• This record comes from PubMed

Membrane Removal of Emerging Contaminants from Water: Which Kind of Membranes Should We Use?

. 2020 Oct 25 ; 10 (11) : . [epub] 20201025

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
19-08153Y Grantová Agentura České Republiky

Links

PubMed 33113828
PubMed Central PMC7692316
DOI 10.3390/membranes10110305
PII: membranes10110305
Knihovny.cz E-resources

Membrane technologies are nowadays widely used; especially various types of filtration or reverse osmosis in households, desalination plants, pharmaceutical applications etc. Facing water pollution, they are also applied to eliminate emerging contaminants from water. Incomplete knowledge directs the composition of membranes towards more and more dense materials known for their higher selectivity compared to porous constituents. This paper evaluates advantages and disadvantages of well-known membrane materials that separate on the basis of particle size, usually exposed to a large amount of water, versus dense hydrophobic membranes with target transport of emerging contaminants through a selective barrier. In addition, the authors present several membrane processes employing the second type of membrane.

See more in PubMed

Aus der Beek T., Weber F.A., Bergmann A., Hickmann S., Ebert I., Hein A., Küster A. Pharmaceuticals in the environment—Global occurrences and perspectives. Environ. Toxicol. Chem. 2016;35:823–835. doi: 10.1002/etc.3339. PubMed DOI

Cairns J., Dickson K.L., Maki A.W. Estimating the hazard of chemical substances to aquatic life. Hydrobiologia. 1979;64:157–166. doi: 10.1007/BF00023191. DOI

Halling-Sørensen B., Nielsen S.N., Lanzky P., Ingerslev F., Lützhøft H.H., Jørgensen S. Occurrence, fate and effects of pharmaceutical substances in the environment-A review. Chemosphere. 1998;36:357–393. doi: 10.1016/S0045-6535(97)00354-8. PubMed DOI

Chander V., Sharma B., Negi V., Aswal R.S., Singh P., Singh R., Dobhal R. Pharmaceutical compounds in drinking water. J. Xenobiotics. 2016;6:5774. doi: 10.4081/xeno.2016.5774. PubMed DOI PMC

Mooney D., Richards K.G., Danaher M., Grant J., Gill L., Mellander P.E., Coxon C.E. An investigation of anticoccidial veterinary drugs as emerging organic contaminants in groundwater. Sci. Total Environ. 2020;746:141116. doi: 10.1016/j.scitotenv.2020.141116. PubMed DOI

Lin X., Xu J., Keller A.A., He L., Gu Y., Zheng W., Sun D., Lu Z., Huang J., Huang X., et al. Occurrence and risk assessment of emerging contaminants in a water reclamation and ecological reuse project. Sci. Total Environ. 2020;744:140977. doi: 10.1016/j.scitotenv.2020.140977. PubMed DOI

Mazille F., Schoettl T., Klamerth N., Malato S., Pulgarin C. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Res. 2010;44:3029–3038. doi: 10.1016/j.watres.2010.02.026. PubMed DOI

Matamoros V., Caiola N., Rosales V., Hernández O., Ibáñez C. The role of rice fields and constructed wetlands as a source and a sink of pesticides and contaminants of emerging concern: Full-scale evaluation. Ecol. Eng. 2020;156:105971. doi: 10.1016/j.ecoleng.2020.105971. DOI

Badea S.L., Geana E.I., Niculescu V.C., Ionete R.E. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. Sci. Total Environ. 2020;722:137914. doi: 10.1016/j.scitotenv.2020.137914. PubMed DOI

Diuzheva A., Dejmkova H., Fischer J., Andruch V. Simultaneous determination of three carbamate pesticides using vortex-assisted liquid-liquid microextraction combined with HPLC-amperometric detection. Microchem. J. 2019;150:104071. doi: 10.1016/j.microc.2019.104071. DOI

Vieira W.T., de Farias M.B., Spaolonzi M.P., da Silva M.G.C., Vieira M.G.A. Removal of endocrine disruptors in waters by adsorption, membrane filtration and biodegradation. A review. Environ. Chem. Lett. 2020;18:1113–1143. doi: 10.1007/s10311-020-01000-1. DOI

Jung C., Son A., Her N., Zoh K.D., Cho J., Yoon Y. Removal of endocrine disrupting compounds, pharmaceuticals, and personal care products in water using carbon nanotubes: A review. J. Ind. Eng. Chem. 2015;27:1–11. doi: 10.1016/j.jiec.2014.12.035. DOI

Wang J.L., Wang S.Z. Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review. J. Environ. Manag. 2016;182:620–640. doi: 10.1016/j.jenvman.2016.07.049. PubMed DOI

Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Treatment technologies for emerging contaminants in water: A review. Chem. Eng. J. 2017;323:361–380. doi: 10.1016/j.cej.2017.04.106. DOI

Yang Y., Ok Y.S., Kim K.H., Kwon E.E., Tsang Y.F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 2017;596:303–320. doi: 10.1016/j.scitotenv.2017.04.102. PubMed DOI

