Hydrothermal deposition as a novel method for the preparation of Co-Mn mixed oxide catalysts supported on stainless steel meshes: application to VOC oxidation
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
21-04477S
Grantová Agentura České Republiky
PubMed
34417699
DOI
10.1007/s11356-021-15906-y
PII: 10.1007/s11356-021-15906-y
Knihovny.cz E-resources
- Keywords
- Cobalt–manganese mixed oxides, Ethanol total oxidation, Hydrothermal reaction, Stainless steel meshes, Structured catalysts, Volatile organic compounds,
- MeSH
- Catalysis MeSH
- Stainless Steel MeSH
- Oxidation-Reduction MeSH
- Oxides * MeSH
- Volatile Organic Compounds * MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Stainless Steel MeSH
- Oxides * MeSH
- Volatile Organic Compounds * MeSH
The aim of this work was to develop a novel method for the preparation of structured Co-Mn mixed oxide catalysts: deposition on stainless steel meshes by hydrothermal synthesis. The use of meshes enabled the deposition of a thin layer of the active phase, which significantly suppressed the influence of internal diffusion. Consequently, the prepared catalysts exhibited from 48 to 114 times higher catalytic activity in ethanol oxidation than the commercial pelleted Co-Mn-Al catalyst. Moreover, we have shown that their catalytic activity correlated with the proportion of surface oxygen vacancies determined by XPS. Finally, the outstanding activity of the catalyst with Co:Mn ratio of 0.5 was ascribed to the mutual effect of high number of oxygen vacancies and exceptional redox properties.
See more in PubMed
Arena F, Torre T, Raimondo C, Parmaliana A (2001) Structure and redox properties of bulk and supported manganese oxide catalysts. Phys Chem Chem Phys 3:1911–1917. https://doi.org/10.1039/b100091h DOI
Aukrust E, Muan A (1963) Phase relations in the system cobalt oxide–manganese oxide in air. J Am Ceram Soc 46:511–511. https://doi.org/10.1111/j.1151-2916.1963.tb13790.x DOI
Bentley FF, Smithson LD, Rozek AL (1968) Infrared spectra and characteristic frequencies 700-300 cm−1: collection of spectra, interpretation, and bibliography. Interscience
Bian N 2018: Investigations on hydrothermally synthesized Co3O4/MnxCo3-xO4 core-shell nanoparticles, MSU Graduate Theses
Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051 DOI
Bulavchenko OA, Gerasimov EY, Afonasenko TN (2018) Reduction of double manganese-cobalt oxides: in situ XRD and TPR study. Dalton Trans 47:17153–17159. https://doi.org/10.1039/c8dt04137g DOI
Cai T, Huang H, Deng W, Dai Q, Liu W, Wang X (2015) Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl Catal B 166-167:393–405. https://doi.org/10.1016/j.apcatb.2014.10.047 DOI
Calgaro CO, Perez-Lopez OW (2017) Decomposition of methane over Co
Castaño MH, Molina R, Moreno S (2015) Cooperative effect of the Co–Mn mixed oxides for the catalytic oxidation of VOCs: influence of the synthesis method. Appl Catal A 492:48–59. https://doi.org/10.1016/j.apcata.2014.12.009 DOI
Cavani F, Trifirò F, Vaccari A (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–301. https://doi.org/10.1016/0920-5861(91)80068-K DOI
Cybulski A, Moulijn JA (2006) Structured catalysts and reactors. Taylor & Francis, Boca Raton
Dubal DP, Dhawale DS, Salunkhe RR, Lokhande CD (2010) conversion of chemically prepared interlocked cubelike Mn
Dvořáková M, Perekrestov R, Kširová P, Balabánová J, Jirátová K, Maixner J, Topka P, Rathouský J, Koštejn M, Čada M, Hubička Z, Kovanda F (2019) Preparation of cobalt oxide catalysts on stainless steel wire mesh by combination of magnetron sputtering and electrochemical deposition. Catal Today 334:13–23. https://doi.org/10.1016/j.cattod.2019.03.008 DOI
Feng Z, Bao W, Xu X, Ma X, Zhan J, Yin Y (2016) Heteroepitaxial growth of well-dispersed Co
Gaálová J, Topka P, Kaluža L, Soukup K, Barbier J (2019) Effect of gold loading on ceria-zirconia support in total oxidation of VOCs. Catal Today 333:190–195. https://doi.org/10.1016/j.cattod.2018.04.005 DOI
