. 2018;122:239–250. doi: 10.1016/j.renene.2018.01.112. DOI
Lipski C., Cote P. The Use of Pervaporation for the Removal of Organic Contaminants from Water. Environ. Prog. 1990;9:254–261. doi: 10.1002/ep.670090420. DOI
Feng X.S., Huang R.Y.M. Liquid separation by membrane pervaporation: A review. Ind. Eng. Chem. Res. 1997;36:1048–1066. doi: 10.1021/ie960189g. DOI
Baker R.W., Wijmans J.G., Huang Y. Permeability, Permeance and Selectivity: A preferred Way of Reporting Pervaporation Performance Data. J. Membr. Sci. 2010;348:346–352. doi: 10.1016/j.memsci.2009.11.022. DOI
Gani K.M., Kazmi A.A. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. Sci. Total Environ. 2016;569:661–671. doi: 10.1016/j.scitotenv.2016.06.182. PubMed DOI
Jobling S., Reynolds T., White R., Parker M.G., Sumpter J.P. A Variety of Environmentally Persistent Chemicals, Including Some Phthalate Plasticizers, Are Weakly Estrogenic. Environ. Health Perspect. 1995;103:582–587. doi: 10.1289/ehp.95103582. PubMed DOI PMC
Yoon B.O., Koyanagi S., Asano T., Hara M., Higuchi A. Removal of endocrine disruptors by selective sorption method using polydimethylsiloxane membranes. J. Membr. Sci. 2003;213:137–144. doi: 10.1016/S0376-7388(02)00520-3. DOI
Waters L.J., Bhuiyan A.K.M.M.H. Ionisation effects on the permeation of pharmaceutical compounds through silicone membrane. Colloids Surf. B Biointerfaces. 2016;141:553–557. doi: 10.1016/j.colsurfb.2016.01.055. PubMed DOI
Bhuiyan A.K.M.M.H., Waters L.J. Permeation of pharmaceutical compounds through silicone membrane in the presence of surfactants. Colloid Surf. A. 2017;516:121–128. doi: 10.1016/j.colsurfa.2016.12.014. DOI
Sauve S., Desrosiers M. A review of what is an emerging contaminant. Chem. Cent. J. 2014;8:15. doi: 10.1186/1752-153X-8-15. PubMed DOI PMC
Garrett E.R., Chemburk P.B. Evaluation Control and Prediction of Drug Diffusion through Polymeric Membranes I. Methods Reproducibility of Steady-State Diffusion Studies. J. Pharm. Sci. 1968;57:944–948. doi: 10.1002/jps.2600570606. PubMed DOI
Garrett E.R., Chemburk P.B. Evaluation Control and Prediction of Drug Diffusion through Polymeric Membranes II. Diffusion of Aminophenones through Silastic Membranes—A Test of Ph-Partition Hypothesis. J. Pharm. Sci. 1968;57:949–959. doi: 10.1002/jps.2600570607. PubMed DOI
Garrett E.R., Chemburkar P.B. Evaluation Control and Prediction of Drug Diffusion through Polymeric Membranes III. Diffusion of Barbiturates Phenylalkylamines Dextromethorphan Progesterone and Other Drugs. J. Pharm. Sci. 1968;57:1401–1409. doi: 10.1002/jps.2600570828. PubMed DOI
Brouwer E.R., Lingeman H., Brinkman U.A.T. Use of membrane extraction disks for on-line trace enrichment of organic compounds from aqueous samples. Chromatographia. 1990;29:415–418. doi: 10.1007/BF02261387. DOI
Poliwoda A., Krzyżak M., Wieczorek P.P. Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples. J. Chromatogr. A. 2010;1217:3590–3597. doi: 10.1016/j.chroma.2010.03.051. PubMed DOI
Megersa N., Chimuka L., Solomon T., Jönsson J.Å. Automated liquid membrane extraction and trace enrichment of triazine herbicides and their metabolites in environmental and biological samples. J. Sep. Sci. 2001;24:567–576. doi: 10.1002/1615-9314(20010801)24:7<567::AID-JSSC567>3.0.CO;2-B. DOI
Guo X., Mitra S. Development of pulse introduction membrane extraction for analysis of volatile organic compounds in individual aqueous samples, and for continuous on-line monitoring. J. Chromatogr. A. 1998;826:39–47. doi: 10.1016/S0021-9673(98)00703-1. DOI
Prieto A., Telleria O., Etxebarria N., Fernández L.A., Usobiaga A., Zuloaga O. Simultaneous preconcentration of a wide variety of organic pollutants in water samples: Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction. J. Chromatogr. A. 2008;1214:1–10. doi: 10.1016/j.chroma.2008.10.060. PubMed DOI
Ray S.K., Sawant S.B., Joshi J.B., Pangarkar V.G. Perstraction of Phenolic Compounds from Aqueous Solution Using a Nonporous Membrane. Sep. Sci. Technol. 1997;32:2669–2683. doi: 10.1080/01496399708006963. DOI
Rodil R., Schrader S., Moeder M. Non-porous membrane-assisted liquid–liquid extraction of UV filter compounds from water samples. J. Chromatogr. A. 2009;1216:4887–4894. doi: 10.1016/j.chroma.2009.04.042. PubMed DOI
Rodil R., Schrader S., Moeder M. Pressurised membrane-assisted liquid extraction of UV filters from sludge. J. Chromatogr. A. 2009;1216:8851–8858. doi: 10.1016/j.chroma.2009.10.058. PubMed DOI
Villaverde-de-Sáa E., González-Mariño I., Quintana J.B., Rodil R., Rodríguez I., Cela R. In-sample acetylation-non-porous membrane-assisted liquid–liquid extraction for the determination of parabens and triclosan in water samples. Anal. Bioanal. Chem. 2010;397:2559–2568. doi: 10.1007/s00216-010-3789-2. PubMed DOI
Yamini Y., Reimann C.T., Vatanara A., Jönsson J.Å. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier. J. Chromatogr. A. 2006;1124:57–67. doi: 10.1016/j.chroma.2006.05.001. PubMed DOI
Einsle T., Paschke H., Bruns K., Schrader S., Popp P., Moeder M. Membrane-assisted liquid–liquid extraction coupled with gas chromatography–mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples. J. Chromatogr. A. 2006;1124:196–204. doi: 10.1016/j.chroma.2006.06.093. PubMed DOI
Hylton K., Mitra S. Automated, on-line membrane extraction. J. Chromatogr. A. 2007;1152:199–214. doi: 10.1016/j.chroma.2006.12.047. PubMed DOI
Jönsson J.Å., Mathiasson L. Membrane-based techniques for sample enrichment. J. Chromatogr. A. 2000;902:205–225. doi: 10.1016/S0021-9673(00)00922-5. PubMed DOI