N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
Indo-Swiss Joint Research Program (ISJRP)
CSC0405
Council of Scientific & Industrial Research
23-05639S
Czech Science Foundation
133134
Swiss National Science Foundation - Switzerland
PubMed
39180402
PubMed Central
PMC11417363
DOI
10.1093/nar/gkae713
PII: 7740593
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- motiv rozpoznávající RNA MeSH
- protein vázající polypyrimidinové úseky RNA * metabolismus chemie MeSH
- proteinové domény MeSH
- RNA * chemie metabolismus MeSH
- sbalování proteinů MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů * MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protein vázající polypyrimidinové úseky RNA * MeSH
- RNA * MeSH
The N-terminal RNA recognition motif domain (RRM1) of polypyrimidine tract binding protein (PTB) forms an additional C-terminal helix α3, which docks to one edge of the β-sheet upon binding to a stem-loop RNA containing a UCUUU pentaloop. Importantly, α3 does not contact the RNA. The α3 helix therefore represents an allosteric means to regulate the conformation of adjacent domains in PTB upon binding structured RNAs. Here we investigate the process of dynamic adaptation by stem-loop RNA and RRM1 using NMR and MD in order to obtain mechanistic insights on how this allostery is achieved. Relaxation data and NMR structure determination of the free protein show that α3 is partially ordered and interacts with the domain transiently. Stem-loop RNA binding quenches fast time scale dynamics and α3 becomes ordered, however microsecond dynamics at the protein-RNA interface is observed. MD shows how RRM1 binding to the stem-loop RNA is coupled to the stabilization of the C-terminal helix and helps to transduce differences in RNA loop sequence into changes in α3 length and order. IRES assays of full length PTB and a mutant with altered dynamics in the α3 region show that this dynamic allostery influences PTB function in cultured HEK293T cells.
Central NMR Facility CSIR National Chemical Laboratory Pune 411008 India
Department of Biology ETH Zurich 8093 Zurich Switzerland
Institute of Biochemistry ETH Zurich 8093 Zurich Switzerland
Zobrazit více v PubMed
Boehr D.D., Nussinov R., Wright P.E.. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 2009; 5:954–954. PubMed PMC
Meister G. RNA Biology: An Introduction. 2011; 1st edn.Weinheim: Wiley-VCH.
Corley M., Burns M.C., Yeo G.W.. How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell. 2020; 78:9–29. PubMed PMC
Zhang Q., Stelzer A.C., Fisher C.K., Al-Hashimi H.M.. Visualizing spatially correlated dynamics that directs RNA conformational transitions. Nature. 2007; 450:1263–1267. PubMed
Sawicka K., Bushell M., Spriggs K.A., Willis A.E.. Polypyrimidine-tract-binding protein: A multifunctional RNA-binding protein. Biochem. Soc. Trans. 2008; 36:641–647. PubMed
Yang Y., Wang Z.F.. IRES-mediated cap-independent translation, a path leading to hidden proteome. J. Mol. Cell Biol. 2019; 11:911–919. PubMed PMC
Clery A., Blatter M., Allain F.H.T.. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 2008; 18:290–298. PubMed
Oberstrass F.C., Auweter S.D., Erat M., Hargous Y., Henning A., Wenter P., Reymond L., Amir-Ahmady B., Pitsch S., Black D.L.et al. .. Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science. 2005; 309:2054–2057. PubMed
Harvey R.F., Smith T.S., Mulroney T., Queiroz R.M.L., Pizzinga M., Dezi V., Villenueva E., Ramakrishna M., Lilley K.S., Willis A.E.. Trans-acting translational regulatory RNA binding proteins. WIREs RNA. 2018; 9:e1465. PubMed PMC
Mitchell S.A., Spriggs K.A., Coldwell M.J., Jackson R.J., Willis A.E.. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol. Cell. 2003; 11:757–771. PubMed
Dorn G., Gmeiner C., de Vries T., Dedic E., Novakovic M., Damberger F.F., Maris C., Finol E., Sarnowski C.P., Kohlbrecher J.et al. .. Integrative solution structure of PTBP1-IRES complex reveals strong compaction and ordering with residual conformational flexibility. Nat. Commun. 2023; 14:6429. PubMed PMC
Maris C., Jayne S., Damberger F.F., Beusch I., Dorn G., Ravindranathan S., Allain F.H.T.. A transient alpha-helix in the N-terminal RNA recognition motif of polypyrimidine tract binding protein senses RNA secondary structure. Nucleic Acids Res. 2020; 48:4521–4537. PubMed PMC
Yu Y.P., Abaeva I.S., Marintchev A., Pestova T.V., Hellen C.U.T.. Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res. 2011; 39:4851–4865. PubMed PMC
Kay L.E., Nicholson L.K., Delaglio F., Bax A., Torchia D.A.. Pulse sequences for removal of the effects of cross-correlation between dipolar and chemical-shift anisotropy relaxation mechanism on the measurement of heteronuclear T1 and T2 values in proteins. J. Magn. Reson. 1992; 97:359–375.