Barrios-Estrada C., Rostro-Alanis M.D., Munoz-Gutierrez B.D., Iqbal H.M.N., Kannan S., Parra-Saldivar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation—A review. Sci. Total Environ. 2018;612:1516–1531. doi: 10.1016/j.scitotenv.2017.09.013. PubMed DOI

Kanakaraju D., Glass B.D., Oelgemoller M. Advanced oxidation process-mediated removal of pharmaceuticals from water: A review. J. Environ. Manag. 2018;219:189–207. doi: 10.1016/j.jenvman.2018.04.103. PubMed DOI

Kim S., Chu K.H., Al-Hamadani Y.A.J., Park C.M., Jang M., Kim D.H., Yu M., Heo J., Yoon Y. Removal of contaminants of emerging concern by membranes in water and wastewater: A review. Chem. Eng. J. 2018;335:896–914. doi: 10.1016/j.cej.2017.11.044. DOI

Galindo-Miranda J.M., Guizar-Gonzalez C., Becerril-Bravo E.J., Moeller-Chavez G., Leon-Becerril E., Vallejo-Rodriguez R. Occurrence of emerging contaminants in environmental surface waters and their analytical methodology—A review. Water Sci. Technol. Water Supply. 2019;19:1871–1884. doi: 10.2166/ws.2019.087. DOI

Buser H.R., Poiger T., Muller M.D. Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ. Sci. Technol. 1999;33:2529–2535. doi: 10.1021/es981014w. DOI

Golovko O., Kumar V., Fedorova G., Randak T., Grabic R. Removal and seasonal variability of selected analgesics/anti-inflammatory, anti-hypertensive/cardiovascular pharmaceuticals and UV filters in wastewater treatment plant. Environ. Sci. Pollut. Res. 2014;21:7578–7585. doi: 10.1007/s11356-014-2654-9. PubMed DOI

Rozman D., Hrkal Z., Váňa M., Vymazal J., Boukalová Z. Occurrence of Pharmaceuticals in Wastewater and Their Interaction with Shallow Aquifers: A Case Study of Horní Beřkovice, Czech Republic. Water. 2017;9:218. doi: 10.3390/w9030218. DOI

Santos J.L., Aparicio I., Alonso E. Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain) Environ. Int. 2007;33:596–601. doi: 10.1016/j.envint.2006.09.014. PubMed DOI

Ternes T.A., Herrmann N., Bonerz M., Knacker T., Siegrist H., Joss A. A rapid method to measure the solid-water distribution coefficient (K-d) for pharmaceuticals and musk fragrances in sewage sludge. Water Res. 2004;38:4075–4084. doi: 10.1016/j.watres.2004.07.015. PubMed DOI

Vymazal J., Bfezinova T. The use of constructed wetlands for removal of pesticides from agricultural runoff and drainage: A review. Environ. Int. 2015;75:11–20. doi: 10.1016/j.envint.2014.10.026. PubMed DOI

Vymazal J., Brezinova T., Kozeluh M. Occurrence and removal of estrogens, progesterone and testosterone in three constructed wetlands treating municipal sewage in the Czech Republic. Sci. Total Environ. 2015;536:625–631. doi: 10.1016/j.scitotenv.2015.07.077. PubMed DOI

Vymazal J., Brezinova T.D., Kozeluh M., Kule L. Occurrence and removal of pharmaceuticals in four full-scale constructed wetlands in the Czech Republic—The first year of monitoring. Ecol. Eng. 2017;98:354–364. doi: 10.1016/j.ecoleng.2016.08.010. DOI

Kumar P., Bansal V., Kim K.H., Kwon E.E. Metal-organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 2018;62:130–145. doi: 10.1016/j.jiec.2017.12.051. DOI

Zhuo N., Lan Y.Q., Yang W.B., Yang Z., Li X.M., Zhou X., Liu Y., Shen J.C., Zhang X.T. Adsorption of three selected pharmaceuticals and personal care products (PPCPs) onto MIL-101(Cr)/natural polymer composite beads. Sep. Purif. Technol. 2017;177:272–280. doi: 10.1016/j.seppur.2016.12.041. DOI

Sophia A.C., Lima E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018;150:1–17. doi: 10.1016/j.ecoenv.2017.12.026. PubMed DOI

Cukierman A.L., Nunell G.V., Bonelli P.R. Removal of emerging pollutants from water through adsorption onto carbon-based materials. In: Mishra A.K., Anawar H.M.D., Drouiche N., editors. Emerging and Nanomaterial Contaminants in Wastewater. Elsevier; Amsterdam, The Netherlands: 2019. pp. 159–213. Chapter 7. DOI

Delgado-Moreno L., Bazhari S., Nogales R., Romero E. Innovative application of biobed bioremediation systems to remove emerging contaminants: Adsorption, degradation and bioaccesibility. Sci. Total Environ. 2019;651:990–997. doi: 10.1016/j.scitotenv.2018.09.268. PubMed DOI

