Aromatic side-chain conformational switch on the surface of the RNA Recognition Motif enables RNA discrimination
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28935965
PubMed Central
PMC5608764
DOI
10.1038/s41467-017-00631-3
PII: 10.1038/s41467-017-00631-3
Knihovny.cz E-zdroje
- MeSH
- 3' nepřekládaná oblast MeSH
- aminokyselinové motivy MeSH
- CELF proteiny chemie genetika metabolismus MeSH
- cyklooxygenasa 2 genetika MeSH
- fenylalanin chemie metabolismus MeSH
- konformace proteinů MeSH
- magnetická rezonanční spektroskopie MeSH
- messenger RNA chemie metabolismus MeSH
- proteiny nervové tkáně chemie genetika metabolismus MeSH
- simulace molekulární dynamiky MeSH
- substituce aminokyselin MeSH
- úseky bohaté na AU MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3' nepřekládaná oblast MeSH
- CELF proteiny MeSH
- CELF2 protein, human MeSH Prohlížeč
- cyklooxygenasa 2 MeSH
- fenylalanin MeSH
- messenger RNA MeSH
- proteiny nervové tkáně MeSH
- PTGS2 protein, human MeSH Prohlížeč
The cyclooxygenase-2 is a pro-inflammatory and cancer marker, whose mRNA stability and translation is regulated by the CUG-binding protein 2 interacting with AU-rich sequences in the 3' untranslated region. Here, we present the solution NMR structure of CUG-binding protein 2 RRM3 in complex with 5'-UUUAA-3' originating from the COX-2 3'-UTR. We show that RRM3 uses the same binding surface and protein moieties to interact with AU- and UG-rich RNA motifs, binding with low and high affinity, respectively. Using NMR spectroscopy, isothermal titration calorimetry and molecular dynamics simulations, we demonstrate that distinct sub-states characterized by different aromatic side-chain conformations at the RNA-binding surface allow for high- or low-affinity binding with functional implications. This study highlights a mechanism for RNA discrimination possibly common to multiple RRMs as several prominent members display a similar rearrangement of aromatic residues upon binding their targets.The RNA Recognition Motif (RRM) is the most ubiquitous RNA binding domain. Here the authors combined NMR and molecular dynamics simulations and show that the RRM RNA binding surface exists in different states and that a conformational switch of aromatic side-chains fine-tunes sequence specific binding affinities.
Zobrazit více v PubMed
Maris C, Dominguez C, Allain FH. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS. J. 2005;272:2118–2131. doi: 10.1111/j.1742-4658.2005.04653.x. PubMed DOI
Lu X, Timchenko NA, Timchenko LT. Cardiac elav-type RNA-binding protein (ETR-3) binds to RNA CUG repeats expanded in myotonic dystrophy. Hum. Mol. Genet. 1999;8:53–60. doi: 10.1093/hmg/8.1.53. PubMed DOI
Faustino NA, Cooper TA. Identification of putative new splicing targets for ETR-3 using sequences identified by systematic evolution of ligands by exponential enrichment. Mol. Cell. Biol. 2005;25:879–887. doi: 10.1128/MCB.25.3.879-887.2005. PubMed DOI PMC
Dujardin G, et al. CELF proteins regulate CFTR pre-mRNA splicing: essential role of the divergent domain of ETR-3. Nucleic Acids Res. 2010;38:7273–7285. doi: 10.1093/nar/gkq573. PubMed DOI PMC
Mukhopadhyay D, Houchen CW, Kennedy S, Dieckgraefe BK, Anant S. Coupled mRNA stabilization and translational silencing of cyclooxygenase-2 by a novel RNA binding protein, CUGBP2. Mol. Cell. 2003;11:113–126. doi: 10.1016/S1097-2765(03)00012-1. PubMed DOI
Anant S, et al. Novel role for RNA-binding protein CUGBP2 in mammalian RNA editing - CUGBP2 modulates C to U editing of apolipoprotein B mRNA by interacting with apobec-1 and ACF, the apobec-1 complementation factor. J. Biol. Chem. 2001;276:47338–47351. doi: 10.1074/jbc.M104911200. PubMed DOI
Barreau C, Paillard L, Osborne HB. AU-rich elements and associated factors: are there unifying principles ? Nucleic Acids Res. 2005;33:7138–7150. doi: 10.1093/nar/gki1012. PubMed DOI PMC
Moraes KCM, Monteiro CJ, Pacheco-Soares C. A novel function for CUGBP2 in controlling the pro-inflammatory stimulus in H9c2 cells: subcellular trafficking of messenger molecules. Cell. Biol. Int. 2013;37:1129–1138. doi: 10.1002/cbin.10127. PubMed DOI
