Newton's cradle-like allosteric mechanism explains regulatory RsmE RNA binding
Status PubMed-not-MEDLINE Language English Country United States Media electronic
Document type Journal Article, Preprint
PubMed
40321760
PubMed Central
PMC12047976
DOI
10.21203/rs.3.rs-6227789/v1
PII: rs.3.rs-6227789
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Preprint MeSH
In the bacterial Csr/Rsm system, non-coding RNAs activate mRNA translation by removing homodimeric Csr/Rsm proteins from the ribosome-binding sites of mRNAs. In Pseudomonas protegens, each RsmZ ncRNA sequesters up to five RsmE dimers sequentially and specifically within a narrow affinity range, functioning as a 'protein sponge'. Although the RsmE binding cascade is cooperative, binding of the highest affinity stem-loop RNA in RsmZ (SL2) reduces RNA binding affinity at the second site by 10- to 30-fold. This unusual negative cooperativity may facilitate RsmE release from tightly bound mRNA for handover to the non-coding RNA, yet the underlying mechanisms remain unclear. Using Isothermal Titration Calorimetry, NMR spectroscopy and Molecular Dynamic simulations, we show that the initial binding event increases conformational entropy at the empty site, partially unfolding the C-terminal helix. Moreover, we reveal an allosteric mechanism coupling RNA binding at the first site to conformational changes at the second site, explaining the reduced affinity of the second binding event. The anti-parallel β-sheets in the RsmE dimer facilitate communication between sites, with H-bond constriction at the bound site and relaxation at the empty site, resembling a Newton's cradle.
Institute for Biochemistry Department of Biology ETH Zurich 8093 Zurich Switzerland
Institute of Biophysics of the Czech Academy of Sciences Kralovopolska 135 61200 Brno Czech Republic
See more in PubMed
Schubert M. et al. Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nat. Struct. Mol. Biol. 14, 807–813 (2007). PubMed
Romeo T., Gong M., Liu M. Y. & Brun-Zinkernagel A. M. Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J. Bacteriol. 175, 4744–4755 (1993). PubMed PMC
Vakulskas C. A., Potts A. H., Babitzke P., Ahmer B. M. M. & Romeo T. Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol. Mol. Biol. Rev. MMBR 79, 193–224 (2015). PubMed PMC
Timmermans J. & Van Melderen L. Post-transcriptional global regulation by CsrA in bacteria. Cell. Mol. Life Sci. CMLS 67, 2897–2908 (2010). PubMed PMC
Babitzke P. & Romeo T. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol. 10, 156–163 (2007). PubMed
Heeb S., Blumer C. & Haas D. Regulatory RNA as mediator in GacA/RsmA-dependent global control of exoproduct formation in Pseudomonas fluorescens CHA0. J. Bacteriol. 184, 1046–1056 (2002). PubMed PMC
Duss O., Michel E., Diarra dit Konté N., Schubert M. & Allain F. H.-T. Molecular basis for the wide range of affinity found in Csr/Rsm protein–RNA recognition. Nucleic Acids Res. 42, 5332–5346 (2014). PubMed PMC
Duss O. et al. Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature 509, 588–592 (2014). PubMed
Kay L. E., Torchia D. A. & Bax A. Backbone dynamics of proteins as studied by nitrogen-15 inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. Biochemistry 28, 8972–8979 (1989). PubMed
Ohnishi M. & Urry D. W. Temperature dependence of amide proton chemical shifts: The secondary structures of gramicidin S and valinomycin. Biochem. Biophys. Res. Commun. 36, 194–202 (1969). PubMed
Baxter N. J. & Williamson M. P. Temperature dependence of 1H chemical shifts in proteins. J. Biomol. NMR 9, 359–369 (1997). PubMed
Anderson A. C., O’Neil R. H., DeLano W. L. & Stroud R. M. The structural mechanism for half-the-sites reactivity in an enzyme, thymidylate synthase, involves a relay of changes between subunits. Biochemistry 38, 13829–13836 (1999). PubMed
Leslie A. G. & Wonacott A. J. Structural evidence for ligand-induced sequential conformational changes in glyceraldehyde 3-phosphate dehydrogenase. J. Mol. Biol. 178, 743–772 (1984). PubMed
Popovych N., Sun S., Ebright R. H. & Kalodimos C. G. Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831–838 (2006). PubMed PMC
Ravindranathan S., Oberstrass F. C. & Allain F. H. −. T. Increase in Backbone Mobility of the VTS1p-SAM Domain on Binding to SRE–RNA. J. Mol. Biol. 396, 732–746 (2010). PubMed
Damberger F. F. et al. N-terminal domain of polypyrimidine-tract binding protein is a dynamic folding platform for adaptive RNA recognition. Nucleic Acids Res. 52, 10683–10704 (2024). PubMed PMC
Deka P., Rajan P. K., Perez-Canadillas J. M. & Varani G. Protein and RNA Dynamics Play Key Roles in Determining the Specific Recognition of GU-rich Polyadenylation Regulatory Elements by Human Cstf-64 Protein. J. Mol. Biol. 347, 719–733 (2005). PubMed
