N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition

. 2024 Sep 23 ; 52 (17) : 10683-10704.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39180402

Grantová podpora
Indo-Swiss Joint Research Program (ISJRP)
CSC0405 Council of Scientific & Industrial Research
23-05639S Czech Science Foundation
133134 Swiss National Science Foundation - Switzerland

The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.

Zobrazit více v PubMed

Boehr D.D., Nussinov R., Wright P.E.. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 2009; 5:954–954. PubMed PMC

Meister G. RNA Biology: An Introduction. 2011; 1st edn.Weinheim: Wiley-VCH.

Corley M., Burns M.C., Yeo G.W.. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell. 2020; 78:9–29. PubMed PMC

Zhang Q., Stelzer A.C., Fisher C.K., Al-Hashimi H.M.. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature. 2007; 450:1263–1267. PubMed

Sawicka K., Bushell M., Spriggs K.A., Willis A.E.. Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein. Biochem. Soc. Trans. 2008; 36:641–647. PubMed

Yang Y., Wang Z.F.. IRES-mediated cap-independent translation, a path leading to hidden proteome. J. Mol. Cell Biol. 2019; 11:911–919. PubMed PMC

Clery A., Blatter M., Allain F.H.T.. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 2008; 18:290–298. PubMed

Oberstrass F.C., Auweter S.D., Erat M., Hargous Y., Henning A., Wenter P., Reymond L., Amir-Ahmady B., Pitsch S., Black D.L.et al. .. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science. 2005; 309:2054–2057. PubMed

Harvey R.F., Smith T.S., Mulroney T., Queiroz R.M.L., Pizzinga M., Dezi V., Villenueva E., Ramakrishna M., Lilley K.S., Willis A.E.. Trans-acting translational regulatory RNA binding proteins. WIREs RNA. 2018; 9:e1465. PubMed PMC

Mitchell S.A., Spriggs K.A., Coldwell M.J., Jackson R.J., Willis A.E.. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol. Cell. 2003; 11:757–771. PubMed

Dorn G., Gmeiner C., de Vries T., Dedic E., Novakovic M., Damberger F.F., Maris C., Finol E., Sarnowski C.P., Kohlbrecher J.et al. .. Integrative solution structure of PTBP1-IRES complex reveals strong compaction and ordering with residual conformational flexibility. Nat. Commun. 2023; 14:6429. PubMed PMC

Maris C., Jayne S., Damberger F.F., Beusch I., Dorn G., Ravindranathan S., Allain F.H.T.. A transient alpha-helix in the N-terminal RNA recognition motif of polypyrimidine tract binding protein senses RNA secondary structure. Nucleic Acids Res. 2020; 48:4521–4537. PubMed PMC

Yu Y.P., Abaeva I.S., Marintchev A., Pestova T.V., Hellen C.U.T.. Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res. 2011; 39:4851–4865. PubMed PMC

Kay L.E., Nicholson L.K., Delaglio F., Bax A., Torchia D.A.. Pulse sequences for removal of the effects of cross-correlation between dipolar and chemical-shift anisotropy relaxation mechanism on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Reson. 1992; 97:359–375.

Farrow N.A., Muhandiram R., Singer A.U., Pascal S.M., Kay C.M., Gish G., Shoelson S.E., Pawson T., Forman-Kay J.D., Kay L.E.. Backbone dynamics of a free and a phosphopeptide-complexed Src homology-2 domain studied by N-15 NMR relaxation. Biochemistry. 1994; 33:5984–6003. PubMed

Peng J.W., Wagner G.. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 1992; 98:308–332.

Yip G.N.B., Zuiderweg E.R.P.. A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment. J. Magn. Reson. 2004; 171:25–36. PubMed

Korzhnev D.M., Tischenko E.V., Arseniev A.S.. Off-resonance effects in 15N T2 CPMG measurements. J. Biomol. NMR. 2000; 17:231–237. PubMed

Wang C.Y., Grey M.J., Palmer A.G.. CPMG sequences with enhanced sensitivity to chemical exchange. J. Biomol. NMR. 2001; 21:361–366. PubMed

Wang C.Y., Palmer A.G.. Solution NMR methods for quantitative identification of chemical exchange in 15N-labeled proteins. Magn. Reson. Chem. 2003; 41:866–876.

Fushman D., Cowburn D.. Model-independent analysis of N-15 chemical shift anisotropy from NMR relaxation data. Ubiquitin as a test example. J. Am. Chem. Soc. 1998; 120:7109–7110.