Gil A., Taoufik N., García A.M., Korili S.A. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon. Environ. Technol. 2019;40:3017–3030. doi: 10.1080/09593330.2018.1464066. PubMed DOI

Chen W.-H., Huang J.-R. Adsorption of organic including pharmaceutical and inorganic contaminants in water toward graphene-based materials. In: Hernández-Maldonado A.J., Blaney L., editors. Contaminants of Emerging Concern in Water and Wastewater. Butterworth-Heinemann; Oxford, UK: 2020. pp. 93–113. Chapter 3. DOI

Dhaka S., Kumar R., Deep A., Kurade M.B., Ji S.-W., Jeon B.-H. Metal–organic frameworks (MOFs) for the removal of emerging contaminants from aquatic environments. Coord. Chem. Rev. 2019;380:330–352. doi: 10.1016/j.ccr.2018.10.003. DOI

Yin C.-Y. Emerging usage of plant-based coagulants for water and wastewater treatment. Process Biochem. 2010;45:1437–1444. doi: 10.1016/j.procbio.2010.05.030. DOI

Villaseñor-Basulto D.L., Astudillo-Sánchez P.D., del Real-Olvera J., Bandala E.R. Wastewater treatment using Moringa oleifera Lam seeds: A review. J. Water Process Eng. 2018;23:151–164. doi: 10.1016/j.jwpe.2018.03.017. DOI

Anguille S., Moulin P., Testa F. Device for Extraction of Pollutants by Multichannel Tubular Membrane. 10,137,385. U.S. Patent. 2018 Nov 27;

Maoqi F. Biochar Treatment of Contaminated Water. 10,246,347. U.S. Patent. 2019 Apr 2;

Nickelsen M.G., Woodard S.E. Sustainable System and Method for Removing and Concentrating per-and Polyfluoroalkyl Substances (PFAS) from Water. 10,287,185. U.S. Patent. 2019 May 14;

Suri R.P., Bhattarai B. Silica Particles Coated with β-Cyclodextrin for the Removal of Emerging Contaminants from Wastewater. 9,828,458. U.S. Patent. 2017 Nov 28;

Velazquez F.R., Alos V.F., Perez O.P. Synthesis of Biocomposite Alginate-Chitosan-Magnetite Nanoparticle Beads for Removal of Organic Persistent Contaminants from Water Systems. 10,569,253. U.S. Patent. 2020 Feb 25;

Yu M. Ultrathin, Graphene-Based Membranes for Water Treatment and Methods of their Formation and Use. 10,092,882. U.S. Patent. 2018 Oct 9;

Espindola J.C., Vilar V.J.P. Innovative light -driven chemical/catalytic reactors towards contaminants of emerging concern mitigation: A review. Chem. Eng. J. 2020;394 doi: 10.1016/j.cej.2020.124865. DOI

Rizzo L., Malato S., Antakyali D., Beretsou V.G., Dolic M.B., Gernjak W., Heath E., Ivancev-Tumbas I., Karaolia P., Ribeiro A.R.L., et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019;655:986–1008. doi: 10.1016/j.scitotenv.2018.11.265. PubMed DOI

El Assal Z., Ojala S., Zbair M., Echchtouki H., Nevanpera T., Pitkaaho S., Pirault-Roy L., Bensitel M., Brahmi R., Keiski R.L. Catalytic abatement of dichloromethane over transition metal oxide catalysts: Thermodynamic modelling and experimental studies. J. Clean. Prod. 2019;228:814–823. doi: 10.1016/j.jclepro.2019.04.073. DOI

Da Silva F.L., Laitinen T., Pirila M., Keiski R.L., Ojala S. Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA) From Wastewaters by TiO2, In2O3 and Ga2O3 Catalysts. Top. Catal. 2017;60:1345–1358. doi: 10.1007/s11244-017-0819-8. DOI

Sassi H., Lafaye G., Ben Amor H., Gannouni A., Jeday M.R., Barbier J. Wastewater treatment by catalytic wet air oxidation process over Al-Fe pillared clays synthesized using microwave irradiation. Front. Environ. Sci. Eng. 2018;12:2. doi: 10.1007/s11783-017-0971-1. DOI

Espindola J.C., Cristovao R.O., Araujo S.R.F., Neuparth T., Santos M.M., Montes R., Quintana J.B., Rodil R., Boaventura R.A.R., Vilar V.J.P. An innovative photoreactor, FluHelik, to promote UVC/H2O2 photochemical reactions: Tertiary treatment of an urban wastewater. Sci. Total Environ. 2019;667:197–207. doi: 10.1016/j.scitotenv.2019.02.335. PubMed DOI

Di Cesare A., De Carluccio M., Eckert E.M., Fontaneto D., Fiorentino A., Corno G., Prete P., Cucciniello R., Proto A., Rizzo L. Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H2O2 vs UVC/H2O2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. Water Res. 2020;184:116194. doi: 10.1016/j.watres.2020.116194. PubMed DOI