Farrow N.A., Muhandiram R., Singer A.U., Pascal S.M., Kay C.M., Gish G., Shoelson S.E., Pawson T., Forman-Kay J.D., Kay L.E.. Backbone dynamics of a free and a phosphopeptide-complexed Src homology-2 domain studied by N-15 NMR relaxation. Biochemistry. 1994; 33:5984–6003. PubMed
Peng J.W., Wagner G.. Mapping of spectral density functions using heteronuclear NMR relaxation measurements. J. Magn. Reson. 1992; 98:308–332.
Yip G.N.B., Zuiderweg E.R.P.. A phase cycle scheme that significantly suppresses offset-dependent artifacts in the R2-CPMG 15N relaxation experiment. J. Magn. Reson. 2004; 171:25–36. PubMed
Korzhnev D.M., Tischenko E.V., Arseniev A.S.. Off-resonance effects in 15N T2 CPMG measurements. J. Biomol. NMR. 2000; 17:231–237. PubMed
Wang C.Y., Grey M.J., Palmer A.G.. CPMG sequences with enhanced sensitivity to chemical exchange. J. Biomol. NMR. 2001; 21:361–366. PubMed
Wang C.Y., Palmer A.G.. Solution NMR methods for quantitative identification of chemical exchange in 15N-labeled proteins. Magn. Reson. Chem. 2003; 41:866–876.
Fushman D., Cowburn D.. Model-independent analysis of N-15 chemical shift anisotropy from NMR relaxation data. Ubiquitin as a test example. J. Am. Chem. Soc. 1998; 120:7109–7110.
Fushman D., Tjandra N., Cowburn D.. Direct measurement of N-15 chemical shift anisotropy in solution. J. Am. Chem. Soc. 1998; 120:10947–10952.
Loth K., Pelupessy P., Bodenhausen G.. Chemical shift anisotropy tensors of carbonyl, nitrogen, and amide proton nuclei in proteins through cross-correlated relaxation in NMR spectroscopy. J. Am. Chem. Soc. 2005; 127:6062–6068. PubMed
Kroenke C.D., Loria J.P., Lee L.K., Rance M., Palmer A.G.. Longitudinal and transverse H-1-N-15 dipolar N-15 chemical shift anisotropy relaxation interference: unambiguous determination of rotational diffusion tensors and chemical exchange effects in biological macromolecules. J. Am. Chem. Soc. 1998; 120:7905–7915.
Tjandra N., Szabo A., Bax A.. Protein backbone dynamics and N-15 chemical shift anisotropy from quantitative measurement of relaxation interference effects. J. Am. Chem. Soc. 1996; 118:6986–6991.
Tollinger M., Skrynnikov N.R., Mulder F.A.A., Forman-Kay J.D., Kay L.E.. Slow dynamics in folded and unfolded states of an SH3 domain. J. Am. Chem. Soc. 2001; 123:11341–11352. PubMed
Hansen D.F., Vallurupalli P., Kay L.E.. An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J. Phys. Chem. B. 2008; 112:5898–5904. PubMed
Millet O., Loria J.P., Kroenke C.D., Pons M., Palmer A.G.. The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc. 2000; 122:2867–2877.
Long D., Liu M.L., Yang D.W.. Accurately probing slow motions on millisecond timescales with a robust NMR relaxation experiment. J. Am. Chem. Soc. 2008; 130:2432–2433. PubMed
Mulder F.A.A., de Graaf R.A., Kaptein R., Boelens R.. An off-resonance rotating frame relaxation experiment for the investigation of macromolecular dynamics using adiabatic rotations. J. Magn. Reson. 1998; 131:351–357. PubMed
Massi F., Johnson E., Wang C.Y., Rance M., Palmer A.G.. NMR R1 rho rotating-frame relaxation with weak radio frequency fields. J. Am. Chem. Soc. 2004; 126:2247–2256. PubMed
Boisbouvier J., Brutscher B., Simorre J.P., Marion D.. C-13 spin relaxation measurements in RNA: sensitivity and resolution improvement using spin-state selective correlation experiments. J. Biomol. NMR. 1999; 14:241–252.