Habibi MH, Bagheri P (2017) Spinel cobalt manganese oxide nano-composites grown hydrothermally on nanosheets for enhanced photocatalytic mineralization of Acid Black 1 textile dye: XRD, FTIR, FESEM, EDS and TOC studies. J Iran Chem Soc 14:1643–1649. https://doi.org/10.1007/s13738-017-1104-2 DOI
Hagelin-Weaver HAE, Hoflund GB, Minahan DM, Salaita GN (2004) Electron energy loss spectroscopic investigation of Co metal, CoO, and Co
Chen H, Yang M, Tao S, Chen G (2017) Oxygen vacancy enhanced catalytic activity of reduced Co
Chromčáková Ž, Obalová L, Kovanda F, Legut D, Titov A, Ritz M, Fridrichová D, Michalik S, Kuśtrowski P, Jirátová K (2015) Effect of precursor synthesis on catalytic activity of Co
Iablokov V, Barbosa R, Pollefeyt G, Van Driessche I, Chenakin S, Kruse N (2015) Catalytic CO oxidation over well-defined cobalt oxide nanoparticles: size-reactivity correlation. ACS Catal 5:5714–5718. https://doi.org/10.1021/acscatal.5b01452 DOI
Jiratova K, Perekrestov R, Dvorakova M, Balabanova J, Topka P, Kostejn M, Olejnicek J, Cada M, Hubicka Z, Kovanda F (2019) Cobalt Oxide catalysts in the form of thin films prepared by magnetron sputtering on stainless-steel meshes: performance in ethanol oxidation. Catalysts 9:806. https://doi.org/10.3390/catal9100806 DOI
Jirátová K, Mikulová J, Klempa J, Grygar T, Bastl Z, Kovanda F (2009) Modification of Co–Mn–Al mixed oxide with potassium and its effect on deep oxidation of VOC. Appl Catal A 361:106–116. https://doi.org/10.1016/j.apcata.2009.04.004
Jirátová K, Balabánová J, Kovanda F, Klegová A, Obalová L, Fajgar R (2017) Cobalt Oxides supported over ceria–zirconia coated cordierite monoliths as catalysts for deep oxidation of ethanol and N
Jung DH, Umirov N, Kim T, Bakenov Z, Kim JS, Kim S-S (2019) Thermal and structural stabilities of LixCoO
Kaczmarczyk J, Zasada F, Janas J, Indyka P, Piskorz W, Kotarba A, Sojka Z (2016) Thermodynamic stability, redox properties, and reactivity of Mn
Kapteijn F, Singoredjo L, Andreini A, Moulijn JA (1994) Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric-oxide with ammonia. Appl Catal B 3:173–189. https://doi.org/10.1016/0926-3373(93)e0034-9 DOI
Kim SC, Shim WG (2010): Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B 98, 180-185. https://doi.org/10.1016/j.apcatb.2010.05.027
Kovanda F, Jiratova K, Ludvikova J, Raabova H (2013) Co-Mn-Al mixed oxides on anodized aluminum supports and their use as catalysts in the total oxidation of ethanol. Appl Catal A 464:181–190. https://doi.org/10.1016/j.apcata.2013.05.044 DOI
Lamonier J-F, Boutoundou A-B, Gennequin C, Pérez-Zurita MJ, Siffert S, Aboukais A (2007) Catalytic removal of toluene in air over Co–Mn–Al nano-oxides synthesized by hydrotalcite route. Catal Lett 118:165–172. https://doi.org/10.1007/s10562-007-9196-4 DOI
Langell MA, Gevrey F, Nydegger MW (2000) Surface composition of Mn
Lee SI, Hong J, Kim H, Son J-W, Lee J-H, Kim BK, Lee H, Yoon K (2014) Highly dense Mn-Co spinel coating for protection of metallic interconnect of solid oxide fuel cells. J Electrochem Soc 161:F1389–F1394. https://doi.org/10.1149/2.0541414jes DOI
Li W, Yang S, Wang K, Tu S, Lu M, Wu P (2019) Evaluation of the physiochemical properties and catalytic performance of CuCoMnAl mixed oxides derived from layered double hydroxides precursors with different mole ratios of Cu/Co on the oxidation of toluene. React Kinet Mech Catal 128:965–977. https://doi.org/10.1007/s11144-019-01676-9 DOI
Liang Q, Chen K, Hou W, Yan Q (1998) CO hydrogenation over nanometer spinel-type Co/Mn complex oxides prepared by sol-gel method. Appl Catal A 166:191–199. https://doi.org/10.1016/S0926-860X(97)00255-X DOI
Liao F, Han X, Zhang Y, Xu C, Chen H (2018) Template-free hydrothermal synthesis of 3D hierarchical Co
Lin H, Chen Y-W (2004) The mechanism of reduction of cobalt by hydrogen. Mater Chem Phys 85:171–175. https://doi.org/10.1016/j.matchemphys.2003.12.028 DOI
Lin X, Li S, He H, Wu Z, Wu J, Chen L, Ye D, Fu M (2018) Evolution of oxygen vacancies in MnO
Luo Y, Zheng Y, Zuo J, Feng X, Wang X, Zhang T, Zhang K, Jiang L (2018) Insights into the high performance of Mn-Co oxides derived from metal-organic frameworks for total toluene oxidation. J Hazard Mater 349:119–127. https://doi.org/10.1016/j.jhazmat.2018.01.053 DOI