Diez A.M., Moreira F.C., Marinho B.A., Espindola J.C.A., Paulista L.O., Sanroman M.A., Pazos M., Boaventura R.A.R., Vilar V.J.P. A step forward in heterogeneous photocatalysis: Process intensification by using a static mixer as catalyst support. Chem. Eng. J. 2018;343:597–606. doi: 10.1016/j.cej.2018.03.041. DOI

Stathoulopoulos A., Mantzavinos D., Frontistis Z. Coupling Persulfate-Based AOPs: A Novel Approach for Piroxicam Degradation in Aqueous Matrices. Water. 2020;12:1530. doi: 10.3390/w12061530. DOI

Steinle-Darling E., Zedda M., Plumlee M.H., Ridgway H.F., Reinhard M. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA. Water Res. 2007;41:3959–3967. doi: 10.1016/j.watres.2007.05.034. PubMed DOI

Yoon Y., Westerhoff P., Snyder S.A., Wert E.C. Nanofiltration and ultrafiltration of endocrine disrupting compounds, pharmaceuticals and personal care products. J. Membr. Sci. 2006;270:88–100. doi: 10.1016/j.memsci.2005.06.045. DOI

Nghiem L.D., Schafer A.I., Elimelech M. Pharmaceutical retention mechanisms by nanofiltration membranes. Environ. Sci. Technol. 2005;39:7698–7705. doi: 10.1021/es0507665. PubMed DOI

Singh R., Hankins N. Emerging Membrane Technology for Sustainable Water Treatment. Elsevier; Amsterdam, The Netherlands: 2016.

Xie Z., Li N., Wang Q., Bolto B. Emerging Technologies for Sustainable Desalination Handbook. Elsevier; Amsterdam, The Netherlands: 2018. Desalination by pervaporation; pp. 205–226.

Eyvaz M., Yüksel E. Desalination and Water Treatment. IntechOpen; London, UK: 2018.

Acero J.L., Benitez F.J., Teva F., Leal A.I. Retention of emerging micropollutants from UP water and a municipal secondary effluent by ultrafiltration and nanofiltration. Chem. Eng. J. 2010;163:264–272. doi: 10.1016/j.cej.2010.07.060. DOI

Urtiaga A.M., Pérez G., Ibáñez R., Ortiz I. Removal of pharmaceuticals from a WWTP secondary effluent by ultrafiltration/reverse osmosis followed by electrochemical oxidation of the RO concentrate. Desalination. 2013;331:26–34. doi: 10.1016/j.desal.2013.10.010. DOI

Radjenović J., Petrović M., Ventura F., Barceló D. Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008;42:3601–3610. doi: 10.1016/j.watres.2008.05.020. PubMed DOI

D’Haese A., Le-Clech P., Van Nevel S., Verbeken K., Cornelissen E.R., Khan S.J., Verliefde A.R.D. Trace organic solutes in closed-loop forward osmosis applications: Influence of membrane fouling and modeling of solute build-up. Water Res. 2013;47:5232–5244. doi: 10.1016/j.watres.2013.06.006. PubMed DOI

Wang L., Albasi C., Faucet-Marquis V., Pfohl-Leszkowicz A., Dorandeu C., Marion B., Causserand C. Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane. Water Res. 2009;43:4115–4122. doi: 10.1016/j.watres.2009.06.007. PubMed DOI

Silvestre W.P., Baldasso C., Tessaro I.C. Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation. Carbohydr. Polym. 2020;247:116676. doi: 10.1016/j.carbpol.2020.116676. PubMed DOI

Zeng H.Z., Liu S.J., Wang J., Li Y.B., Zhu L., Xu M., Wang C.W. Hydrophilic SPEEK/PES composite membrane for pervaporation desalination. Sep. Purif. Technol. 2020;250:117265. doi: 10.1016/j.seppur.2020.117265. DOI

Cheng X.X., Pan F.S., Wang M.R., Li W.D., Song Y.M., Liu G.H., Yang H., Gao B.X., Wu H., Jiang Z.Y. Hybrid membranes for pervaporation separations. J. Membr. Sci. 2017;541:329–346. doi: 10.1016/j.memsci.2017.07.009. DOI

Liu G.P., Wei W., Wu H., Dong X.L., Jiang M., Jin W.Q. Pervaporation performance of PDMS/ceramic composite membrane in acetone butanol ethanol (ABE) fermentation-PV coupled process. J. Membr. Sci. 2011;373:121–129. doi: 10.1016/j.memsci.2011.02.042. DOI

Wu Y., Fu X., Tian G., Xuehong G., Liu Z. Pervaporation of phenol wastewater with PEBA–PU blend membrane. Desalin. Water Treat. 2018;102:101–109. doi: 10.5004/dwt.2018.21861. DOI