Boisbouvier J., Wu Z.R., Ono A., Kainosho M., Bax A.. Rotational diffusion tensor of nucleic acids from C-13 NMR relaxation. J. Biomol. NMR. 2003; 27:133–142. PubMed
Shajani Z., Varani G.. C-13 NMR relaxation studies of RNA base and ribose nuclei reveal a complex pattern of motions in the RNA binding site for human U1A protein. J. Mol. Biol. 2005; 349:699–715. PubMed
Hansen A.L., Nikolova E.N., Casiano-Negroni A., Al-Hashimi H.M.. Extending the range of microsecond-to-millisecond chemical exchange detected in labeled and unlabeled nucleic acids by selective carbon R-1 rho NMR spectroscopy. J. Am. Chem. Soc. 2009; 131:3818–3819. PubMed
Korzhnev D.M., Orekhov V.Y., Kay L.E.. Off-resonance R1ρ NMR studies of exchange dynamics in proteins with low spin-lock fields: An application to a fyn SH3 domain. J. Am. Chem. Soc. 2005; 127:713–721. PubMed
Goddard T.D., Kneller D.G.. SPARKY 3. San Francisco: University of California.
Keller R.L.J. Computer Aided Resonance Assignment Tutorial. 2004; Goldau, Switzerland: Cantina.
Koradi R., Billeter M., Wuthrich K.. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics. 1996; 14:51–55. PubMed
Ramboarina S., Srividya N., Atkinson R.A., Morellet N., Roques B.P., Lefevre J.F., Mely Y., Kieffer B.. Effects of temperature on the dynamic behaviour of the HIV-1 nucleocapsid NCp7 and its DNA complex. J. Mol. Biol. 2002; 316:611–627. PubMed
Mandel A.M., Akke M., Palmer A.G.. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 1995; 246:144–163. PubMed
Ravindranathan S., Oberstrass F.C., Allain F.H.T.. Increase in backbone mobility of the VTS1p-SAM domain on binding to SRE-RNA. J. Mol. Biol. 2010; 396:732–746. PubMed
Davis D.G., Perlman M.E., London R.E.. Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1 Rho and T2 (CPMG) methods. J. Magn. Reson., Ser B. 1994; 104:266–275. PubMed
Palmer A.G., Massi F.. Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 2006; 106:1700–1719. PubMed
Cavanagh J. Protein NMR spectroscopy : Principles and practice. 2007; 2nd edn.Amsterdam; Boston: Academic Press.
Schilling F., Warner L.R., Gershenzon N.I., Skinner T.E., Sattler M., Glaser S.J.. Next-generation heteronuclear decoupling for high-field biomolecular NMR spectroscopy. Angew. Chem. Int. Ed. Engl. 2014; 53:4475–4479. PubMed
Wurz J.M., Güntert P.. Peak picking multidimensional NMR spectra with the contour geometry based algorithm CYPICK. J. Biomol. NMR. 2017; 67:63–76. PubMed
Buchner L., Güntert P.. Increased reliability of nuclear magnetic resonance protein structures by consensus structure bundles. Structure. 2015; 23:425–434. PubMed
Fleming P.J., Fleming K.G.. HullRad: fast calculations of folded and disordered protein and nucleic acid hydrodynamic properties. Biophys. J. 2018; 114:856–869. PubMed PMC
Korson L., Drost-Hansen W., Millero F.J.. Viscosity of water at various temperatures. J. Phys. Chem. 1969; 73:34–39.
Maier J.A., Martinez C., Kasavajhala K., Wickstrom L., Hauser K.E., Simmerling C.. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015; 11:3696–3713. PubMed PMC
Zgarbova M., Otyepka M., Sponer J., Mladek A., Banas P., Cheatham T.E. 3rd, Jurecka P.. Refinement of the Cornell et al. Nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory Comput. 2011; 7:2886–2902. PubMed PMC
Case D.A., Betz R.M., Cerutti D.S., Cheatham T.E., Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N.et al. .. 2016; San Francisco: University of California.
