Aromatic side-chain conformational switch on the surface of the RNA Recognition Motif enables RNA discrimination

. 2017 Sep 21 ; 8 (1) : 654. [epub] 20170921

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28935965
Odkazy

PubMed 28935965
PubMed Central PMC5608764
DOI 10.1038/s41467-017-00631-3
PII: 10.1038/s41467-017-00631-3
Knihovny.cz E-zdroje

The cyclooxygenase-2 is a pro-inflammatory and cancer marker, whose mRNA stability and translation is regulated by the CUG-binding protein 2 interacting with AU-rich sequences in the 3' untranslated region. Here, we present the solution NMR structure of CUG-binding protein 2 RRM3 in complex with 5'-UUUAA-3' originating from the COX-2 3'-UTR. We show that RRM3 uses the same binding surface and protein moieties to interact with AU- and UG-rich RNA motifs, binding with low and high affinity, respectively. Using NMR spectroscopy, isothermal titration calorimetry and molecular dynamics simulations, we demonstrate that distinct sub-states characterized by different aromatic side-chain conformations at the RNA-binding surface allow for high- or low-affinity binding with functional implications. This study highlights a mechanism for RNA discrimination possibly common to multiple RRMs as several prominent members display a similar rearrangement of aromatic residues upon binding their targets.The RNA Recognition Motif (RRM) is the most ubiquitous RNA binding domain. Here the authors combined NMR and molecular dynamics simulations and show that the RRM RNA binding surface exists in different states and that a conformational switch of aromatic side-chains fine-tunes sequence specific binding affinities.

Zobrazit více v PubMed

Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS. J. 2005;272:2118–2131. doi: 10.1111/j.1742-4658.2005.04653.x. PubMed DOI

Lu X, Timchenko NA, Timchenko LT. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet. 1999;8:53–60. doi: 10.1093/hmg/8.1.53. PubMed DOI

Faustino NA, Cooper TA. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell. Biol. 2005;25:879–887. doi: 10.1128/MCB.25.3.879-887.2005. PubMed DOI PMC

Dujardin G, et al. CELF proteins regulate CFTR pre-mRNA splicing: essential role of the divergent domain of ETR-3. Nucleic Acids Res. 2010;38:7273–7285. doi: 10.1093/nar/gkq573. PubMed DOI PMC

Mukhopadhyay D, Houchen CW, Kennedy S, Dieckgraefe BK, Anant S. Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol. Cell. 2003;11:113–126. doi: 10.1016/S1097-2765(03)00012-1. PubMed DOI

Anant S, et al. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing - CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J. Biol. Chem. 2001;276:47338–47351. doi: 10.1074/jbc.M104911200. PubMed DOI

Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles ? Nucleic Acids Res. 2005;33:7138–7150. doi: 10.1093/nar/gki1012. PubMed DOI PMC

Moraes KCM, Monteiro CJ, Pacheco-Soares C. A novel function for CUGBP2 in controlling the pro-inflammatory stimulus in H9c2 cells: subcellular trafficking of messenger molecules. Cell. Biol. Int. 2013;37:1129–1138. doi: 10.1002/cbin.10127. PubMed DOI

Subramaniam D, et al. RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS ONE. 2011;6:e16958. doi: 10.1371/journal.pone.0016958. PubMed DOI PMC

Teplova M, Song J, Gaw HY, Teplov A, Patel DJ. Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure. 2010;18:1364–1377. doi: 10.1016/j.str.2010.06.018. PubMed DOI PMC

Tsuda K, et al. Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Res. 2009;37:5151–5166. doi: 10.1093/nar/gkp546. PubMed DOI PMC

Auweter SD, Oberstrass FC, Allain FHT. Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities. J. Mol. Biol. 2007;367:174–186. doi: 10.1016/j.jmb.2006.12.053. PubMed DOI

Auweter SD, Oberstrass FC, Allain FHT. Sequence-specific binding of single-stranded RNA: is there a code for recognition ? Nucleic Acids Res. 2006;34:4943–4959. doi: 10.1093/nar/gkl620. PubMed DOI PMC

Hu JS, Grzesiek S, Bax A, Two-dimensional NMR. methods for determining (chi 1) angles of aromatic residues in proteins from three-bond J(C′C gamma) and J(NC gamma) couplings. J. Am. Chem. Soc. 1997;119:1803–1804. doi: 10.1021/ja963625z. DOI

Tuttle LM, Dyson HJ, Wright PE. Side-chain conformational heterogeneity of intermediates in the Escherichia coli dihydrofolate reductase catalytic cycle. Biochemistry. 2013;52:3464–3477. doi: 10.1021/bi400322e. PubMed DOI PMC