Halakoo E., Feng X. Layer-by-layer assembly of polyethyleneimine/graphene oxide membranes for desalination of high-salinity water via pervaporation. Sep. Purif. Technol. 2020;234:116077. doi: 10.1016/j.seppur.2019.116077. DOI

Crespo J.G., Brazinha C. 1-Fundamentals of pervaporation. In: Basile A., Figoli A., Khayet M., editors. Pervaporation, Vapour Permeation and Membrane Distillation. Woodhead Publishing; Oxford, UK: 2015. pp. 3–17. DOI

Van der Bruggen B., Luis P. Chapter Four—Pervaporation. In: Tarleton S., editor. Progress in Filtration and Separation. Academic Press; Oxford, UK: 2015. pp. 101–154. DOI

Dhangar K., Kumar M. Tricks and tracks in removal of emerging contaminants from the wastewater through hybrid treatment systems: A review. Sci. Total Environ. 2020;738:140320. doi: 10.1016/j.scitotenv.2020.140320. PubMed DOI

Van der Bruggen B., Schaep J., Wilms D., Vandecasteele C. Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 1999;156:29–41. doi: 10.1016/S0376-7388(98)00326-3. DOI

Yangali-Quintanilla V., Maeng S.K., Fujioka T., Kennedy M., Li Z.Y., Amy G. Nanofiltration vs. reverse osmosis for the removal of emerging organic contaminants in water reuse. Desalin. Water Treat. 2011;34:50–56. doi: 10.5004/dwt.2011.2860. DOI

Nghiem L.D., Schafer A.I., Elimelech M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Membr. Sci. 2006;286:52–59. doi: 10.1016/j.memsci.2006.09.011. DOI

Childress A.E., Elimelech M. Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics. Environ. Sci. Technol. 2000;34:3710–3716. doi: 10.1021/es0008620. DOI

Yangali-Quintanilla V., Maeng S.K., Fujioka T., Kennedy M., Amy G. Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. J. Membr. Sci. 2010;362:334–345. doi: 10.1016/j.memsci.2010.06.058. DOI

Coday B.D., Yaffe B.G.M., Xu P., Cath T.Y. Rejection of Trace Organic Compounds by Forward Osmosis Membranes: A Literature Review. Environ. Sci. Technol. 2014;48:3612–3624. doi: 10.1021/es4038676. PubMed DOI

Lee Y.E., Jang A. Effect of forward osmosis (membrane) support layer fouling by organic matter in synthetic seawater solution. Desalin. Water Treat. 2016;57:24595–24605. doi: 10.1080/19443994.2016.1157990. DOI

Linares R.V., Yangali-Quintanilla V., Li Z.Y., Amy G. Rejection of micropollutants by clean and fouled forward osmosis membrane. Water Res. 2011;45:6737–6744. doi: 10.1016/j.watres.2011.10.037. PubMed DOI

Agenson K.O., Urase T. Change in membrane performance due to organic fouling in nanofiltration (NF)/reverse osmosis (RO) applications. Sep. Purif. Technol. 2007;55:147–156. doi: 10.1016/j.seppur.2006.11.010. DOI

Joo S.H., Tansel B. Novel technologies for reverse osmosis concentrate treatment: A review. J. Environ. Manag. 2015;150:322–335. doi: 10.1016/j.jenvman.2014.10.027. PubMed DOI

Kaminski W., Marszalek J., Tomczak E. Water desalination by pervaporation–Comparison of energy consumption. Desalination. 2018;433:89–93. doi: 10.1016/j.desal.2018.01.014. DOI

Araki S., Gondo D., Yamamoto H. Pervaporation properties and a semi-empirical model for removal of VOCs from water using a propyl functionalized silica membrane. Desalin. Water Treat. 2019;143:17–23. doi: 10.5004/dwt.2019.23080. DOI

Higuchi A., Yoon B.O., Asano T., Nakaegawa K., Miki S., Hara M., He Z.J., Pinnau I. Separation of endocrine disruptors from aqueous solutions by pervaporation. J. Membr. Sci. 2002;198:311–320. doi: 10.1016/S0376-7388(01)00671-8. DOI

Higuchi A., Yoon B.O., Kaneko T., Ham M., Maekawa M., Nohmi T. Separation of endocrine disruptors from aqueous solutions by pervaporation: Dioctylphthalate and butylated hydroxytoluene in mineral water. J. Appl. Polym. Sci. 2004;94:1737–1742. doi: 10.1002/app.21093. DOI

Wang Q., Li N., Bolto B., Hoang M., Xie Z. Desalination by pervaporation: A review. Desalination. 2016;387:46–60. doi: 10.1016/j.desal.2016.02.036. DOI

Egea-Corbacho A., Gutierrez S., Quiroga J.M. Removal of emerging contaminants from wastewater through pilot plants using intermittent sand/coke filters for its subsequent reuse. Sci. Total Environ. 2019;646:1232–1240. doi: 10.1016/j.scitotenv.2018.07.399. PubMed DOI