Fushman D., Tjandra N., Cowburn D.. Direct measurement of N-15 chemical shift anisotropy in solution. J. Am. Chem. Soc. 1998; 120:10947–10952.

Loth K., Pelupessy P., Bodenhausen G.. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. J. Am. Chem. Soc. 2005; 127:6062–6068. PubMed

Kroenke C.D., Loria J.P., Lee L.K., Rance M., Palmer A.G.. Longitudinal and transverse H-1-N-15 dipolar N-15 chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J. Am. Chem. Soc. 1998; 120:7905–7915.

Tjandra N., Szabo A., Bax A.. Protein backbone dynamics and N-15 chemical shift anisotropy from quantitative measurement of relaxation interference effects. J. Am. Chem. Soc. 1996; 118:6986–6991.

Tollinger M., Skrynnikov N.R., Mulder F.A.A., Forman-Kay J.D., Kay L.E.. Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 2001; 123:11341–11352. PubMed

Hansen D.F., Vallurupalli P., Kay L.E.. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J. Phys. Chem. B. 2008; 112:5898–5904. PubMed

Millet O., Loria J.P., Kroenke C.D., Pons M., Palmer A.G.. The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc. 2000; 122:2867–2877.

Long D., Liu M.L., Yang D.W.. Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J. Am. Chem. Soc. 2008; 130:2432–2433. PubMed

Mulder F.A.A., de Graaf R.A., Kaptein R., Boelens R.. An off-resonance rotating frame relaxation experiment for the investigation of macromolecular dynamics using adiabatic rotations. J. Magn. Reson. 1998; 131:351–357. PubMed

Massi F., Johnson E., Wang C.Y., Rance M., Palmer A.G.. NMR R1 rho rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc. 2004; 126:2247–2256. PubMed

Boisbouvier J., Brutscher B., Simorre J.P., Marion D.. C-13 spin relaxation measurements in RNA: sensitivity and resolution improvement using spin-state selective correlation experiments. J. Biomol. NMR. 1999; 14:241–252.

Boisbouvier J., Wu Z.R., Ono A., Kainosho M., Bax A.. Rotational diffusion tensor of nucleic acids from C-13 NMR relaxation. J. Biomol. NMR. 2003; 27:133–142. PubMed

Shajani Z., Varani G.. C-13 NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein. J. Mol. Biol. 2005; 349:699–715. PubMed

Hansen A.L., Nikolova E.N., Casiano-Negroni A., Al-Hashimi H.M.. Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R-1 rho NMR spectroscopy. J. Am. Chem. Soc. 2009; 131:3818–3819. PubMed

Korzhnev D.M., Orekhov V.Y., Kay L.E.. Off-resonance R1ρ NMR studies of exchange dynamics in proteins with low spin-lock fields: An application to a fyn SH3 domain. J. Am. Chem. Soc. 2005; 127:713–721. PubMed

Goddard T.D., Kneller D.G.. SPARKY 3. San Francisco: University of California.

Keller R.L.J. Computer Aided Resonance Assignment Tutorial. 2004; Goldau, Switzerland: Cantina.

Koradi R., Billeter M., Wuthrich K.. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics. 1996; 14:51–55. PubMed

Ramboarina S., Srividya N., Atkinson R.A., Morellet N., Roques B.P., Lefevre J.F., Mely Y., Kieffer B.. Effects of temperature on the dynamic behaviour of the HIV-1 nucleocapsid NCp7 and its DNA complex. J. Mol. Biol. 2002; 316:611–627. PubMed

Mandel A.M., Akke M., Palmer A.G.. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 1995; 246:144–163. PubMed

Ravindranathan S., Oberstrass F.C., Allain F.H.T.. Increase in backbone mobility of the VTS1p-SAM domain on binding to SRE-RNA. J. Mol. Biol. 2010; 396:732–746. PubMed

Davis D.G., Perlman M.E., London R.E.. Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1 Rho and T2 (CPMG) methods. J. Magn. Reson., Ser B. 1994; 104:266–275. PubMed

Palmer A.G., Massi F.. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 2006; 106:1700–1719. PubMed

Cavanagh J. Protein NMR spectroscopy : Principles and practice. 2007; 2nd edn.Amsterdam; Boston: Academic Press.