Martin de Vidales JL, Vila E, Rojas RM, Garcia-Martinez O (1995) Thermal behavior in air and reactivity in acid medium of cobalt manganese spinels Mn
Masi A, Bellusci M, Carlini M, McPhail S, Padella F, Reale P (2015) Mechanochemical processing of Mn and Co oxides: an alternative way to synthesize mixed spinels for protective coating. J Am Ceram Soc 99:308–314. https://doi.org/10.1111/jace.13863 DOI
Matějová L, Topka P, Jirátová K, Šolcová O (2012) Total oxidation of model volatile organic compounds over some commercial catalysts. Appl Catal A 443:40–49. https://doi.org/10.1016/j.apcata.2012.07.018 DOI
Mitran G, Chen S, Seo D-K (2020) Role of oxygen vacancies and Mn
Obalová L, Pacultová K, Balabánová J, Jirátová K, Bastl Z, Valášková M, Lacný Z, Kovanda F (2007) Effect of Mn/Al ratio in Co–Mn–Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N
Obalová L, Karásková K, Wach A, Kustrowski P, Mamulová-Kutláková K, Michalik S, Jirátová K (2013) Alkali metals as promoters in Co–Mn–Al mixed oxide for N2O decomposition. Appl Catal A 462-463:227–235. https://doi.org/10.1016/j.apcata.2013.05.011
Pacultova K, Bilkova T, Klegova A, Karaskova K, Fridrichova D, Jiratova K, Kiska T, Balabanova J, Kostejn M, Kotarba A, Kaspera W, Stelmachowski P, Slowik G, Obalova L (2019) Co-Mn-Al mixed oxides promoted by K for direct NO decomposition: effect of preparation parameters. Catalysts 9:593. https://doi.org/10.3390/catal9070593
Ramachandran T, Naveen N, Sumithra S, Vishista K (2015): Investigation on spinel MnCo
Santos VP, Pereira MFR, Órfão JJM, Figueiredo JL (2010) The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl Catal B 99:353–363. https://doi.org/10.1016/j.apcatb.2010.07.007 DOI
Soukup K, Petráš D, Topka P, Slobodian P, Šolcová O (2012) Preparation and characterization of electrospun poly(p-phenylene oxide) membranes. Catal Today 193:165–171. https://doi.org/10.1016/j.cattod.2012.03.019 DOI
Šolcová O, Matějová L, Topka P, Musilová Z, Schneider P (2011) Comparison of textural information from argon(87 K) and nitrogen(77 K) physisorption. J Porous Mater 18:557–565. https://doi.org/10.1007/s10934-010-9409-x DOI
Tang W, Wu X, Li S, Li W, Chen Y (2014) Porous Mn–Co mixed oxide nanorod as a novel catalyst with enhanced catalytic activity for removal of VOCs. Catal Commun 56:134–138. https://doi.org/10.1016/j.catcom.2014.07.023 DOI
Topka P, Hejtmánek V, Cruz GJF, Šolcová O, Soukup K (2019) activated carbon from renewable material as an efficient support for palladium oxidation catalysts. Chem Eng Technol 42:851–858. https://doi.org/10.1002/ceat.201800611 DOI
Topka P, Dvořáková M, Kšírová P, Perekrestov R, Čada M, Balabánová J, Koštejn M, Jirátová K, Kovanda F (2020) Structured cobalt oxide catalysts for VOC abatement: the effect of preparation method. Environ Sci Pollut Res 27:7608–7617. https://doi.org/10.1007/s11356-019-06974-2 DOI
Udayabhanu, Muralikrishna S, Kishore B, Nagabhushana H, Suresh D, Sharma SC, Nagaraju G (2017) One pot green synthesis of MnCO
Venkateswarlu P, Umeshbabu E, Kumar UN, Nagaraja P, Tirupathi P, Rao GR, Justin P (2017) Facile hydrothermal synthesis of urchin-like cobalt manganese spinel for high-performance supercapacitor applications. J Colloid Interface Sci 503:17–27. https://doi.org/10.1016/j.jcis.2017.05.007 DOI
Wang K, Cao Y, Hu J, Li Y, Xie J, Jia D (2017) solvent-free chemical approach to synthesize various morphological Co
Wu M, Zhan W, Guo Y, Guo Y, Wang Y, Wang L, Lu G (2016) An effective Mn-Co mixed oxide catalyst for the solvent-free selective oxidation of cyclohexane with molecular oxygen. Appl Catal A 523:97–106. https://doi.org/10.1016/j.apcata.2016.06.001 DOI
Wu S, Xie M, Zhang Q, Zhong L, Muhan C, Huang Z (2017) Isopentyl-sulfide-impregnated nano-MnO
Yang X, Yu X, Jing M, Song W, Liu J, Ge M (2019) Defective Mn
Zhang WD, Anguita P, Diez-Ramirez J, Descorme C, Valverde JL, Giroir-Fendler A (2020) Comparison of different metal doping effects on Co