Yan T., Ye Y.Y., Ma H.M., Zhang Y., Guo W.S., Du B., Wei Q., Wei D., Ngo H.H. A critical review on membrane hybrid system for nutrient recovery from wastewater. Chem. Eng. J. 2018;348:143–156. doi: 10.1016/j.cej.2018.04.166. DOI

Dharupaneedi S.P., Nataraj S.K., Nadagouda M., Reddy K.R., Shukla S.S., Aminabhavi T.M. Membrane-based separation of potential emerging pollutants. Sep. Purif. Technol. 2019;210:850–866. doi: 10.1016/j.seppur.2018.09.003. PubMed DOI PMC

Taheran M., Brar S.K., Verma M., Surampalli R.Y., Zhang T.C., Valero J.R. Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters. Sci. Total Environ. 2016;547:60–77. doi: 10.1016/j.scitotenv.2015.12.139. PubMed DOI

Bellona C., Drewes J.E. The role of membrane surface charge and solute physico-chemical properties in the rejection of organic acids by NF membranes. J. Membr. Sci. 2005;249:227–234. doi: 10.1016/j.memsci.2004.09.041. DOI

Xu P., Drewes J.E., Kim T.U., Bellona C., Amy G. Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications. J. Membr. Sci. 2006;279:165–175. doi: 10.1016/j.memsci.2005.12.001. DOI

Nghiem L.D., Coleman P.J., Espendiller C. Mechanisms underlying the effects of membrane fouling on the nanofiltration of trace organic contaminants. Desalination. 2010;250:682–687. doi: 10.1016/j.desal.2009.03.025. DOI

Bellona C., Marts M., Drewes J.E. The effect of organic membrane fouling on the properties and rejection characteristics of nanofiltration membranes. Sep. Purif. Technol. 2010;74:44–54. doi: 10.1016/j.seppur.2010.05.006. DOI

Nghiem L.D., Schafer A.I., Elimelech M. Removal of natural hormones by nanofiltration membranes: Measurement, modeling, and mechanisms. Environ. Sci. Technol. 2004;38:1888–1896. doi: 10.1021/es034952r. PubMed DOI

Sgroi M., Anumol T., Roccaro P., Vagliasindi F.G.A., Snyder S.A. Modeling emerging contaminants breakthrough in packed bed adsorption columns by UV absorbance and fluorescing components of dissolved organic matter. Water Res. 2018;145:667–677. doi: 10.1016/j.watres.2018.09.018. PubMed DOI

Vergili I. Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J. Environ. Manag. 2013;127:177–187. doi: 10.1016/j.jenvman.2013.04.036. PubMed DOI

Romanos G.E., Athanasekou C.P., Likodimos V., Aloupogiannis P., Falaras P. Hybrid Ultrafiltration/Photocatalytic Membranes for Efficient Water Treatment. Ind. Eng. Chem. Res. 2013;52:13938–13947. doi: 10.1021/ie303475b. DOI

Papageorgiou S.K., Katsaros F.K., Favvas E.P., Romanos G.E., Athanasekou C.P., Beltsios K.G., Tzialla O.I., Falaras P. Alginate fibers as photocatalyst immobilizing agents applied in hybrid photocatalytic/ultrafiltration water treatment processes. Water Res. 2012;46:1858–1872. doi: 10.1016/j.watres.2012.01.005. PubMed DOI

Athanasekou C.P., Romanos G.E., Katsaros F.K., Kordatos K., Likodimos V., Falaras P. Very efficient composite titania membranes in hybrid ultrafiltration/photocatalysis water treatment processes. J. Membr. Sci. 2012;392:192–203. doi: 10.1016/j.memsci.2011.12.028. DOI

Romanos G.E., Athanasekou C.P., Katsaros F.K., Kanellopoulos N.K., Dionysiou D.D., Likodimos V., Falaras P. Double-side active TiO2-modified nanofiltration membranes in continuous flow photocatalytic reactors for effective water purification. J. Hazard. Mater. 2012;211:304–316. doi: 10.1016/j.jhazmat.2011.09.081. PubMed DOI

Lin J.C.T., Lee D.J., Huang C.P. Membrane Fouling Mitigation: Membrane Cleaning. Sep. Sci. Technol. 2010;45:858–872. doi: 10.1080/01496391003666940. DOI

Warsinger D.M., Chakraborty S., Tow E.W., Plumlee M.H., Bellona C., Loutatidou S., Karimi L., Mikelonis A.M., Achilli A., Ghassemi A., et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 2016;81:209–237. doi: 10.1016/j.progpolymsci.2018.01.004. PubMed DOI PMC

Pesqueira J.F.J.R., Pereira M.F.R., Silva A.M.T. Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. J. Clean. Prod. 2020;261:1210178. doi: 10.1016/j.jclepro.2020.121078. DOI

Tarpani R.R.Z., Azapagic A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs) J. Environ. Manag. 2018;215:258–272. doi: 10.1016/j.jenvman.2018.03.047. PubMed DOI