Afroz T, Cienikova Z, Clery A, Allain FH. One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. Methods. Enzymol. 2015;558:235–278. doi: 10.1016/bs.mie.2015.01.015. PubMed DOI

Safaee N, et al. Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell. 2012;48:375–386. doi: 10.1016/j.molcel.2012.09.001. PubMed DOI

Moursy A, Allain FH, Clery A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 2014;42:6659–6672. doi: 10.1093/nar/gku244. PubMed DOI PMC

Vitali J, et al. Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 2002;30:1531–1538. doi: 10.1093/nar/30.7.1531. PubMed DOI PMC

Thickman KR, Sickmier EA, Kielkopf CL. Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif. J. Mol. Biol. 2007;366:703–710. doi: 10.1016/j.jmb.2006.11.077. PubMed DOI PMC

Bisswanger, H. Multiple Equilibria. in: Enzyme Kinetics (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).

Mackereth CD, et al. Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature. 2011;475:408–U174. doi: 10.1038/nature10171. PubMed DOI

Afroz T, et al. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 2014;28:1498–1514. doi: 10.1101/gad.241133.114. PubMed DOI PMC

Cok SJ, Morrison AR. The 3’-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J. Biol. Chem. 2001;276:23179–23185. doi: 10.1074/jbc.M008461200. PubMed DOI

Goddard, T. D. & Kneller, D. G. SPARKY 3 (University of California).

Zwahlen C, et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 1997;119:6711–6721. doi: 10.1021/ja970224q. DOI

Vuister GW, Bax A. Quantitative J Correlation - a New Approach for Measuring Homonuclear 3-Bond J(H(N)H(Alpha) Coupling-Constants in N-15-Enriched Proteins. J. Am. Chem. Soc. 1993;115:7772–7777. doi: 10.1021/ja00070a024. DOI

Vuister GW, Bax A. Measurement of 4-Bond H(N)-H-Alpha J-Couplings in Staphylococcal Nuclease. J. Biomol. NMR. 1994;4:193–200. doi: 10.1007/BF00175247. PubMed DOI

Hu JS, Bax A. Chi 1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNC gamma couplings in isotopically enriched proteins. J. Biomol. NMR. 1997;9:323–328. doi: 10.1023/A:1018691228238. PubMed DOI

Emsley L, Bodenhausen G. Gaussian pulse cascades - new analytical functions for rectangular selective inversion and in-phase excitation in nmr. Chem. Phys. Lett. 1990;165:469–476. doi: 10.1016/0009-2614(90)87025-M. DOI

Emsley L, Bodenhausen G. Optimization of shaped selective pulses for nmr using a quaternion description of their overall propagators. J. Magn. Reson. 1992;97:135–148.

Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI

Herrmann T, Guntert P, Wuthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 2002;319:209–227. doi: 10.1016/S0022-2836(02)00241-3. PubMed DOI

Herrmann T, Guntert P, Wuthrich K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR. 2002;24:171–189. doi: 10.1023/A:1021614115432. PubMed DOI

Guntert P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 2004;278:353–378. PubMed

Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR. 2009;44:213–223. doi: 10.1007/s10858-009-9333-z. PubMed DOI PMC

Case DA, et al. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. doi: 10.1002/jcc.20290. PubMed DOI PMC

Case, D. A. et al. AMBER 12 (University of California, 2012)

Doreleijers JF, et al. CING: an integrated residue-based structure validation program suite. J. Biomol. NMR. 2012;54:267–283. doi: 10.1007/s10858-012-9669-7. PubMed DOI PMC

Case, D. A. et al. AMBER 14 (University of California, 2014).

Cornell WD, et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002. DOI

Perez A, et al. Refinenement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC

Banas P, et al. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory. Comput. 2010;6:3836–3849. doi: 10.1021/ct100481h. PubMed DOI PMC

Zgarbova M, et al. Refinement of the cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory. Comput. 2011;7:2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC

Hornak V, et al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC

Maier JA, et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory. Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC

Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI

Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC

Krepl M, et al. Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes ? J. Chem. Theory Comput. 2015;11:1220–1243. doi: 10.1021/ct5008108. PubMed DOI

Krepl M, Clery A, Blatter M, Allain FH, Sponer J. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016;44:6452–6470. doi: 10.1093/nar/gkw438. PubMed DOI PMC

Darden T, York D, Pedersen L. Particle mesh ewald - An N.Log(N) method for ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI

Essmann U, et al. A smooth particle mesh ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI

Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI

Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory. Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI

Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...