Joung I.S., Cheatham T.E. 3rd. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008; 112:9020–9041. PubMed PMC
Krepl M., Clery A., Blatter M., Allain F.H., Šponer J.. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016; 44:6452–6470. PubMed PMC
Wang L., Friesner R.A., Berne B.J.. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). J. Phys. Chem. B. 2011; 115:9431–9438. PubMed PMC
Šponer J., Bussi G., Krepl M., Banas P., Bottaro S., Cunha R.A., Gil-Ley A., Pinamonti G., Poblete S., Jureacka P.et al. .. RNA structural dynamics as captured by molecular simulations: a comprehensive overview. Chem. Rev. 2018; 118:4177–4338. PubMed PMC
Humphrey W., Dalke A., Schulten K.. VMD: visual molecular dynamics. J. Mol. Graphics Modell. 1996; 14:33–38. PubMed
Roe D.R., Cheatham T.E.. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013; 9:3084–3095. PubMed
Showalter S.A., Bruschweiler R.. Validation of molecular dynamics simulations of biomolecules using NMR spin relaxation as benchmarks: application to the AMBER99SB force field. J. Chem. Theory Comput. 2007; 3:961–975. PubMed
Atkinson R.A., Kieffer B.. The role of protein motions in molecular recognition: insights from heteronuclear NMR relaxation measurements. Prog. Nucl. Magn. Reson. Spectrosc. 2004; 44:141–187.
Clore G.M., Szabo A., Bax A., Kay L.E., Driscoll P.C., Gronenborn A.M.. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 1990; 112:4989–4991.
Buosi V., Placial J.P., Leroy J.L., Cherfils J., Guittet E., van Heijenoort C.. Insight into the role of dynamics in the conformational switch of the small GTP-binding protein Arf1. J. Biol. Chem. 2010; 285:37987–37994. PubMed PMC
Buck M., Schwalbe H., Dobson C.M.. Main-chain dynamics of a partially folded protein: N-15 NMR relaxation measurements of hen egg white lysozyme denatured in trifluoroethanol. J. Mol. Biol. 1996; 257:669–683. PubMed
Jarymowycz V.A., Stone M.J.. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem. Rev. 2006; 106:1624–1671. PubMed
Camilloni C., De Simone A., Vranken W.F., Vendruscolo M.. Determination of secondary structure populations in disordered states of proteins using nuclear magnetic resonance chemical shifts. Biochemistry. 2012; 51:2224–2231. PubMed
Simpson P.J., Monie T.P., Szendroi A., Davydova N., Tyzack J.K., Conte M.R., Read C.M., Cary P.D., Svergun D.I., Konarev P.V.et al. .. Structure and RNA interactions of the N-terminal RRM domains of PTB. Structure. 2004; 12:1631–1643. PubMed
Clay M.C., Ganser L.R., Merriman D.K., Al-Hashimi H.M.. Resolving sugar puckers in RNA excited states exposes slow modes of repuckering dynamics. Nucleic Acids Res. 2017; 45:e134. PubMed PMC
Diarra dit Konté N., Krepl M., Damberger F.F., Ripin N., Duss O., Šponer J., Allain F.H.T.. Aromatic side-chain conformational switch on the surface of the RNA recognition motif enables RNA discrimination. Nat. Commun. 2017; 8:654. PubMed PMC
Larion M., Salinas R.K., Bruschweiler-Li L., Miller B.G., Bruschweiler R.. Order-disorder transitions govern kinetic cooperativity and allostery of monomeric human glucokinase. PLoS Biol. 2012; 10:e1001452. PubMed PMC
Han Z., Wu Z., Gong W., Zhou W., Chen L., Li C.. Allosteric mechanism for SL RNA recognition by polypyrimidine tract binding protein RRM1: an atomistic MD simulation and network-based study. Int. J. Biol. Macromol. 2022; 221:763–772. PubMed
Maris C., Dominguez C., Allain F.H.T.. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005; 272:2118–2131. PubMed
Gronland G.R., Ramos A.. The devil is in the domain: understanding protein recognition of multiple RNA targets. Biochem. Soc. Trans. 2017; 45:1305–1311. PubMed
Balcerak A., Trebinska-Stryjewska A., Konopinski R., Wakula M., Grzybowska E.A.. RNA-protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biol. 2019; 9:190096. PubMed PMC
Latysheva N.S., Flock T., Weatheritt R.J., Chavali S., Babu M.M.. How do disordered regions achieve comparable functions to structured domains?. Protein Sci. 2015; 24:909–922. PubMed PMC