Rahman S.M., Eckelman M.J., Onnis-Hayden A., Gu A.Z. Comparative Life Cycle Assessment of Advanced Wastewater Treatment Processes for Removal of Chemicals of Emerging Concern. Environ. Sci. Technol. 2018;52:11346–11358. doi: 10.1021/acs.est.8b00036. PubMed DOI

Li Y., Zhang S.X., Zhang W.L., Xiong W., Ye Q.L., Hou X., Wang C., Wang P.F. Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personal care products in life cycle inventory. J. Environ. Manag. 2019;238:442–450. doi: 10.1016/j.jenvman.2019.01.118. PubMed DOI

Castro-Munoz R. Pervaporation: The emerging technique for extracting aroma compounds from food systems. J. Food Eng. 2019;253:27–39. doi: 10.1016/j.jfoodeng.2019.02.013. DOI

Silvestre W.P., Livinalli N.F., Baldasso C., Tessaro I.C. Pervaporation in the separation of essential oil components: A review. Trends Food Sci. Technol. 2019;93:42–52. doi: 10.1016/j.tifs.2019.09.003. DOI

Jyoti G., Keshav A., Anandkumar J. Review on Pervaporation: Theory, Membrane Performance, and Application to Intensification of Esterification Reaction. J. Eng. 2015;2015:927068. doi: 10.1155/2015/927068. DOI

Meng D.P., Dai Y., Xu Y., Wu Y.M., Cui P.Z., Zhu Z.Y., Ma Y.X., Wang Y.L. Energy, economic and environmental evaluations for the separation of ethyl acetate/ethanol/water mixture via distillation and pervaporation unit. Process Saf. Environ. Prot. 2020;140:14–25. doi: 10.1016/j.psep.2020.04.039. DOI

Mei X., Ding Y., Li P.P., Xu L.J., Wang Y., Guo Z.W., Shen W.T., Yang Y., Wang Y.H., Xiao Y.Y., et al. A novel system for zero-discharge treatment of high-salinity acetonitrile-containing wastewater: Combination of pervaporation with a membrane-aerated bioreactor. Chem. Eng. J. 2020;384:123338. doi: 10.1016/j.cej.2019.123338. DOI

Wang Y., Mei X., Ma T.F., Xue C.J., Wu M.D., Ji M., Li Y.G. Green recovery of hazardous acetonitrile from high-salt chemical wastewater by pervaporation. J. Clean. Prod. 2018;197:742–749. doi: 10.1016/j.jclepro.2018.06.239. DOI

Tgarguifa A., Abderafi S., Bounahmidi T. Energy efficiency improvement of a bioethanol distillery, by replacing a rectifying column with a pervaporation unit. Renew. Energy. 2018;122:239–250. doi: 10.1016/j.renene.2018.01.112. DOI

Lipski C., Cote P. The Use of Pervaporation for the Removal of Organic Contaminants from Water. Environ. Prog. 1990;9:254–261. doi: 10.1002/ep.670090420. DOI

Feng X.S., Huang R.Y.M. Liquid separation by membrane pervaporation: A review. Ind. Eng. Chem. Res. 1997;36:1048–1066. doi: 10.1021/ie960189g. DOI

Baker R.W., Wijmans J.G., Huang Y. Permeability, Permeance and Selectivity: A preferred Way of Reporting Pervaporation Performance Data. J. Membr. Sci. 2010;348:346–352. doi: 10.1016/j.memsci.2009.11.022. DOI

Gani K.M., Kazmi A.A. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities. Sci. Total Environ. 2016;569:661–671. doi: 10.1016/j.scitotenv.2016.06.182. PubMed DOI

Jobling S., Reynolds T., White R., Parker M.G., Sumpter J.P. A Variety of Environmentally Persistent Chemicals, Including Some Phthalate Plasticizers, Are Weakly Estrogenic. Environ. Health Perspect. 1995;103:582–587. doi: 10.1289/ehp.95103582. PubMed DOI PMC

Yoon B.O., Koyanagi S., Asano T., Hara M., Higuchi A. Removal of endocrine disruptors by selective sorption method using polydimethylsiloxane membranes. J. Membr. Sci. 2003;213:137–144. doi: 10.1016/S0376-7388(02)00520-3. DOI

Waters L.J., Bhuiyan A.K.M.M.H. Ionisation effects on the permeation of pharmaceutical compounds through silicone membrane. Colloids Surf. B Biointerfaces. 2016;141:553–557. doi: 10.1016/j.colsurfb.2016.01.055. PubMed DOI

Bhuiyan A.K.M.M.H., Waters L.J. Permeation of pharmaceutical compounds through silicone membrane in the presence of surfactants. Colloid Surf. A. 2017;516:121–128. doi: 10.1016/j.colsurfa.2016.12.014. DOI

Sauve S., Desrosiers M. A review of what is an emerging contaminant. Chem. Cent. J. 2014;8:15. doi: 10.1186/1752-153X-8-15. PubMed DOI PMC