Schilling F., Warner L.R., Gershenzon N.I., Skinner T.E., Sattler M., Glaser S.J.. Next-generation heteronuclear decoupling for high-field biomolecular NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 2014; 53:4475–4479. PubMed

Wurz J.M., Güntert P.. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK. J. Biomol. NMR. 2017; 67:63–76. PubMed

Buchner L., Güntert P.. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles. Structure. 2015; 23:425–434. PubMed

Fleming P.J., Fleming K.G.. HullRad: fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys. J. 2018; 114:856–869. PubMed PMC

Korson L., Drost-Hansen W., Millero F.J.. Viscosity of water at various temperatures. J. Phys. Chem. 1969; 73:34–39.

Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C.. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015; 11:3696–3713. PubMed PMC

Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E. 3rd, Jurecka P.. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC

Case D.A., Betz R.M., Cerutti D.S., Cheatham T.E., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N.et al. .. 2016; San Francisco: University of California.

Joung I.S., Cheatham T.E. 3rd. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC

Krepl M., Clery A., Blatter M., Allain F.H., Šponer J.. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016; 44:6452–6470. PubMed PMC

Wang L., Friesner R.A., Berne B.J.. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B. 2011; 115:9431–9438. PubMed PMC

Šponer J., Bussi G., Krepl M., Banas P., Bottaro S., Cunha R.A., Gil-Ley A., Pinamonti G., Poblete S., Jureacka P.et al. .. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018; 118:4177–4338. PubMed PMC

Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graphics Modell. 1996; 14:33–38. PubMed

Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed

Showalter S.A., Bruschweiler R.. Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J. Chem. Theory Comput. 2007; 3:961–975. PubMed

Atkinson R.A., Kieffer B.. The role of protein motions in molecular recognition: insights from heteronuclear NMR relaxation measurements. Prog. Nucl. Magn. Reson. Spectrosc. 2004; 44:141–187.

Clore G.M., Szabo A., Bax A., Kay L.E., Driscoll P.C., Gronenborn A.M.. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 1990; 112:4989–4991.

Buosi V., Placial J.P., Leroy J.L., Cherfils J., Guittet E., van Heijenoort C.. Insight into the role of dynamics in the conformational switch of the small GTP-binding protein Arf1. J. Biol. Chem. 2010; 285:37987–37994. PubMed PMC

Buck M., Schwalbe H., Dobson C.M.. Main-chain dynamics of a partially folded protein: N-15 NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J. Mol. Biol. 1996; 257:669–683. PubMed

Jarymowycz V.A., Stone M.J.. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006; 106:1624–1671. PubMed

Camilloni C., De Simone A., Vranken W.F., Vendruscolo M.. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry. 2012; 51:2224–2231. PubMed

Simpson P.J., Monie T.P., Szendroi A., Davydova N., Tyzack J.K., Conte M.R., Read C.M., Cary P.D., Svergun D.I., Konarev P.V.et al. .. Structure and RNA interactions of the N-terminal RRM domains of PTB. Structure. 2004; 12:1631–1643. PubMed

Clay M.C., Ganser L.R., Merriman D.K., Al-Hashimi H.M.. Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res. 2017; 45:e134. PubMed PMC

Diarra dit Konté N., Krepl M., Damberger F.F., Ripin N., Duss O., Šponer J., Allain F.H.T.. Aromatic side-chain conformational switch on the surface of the RNA recognition motif enables RNA discrimination. Nat. Commun. 2017; 8:654. PubMed PMC

Larion M., Salinas R.K., Bruschweiler-Li L., Miller B.G., Bruschweiler R.. Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol. 2012; 10:e1001452. PubMed PMC

Han Z., Wu Z., Gong W., Zhou W., Chen L., Li C.. Allosteric mechanism for SL RNA recognition by polypyrimidine tract binding protein RRM1: an atomistic MD simulation and network-based study. Int. J. Biol. Macromol. 2022; 221:763–772. PubMed

Maris C., Dominguez C., Allain F.H.T.. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005; 272:2118–2131. PubMed

Gronland G.R., Ramos A.. The devil is in the domain: understanding protein recognition of multiple RNA targets. Biochem. Soc. Trans. 2017; 45:1305–1311. PubMed

Balcerak A., Trebinska-Stryjewska A., Konopinski R., Wakula M., Grzybowska E.A.. RNA-protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biol. 2019; 9:190096. PubMed PMC

Latysheva N.S., Flock T., Weatheritt R.J., Chavali S., Babu M.M.. How do disordered regions achieve comparable functions to structured domains?. Protein Sci. 2015; 24:909–922. PubMed PMC