Mackereth C.D., Sattler M.. Dynamics in multi-domain protein recognition of RNA. Curr. Opin. Struct. Biol. 2012; 22:287–296. PubMed
Papaleo E., Saladino G., Lambrughi M., Lindorff-Larsen K., Gervasio F.L., Nussinov R.. The role of protein loops and linkers in conformational dynamics and allostery. Chem. Rev. 2016; 116:6391–6423. PubMed
Saavedra H.G., Wrabl J.O., Anderson J.A., Li J., Hilser V.J.. Dynamic allostery can drive cold adaptation in enzymes. Nature. 2018; 558:324–328. PubMed PMC
Hornbeck P.V., Zhang B., Murray B., Kornhauser J.M., Latham V., Skrzypek E.. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res. 2015; 43:D512–D520. PubMed PMC
Upadhyay S.K., Mackereth C.D.. Structural basis of UCUU RNA motif recognition by splicing factor RBM20. Nucleic Acids Res. 2020; 48:4538–4550. PubMed PMC
Yu L.P., Zhu C.X., TseDinh Y.C., Fesik S.W.. Backbone dynamics of the C-terminal domain of Escherichia coli topoisomerase I in the absence and presence of single-stranded DNA. Biochemistry. 1996; 35:9661–9666. PubMed
Mittermaier A., Varani L., Muhandiram D.R., Kay L.E., Varani G.. Changes in side-chain and backbone dynamics identify determinants of specificity in RNA recognition by human U1A protein. J. Mol. Biol. 1999; 294:967–979. PubMed
Deka P., Rajan P.K., Perez-Canadillas J.M., Varani G.. Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein. J. Mol. Biol. 2005; 347:719–733. PubMed
Maynard C.M., Hall K.B.. Interactions between PTB RRMs induce slow motions and increase RNA binding affinity. J. Mol. Biol. 2010; 397:260–277. PubMed PMC
Sharma S., Maris C., Allain F.H.T., Black D.L.. U1 snRNA directly interacts with polypyrimidine tract-binding protein during splicing repression. Mol. Cell. 2011; 41:579–588. PubMed PMC
Kafasla P., Lin H., Curry S., Jackson R.J.. Activation of picornaviral IRESs by PTB shows differential dependence on each PTB RNA-binding domain. RNA. 2011; 17:1120–1131. PubMed PMC
Liu C.N., Yang Z.H., Wu J.G., Zhang L., Lee S.M., Shin D.J., Tran M., Wang L.. Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology. 2018; 67:1768–1783. PubMed PMC
Ramos A.D., Andersen R.E., Liu S.J., Nowakowski T.J., Hong S.J., Gertz C.C., Salinas R.D., Zarabi H., Kriegstein A.R., Lim D.A.. The long noncoding RNA Pnky regulates neuronal differentiation of embryonic and postnatal neural stem cells. Cell Stem Cell. 2015; 16:439–447. PubMed PMC
Lin N.W., Chang K.Y., Li Z.H., Gates K., Rana Z.A., Dang J.S., Zhang D.H., Han T.X., Yang C.S., Cunningham T.J.et al. .. An evolutionarily conserved long noncoding RNA TUNA controls pluripotency and neural lineage commitment. Mol. Cell. 2014; 53:1005–1019. PubMed PMC
Sauvageau M. Diverging RNPs: toward understanding lncRNA-protein interactions and functions. Adv. Exp. Med. Biol. 2019; 1203:285–312. PubMed
Wysoczanski P., Schneider C., Xiang S., Munari F., Trowitzsch S., Wahl M.C., Luhrmann R., Becker S., Zweckstetter M.. Cooperative structure of the heterotrimeric pre-mRNA retention and splicing complex. Nature Struct. Mol. Biol. 2014; 21:911–918. PubMed
Ghosh G., Adams J.A.. Phosphorylation mechanism and structure of serine-arginine protein kinases. FEBS J. 2011; 278:587–597. PubMed PMC
Huynh N., Ma C.T., Giang N., Hagopian J., Ngo J., Adams J., Ghosh G.. Allosteric interactions direct binding and phosphorylation of ASF/SF2 by SRPK1. Biochemistry. 2009; 48:11432–11440. PubMed PMC
Blatter M., Dunin-Horkawicz S., Grishina I., Maris C., Thore S., Maier T., Bindereif A., Bujnicki J.M., Allain F.H.T.. The signature of the five-stranded vRRM fold defined by functional, structural and computational analysis of the hnRNP L protein. J. Mol. Biol. 2015; 427:3001–3022. PubMed
Meiselbach H., Sticht H., Enz R.. Structural analysis of the protein phosphatase 1 docking motif: Molecular description of binding specificities identifies interacting proteins. Chem. Biol. 2006; 13:49–59. PubMed
Novoyatleva T., Heinrich B., Tang Y., Benderska N., Butchbach M.E.R., Lorson C.L., Lorson M.A., Ben-Dov C., Fehlbaum P., Bracco L.et al. .. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Hum. Mol. Genet. 2008; 17:52–70. PubMed