Mittermaier A., Varani L., Muhandiram D. R., Kay L. E. & Varani G. Changes in side-chain and backbone dynamics identify determinants of specificity in RNA recognition by human U1A protein1. J. Mol. Biol. 294, 967–979 (1999). PubMed
Gianni S. et al. Fuzziness and Frustration in the Energy Landscape of Protein Folding, Function, and Assembly. Acc. Chem. Res. 54, 1251–1259 (2021). PubMed PMC
Wu N., Barahona M. & Yaliraki S. N. Allosteric communication and signal transduction in proteins. Curr. Opin. Struct. Biol. 84, 102737 (2024). PubMed
Najjari B., Le Gac S., Roisnel T., Dorcet V. & Boitrel B. Metal Migration Processes in Homo- and Heterobimetallic Bismuth(III)–Lead(II) Porphyrin Complexes: Emergence of Allosteric Newton’s Cradle-like Devices. J. Am. Chem. Soc. 134, 16017–16032 (2012). PubMed
Capdevila D. A., Braymer J. J., Edmonds K. A., Wu H. & Giedroc D. P. Entropy redistribution controls allostery in a metalloregulatory protein. Proc. Natl. Acad. Sci. U. S. A. 114, 4424–4429 (2017). PubMed PMC
Post M., Lickert B., Diez G., Wolf S. & Stock G. Cooperative Protein Allosteric Transition Mediated by a Fluctuating Transmission Network. J. Mol. Biol. 434, 167679 (2022). PubMed
Torres-Paris C., Song H. J., Engelberger F., Ramírez-Sarmiento C. A. & Komives E. A. The Light Chain Allosterically Enhances the Protease Activity of Murine Urokinase-Type Plasminogen Activator. Biochemistry 63, 1434–1444 (2024). PubMed PMC
Born A. et al. Ligand-specific conformational change drives interdomain allostery in Pin1. Nat. Commun. 13, 4546 (2022). PubMed PMC
Strotz D. et al. Protein Allostery at Atomic Resolution. Angew. Chem. Int. Ed. 59, 22132–22139 (2020). PubMed PMC
Ashkinadze D. et al. Atomic resolution protein allostery from the multi-state structure of a PDZ domain. Nat. Commun. 13, 6232 (2022). PubMed PMC
Toncrova H. & McLeish T. C. B. Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP. Biophys. J. 98, 2317–2326 (2010). PubMed PMC
Kornev A. P. Self-organization, entropy and allostery. Biochem. Soc. Trans. 46, 587–597 (2018). PubMed PMC
Tzeng S.-R. & Kalodimos C. G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009). PubMed
Tzeng S.-R. & Kalodimos C. G. Protein activity regulation by conformational entropy. Nature 488, 236–240 (2012). PubMed
Lee A. L., Kinnear S. A. & Wand A. J. Redistribution and loss of side chain entropy upon formation of a calmodulin–peptide complex. Nat. Struct. Biol. 7, 72–77 (2000). PubMed
Petit C. M., Zhang J., Sapienza P. J., Fuentes E. J. & Lee A. L. Hidden dynamic allostery in a PDZ domain. Proc. Natl. Acad. Sci. 106, 18249–18254 (2009). PubMed PMC
Stiller J. B. et al. Structure determination of high-energy states in a dynamic protein ensemble. Nature 603, 528–535 (2022). PubMed PMC
Kim T. H. et al. The role of dimer asymmetry and protomer dynamics in enzyme catalysis. Science 355, eaag2355 (2017). PubMed
Mishra S. H. et al. Global protein dynamics as communication sensors in peptide synthetase domains. Sci. Adv. 8, eabn6549 (2022). PubMed PMC
Frontzek K. et al. A conformational switch controlling the toxicity of the prion protein. Nat. Struct. Mol. Biol. 29, 831–840 (2022). PubMed PMC
Gasteiger E. et al. Protein Identification and Analysis Tools on the ExPASy Server. in The Proteomics Protocols Handbook (ed. Walker J. M.) 571–607 (Humana Press, Totowa, NJ, 2005). doi:10.1385/1-59259-890-0:571. DOI
Milligan J. F. & Uhlenbeck O. C. Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62 (1989). PubMed
Duss O., Maris C., von Schroetter C. & Allain F. H.-T. A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Res. 38, e188 (2010). PubMed PMC
Finol E., Krul S. E., Hoehn S. J., Lyu X. & Crespo-Hernández C. E. The mRNACalc webserver accounts for the N1-methylpseudouridine hypochromicity to enable precise nucleoside-modified mRNA quantification. Mol. Ther. Nucleic Acids 35, (2024). PubMed PMC
Ikura M., Kay L. E. & Bax A. A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29, 4659–4667 (1990). PubMed
Lee W., Tonelli M. & Markley J. L. NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31, 1325–1327 (2015). PubMed PMC
Kjaergaard M. & Poulsen F. M. Sequence correction of random coil chemical shifts: correlation between neighbor correction factors and changes in the Ramachandran distribution. J. Biomol. NMR 50, 157–165 (2011). PubMed
Schwarzinger S. et al. Sequence-dependent correction of random coil NMR chemical shifts. J. Am. Chem. Soc. 123, 2970–2978 (2001). PubMed
Kjaergaard M., Brander S. & Poulsen F. M. Random coil chemical shift for intrinsically disordered proteins: effects of temperature and pH. J. Biomol. NMR 49, 139–149 (2011). PubMed
Maier J. A. et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015). PubMed PMC
Zgarbová M. et al. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 7, 2886–2902 (2011). PubMed PMC
Krepl M. et al. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein–RNA Complexes? J. Chem. Theory Comput. 11, 1220–1243 (2015). PubMed