Mackereth C.D., Sattler M.. Dynamics in multi-domain protein recognition of RNA. Curr. Opin. Struct. Biol. 2012; 22:287–296. PubMed

Papaleo E., Saladino G., Lambrughi M., Lindorff-Larsen K., Gervasio F.L., Nussinov R.. The role of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 2016; 116:6391–6423. PubMed

Saavedra H.G., Wrabl J.O., Anderson J.A., Li J., Hilser V.J.. Dynamic allostery can drive cold adaptation in enzymes. Nature. 2018; 558:324–328. PubMed PMC

Hornbeck P.V., Zhang B., Murray B., Kornhauser J.M., Latham V., Skrzypek E.. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015; 43:D512–D520. PubMed PMC

Upadhyay S.K., Mackereth C.D.. Structural basis of UCUU RNA motif recognition by splicing factor RBM20. Nucleic Acids Res. 2020; 48:4538–4550. PubMed PMC

Yu L.P., Zhu C.X., TseDinh Y.C., Fesik S.W.. Backbone dynamics of the C-terminal domain of Escherichia coli topoisomerase I in the absence and presence of single-stranded DNA. Biochemistry. 1996; 35:9661–9666. PubMed

Mittermaier A., Varani L., Muhandiram D.R., Kay L.E., Varani G.. Changes in side-chain and backbone dynamics identify determinants of specificity in RNA recognition by human U1A protein. J. Mol. Biol. 1999; 294:967–979. PubMed

Deka P., Rajan P.K., Perez-Canadillas J.M., Varani G.. Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein. J. Mol. Biol. 2005; 347:719–733. PubMed

Maynard C.M., Hall K.B.. Interactions between PTB RRMs induce slow motions and increase RNA binding affinity. J. Mol. Biol. 2010; 397:260–277. PubMed PMC

Sharma S., Maris C., Allain F.H.T., Black D.L.. U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression. Mol. Cell. 2011; 41:579–588. PubMed PMC

Kafasla P., Lin H., Curry S., Jackson R.J.. Activation of picornaviral IRESs by PTB shows differential dependence on each PTB RNA-binding domain. RNA. 2011; 17:1120–1131. PubMed PMC

Liu C.N., Yang Z.H., Wu J.G., Zhang L., Lee S.M., Shin D.J., Tran M., Wang L.. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology. 2018; 67:1768–1783. PubMed PMC

Ramos A.D., Andersen R.E., Liu S.J., Nowakowski T.J., Hong S.J., Gertz C.C., Salinas R.D., Zarabi H., Kriegstein A.R., Lim D.A.. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015; 16:439–447. PubMed PMC

Lin N.W., Chang K.Y., Li Z.H., Gates K., Rana Z.A., Dang J.S., Zhang D.H., Han T.X., Yang C.S., Cunningham T.J.et al. .. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell. 2014; 53:1005–1019. PubMed PMC

Sauvageau M. Diverging RNPs: toward understanding lncRNA-protein interactions and functions. Adv. Exp. Med. Biol. 2019; 1203:285–312. PubMed

Wysoczanski P., Schneider C., Xiang S., Munari F., Trowitzsch S., Wahl M.C., Luhrmann R., Becker S., Zweckstetter M.. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nature Struct. Mol. Biol. 2014; 21:911–918. PubMed

Ghosh G., Adams J.A.. Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J. 2011; 278:587–597. PubMed PMC

Huynh N., Ma C.T., Giang N., Hagopian J., Ngo J., Adams J., Ghosh G.. Allosteric interactions direct binding and phosphorylation of ASF/SF2 by SRPK1. Biochemistry. 2009; 48:11432–11440. PubMed PMC

Blatter M., Dunin-Horkawicz S., Grishina I., Maris C., Thore S., Maier T., Bindereif A., Bujnicki J.M., Allain F.H.T.. The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein. J. Mol. Biol. 2015; 427:3001–3022. PubMed

Meiselbach H., Sticht H., Enz R.. Structural analysis of the protein phosphatase 1 docking motif: Molecular description of binding specificities identifies interacting proteins. Chem. Biol. 2006; 13:49–59. PubMed

Novoyatleva T., Heinrich B., Tang Y., Benderska N., Butchbach M.E.R., Lorson C.L., Lorson M.A., Ben-Dov C., Fehlbaum P., Bracco L.et al. .. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum. Mol. Genet. 2008; 17:52–70. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...