Garrett E.R., Chemburk P.B. Evaluation Control and Prediction of Drug Diffusion through Polymeric Membranes I. Methods Reproducibility of Steady-State Diffusion Studies. J. Pharm. Sci. 1968;57:944–948. doi: 10.1002/jps.2600570606. PubMed DOI

Garrett E.R., Chemburk P.B. Evaluation Control and Prediction of Drug Diffusion through Polymeric Membranes II. Diffusion of Aminophenones through Silastic Membranes—A Test of Ph-Partition Hypothesis. J. Pharm. Sci. 1968;57:949–959. doi: 10.1002/jps.2600570607. PubMed DOI

Garrett E.R., Chemburkar P.B. Evaluation Control and Prediction of Drug Diffusion through Polymeric Membranes III. Diffusion of Barbiturates Phenylalkylamines Dextromethorphan Progesterone and Other Drugs. J. Pharm. Sci. 1968;57:1401–1409. doi: 10.1002/jps.2600570828. PubMed DOI

Brouwer E.R., Lingeman H., Brinkman U.A.T. Use of membrane extraction disks for on-line trace enrichment of organic compounds from aqueous samples. Chromatographia. 1990;29:415–418. doi: 10.1007/BF02261387. DOI

Poliwoda A., Krzyżak M., Wieczorek P.P. Supported liquid membrane extraction with single hollow fiber for the analysis of fluoroquinolones from environmental surface water samples. J. Chromatogr. A. 2010;1217:3590–3597. doi: 10.1016/j.chroma.2010.03.051. PubMed DOI

Megersa N., Chimuka L., Solomon T., Jönsson J.Å. Automated liquid membrane extraction and trace enrichment of triazine herbicides and their metabolites in environmental and biological samples. J. Sep. Sci. 2001;24:567–576. doi: 10.1002/1615-9314(20010801)24:7<567::AID-JSSC567>3.0.CO;2-B. DOI

Guo X., Mitra S. Development of pulse introduction membrane extraction for analysis of volatile organic compounds in individual aqueous samples, and for continuous on-line monitoring. J. Chromatogr. A. 1998;826:39–47. doi: 10.1016/S0021-9673(98)00703-1. DOI

Prieto A., Telleria O., Etxebarria N., Fernández L.A., Usobiaga A., Zuloaga O. Simultaneous preconcentration of a wide variety of organic pollutants in water samples: Comparison of stir bar sorptive extraction and membrane-assisted solvent extraction. J. Chromatogr. A. 2008;1214:1–10. doi: 10.1016/j.chroma.2008.10.060. PubMed DOI

Ray S.K., Sawant S.B., Joshi J.B., Pangarkar V.G. Perstraction of Phenolic Compounds from Aqueous Solution Using a Nonporous Membrane. Sep. Sci. Technol. 1997;32:2669–2683. doi: 10.1080/01496399708006963. DOI

Rodil R., Schrader S., Moeder M. Non-porous membrane-assisted liquid–liquid extraction of UV filter compounds from water samples. J. Chromatogr. A. 2009;1216:4887–4894. doi: 10.1016/j.chroma.2009.04.042. PubMed DOI

Rodil R., Schrader S., Moeder M. Pressurised membrane-assisted liquid extraction of UV filters from sludge. J. Chromatogr. A. 2009;1216:8851–8858. doi: 10.1016/j.chroma.2009.10.058. PubMed DOI

Villaverde-de-Sáa E., González-Mariño I., Quintana J.B., Rodil R., Rodríguez I., Cela R. In-sample acetylation-non-porous membrane-assisted liquid–liquid extraction for the determination of parabens and triclosan in water samples. Anal. Bioanal. Chem. 2010;397:2559–2568. doi: 10.1007/s00216-010-3789-2. PubMed DOI

Yamini Y., Reimann C.T., Vatanara A., Jönsson J.Å. Extraction and preconcentration of salbutamol and terbutaline from aqueous samples using hollow fiber supported liquid membrane containing anionic carrier. J. Chromatogr. A. 2006;1124:57–67. doi: 10.1016/j.chroma.2006.05.001. PubMed DOI

Einsle T., Paschke H., Bruns K., Schrader S., Popp P., Moeder M. Membrane-assisted liquid–liquid extraction coupled with gas chromatography–mass spectrometry for determination of selected polycyclic musk compounds and drugs in water samples. J. Chromatogr. A. 2006;1124:196–204. doi: 10.1016/j.chroma.2006.06.093. PubMed DOI

Hylton K., Mitra S. Automated, on-line membrane extraction. J. Chromatogr. A. 2007;1152:199–214. doi: 10.1016/j.chroma.2006.12.047. PubMed DOI

Jönsson J.Å., Mathiasson L. Membrane-based techniques for sample enrichment. J. Chromatogr. A. 2000;902:205–225. doi: 10.1016/S0021-9673(00)00922-5. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...