Subramaniam D, et al. RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS ONE. 2011;6:e16958. doi: 10.1371/journal.pone.0016958. PubMed DOI PMC
Teplova M, Song J, Gaw HY, Teplov A, Patel DJ. Structural insights into RNA recognition by the alternate-splicing regulator CUG-binding protein 1. Structure. 2010;18:1364–1377. doi: 10.1016/j.str.2010.06.018. PubMed DOI PMC
Tsuda K, et al. Structural basis for the sequence-specific RNA-recognition mechanism of human CUG-BP1 RRM3. Nucleic Acids Res. 2009;37:5151–5166. doi: 10.1093/nar/gkp546. PubMed DOI PMC
Auweter SD, Oberstrass FC, Allain FHT. Solving the structure of PTB in complex with pyrimidine tracts: an NMR study of protein-RNA complexes of weak affinities. J. Mol. Biol. 2007;367:174–186. doi: 10.1016/j.jmb.2006.12.053. PubMed DOI
Auweter SD, Oberstrass FC, Allain FHT. Sequence-specific binding of single-stranded RNA: is there a code for recognition ? Nucleic Acids Res. 2006;34:4943–4959. doi: 10.1093/nar/gkl620. PubMed DOI PMC
Hu JS, Grzesiek S, Bax A, Two-dimensional NMR. methods for determining (chi 1) angles of aromatic residues in proteins from three-bond J(C′C gamma) and J(NC gamma) couplings. J. Am. Chem. Soc. 1997;119:1803–1804. doi: 10.1021/ja963625z. DOI
Tuttle LM, Dyson HJ, Wright PE. Side-chain conformational heterogeneity of intermediates in the Escherichia coli dihydrofolate reductase catalytic cycle. Biochemistry. 2013;52:3464–3477. doi: 10.1021/bi400322e. PubMed DOI PMC
Afroz T, Cienikova Z, Clery A, Allain FH. One, Two, Three, Four! How Multiple RRMs Read the Genome Sequence. Methods. Enzymol. 2015;558:235–278. doi: 10.1016/bs.mie.2015.01.015. PubMed DOI
Safaee N, et al. Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell. 2012;48:375–386. doi: 10.1016/j.molcel.2012.09.001. PubMed DOI
Moursy A, Allain FH, Clery A. Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Res. 2014;42:6659–6672. doi: 10.1093/nar/gku244. PubMed DOI PMC
Vitali J, et al. Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 2002;30:1531–1538. doi: 10.1093/nar/30.7.1531. PubMed DOI PMC
Thickman KR, Sickmier EA, Kielkopf CL. Alternative conformations at the RNA-binding surface of the N-terminal U2AF(65) RNA recognition motif. J. Mol. Biol. 2007;366:703–710. doi: 10.1016/j.jmb.2006.11.077. PubMed DOI PMC
Bisswanger, H. Multiple Equilibria. in: Enzyme Kinetics (Wiley-VCH Verlag GmbH & Co. KGaA, 2008).
Mackereth CD, et al. Multi-domain conformational selection underlies pre-mRNA splicing regulation by U2AF. Nature. 2011;475:408–U174. doi: 10.1038/nature10171. PubMed DOI
Afroz T, et al. A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes Dev. 2014;28:1498–1514. doi: 10.1101/gad.241133.114. PubMed DOI PMC
Cok SJ, Morrison AR. The 3’-untranslated region of murine cyclooxygenase-2 contains multiple regulatory elements that alter message stability and translational efficiency. J. Biol. Chem. 2001;276:23179–23185. doi: 10.1074/jbc.M008461200. PubMed DOI
Goddard, T. D. & Kneller, D. G. SPARKY 3 (University of California).
Zwahlen C, et al. Methods for measurement of intermolecular NOEs by multinuclear NMR spectroscopy: Application to a bacteriophage lambda N-peptide/boxB RNA complex. J. Am. Chem. Soc. 1997;119:6711–6721. doi: 10.1021/ja970224q. DOI
Vuister GW, Bax A. Quantitative J Correlation - a New Approach for Measuring Homonuclear 3-Bond J(H(N)H(Alpha) Coupling-Constants in N-15-Enriched Proteins. J. Am. Chem. Soc. 1993;115:7772–7777. doi: 10.1021/ja00070a024. DOI
Vuister GW, Bax A. Measurement of 4-Bond H(N)-H-Alpha J-Couplings in Staphylococcal Nuclease. J. Biomol. NMR. 1994;4:193–200. doi: 10.1007/BF00175247. PubMed DOI
Hu JS, Bax A. Chi 1 angle information from a simple two-dimensional NMR experiment that identifies trans 3JNC gamma couplings in isotopically enriched proteins. J. Biomol. NMR. 1997;9:323–328. doi: 10.1023/A:1018691228238. PubMed DOI
Emsley L, Bodenhausen G. Gaussian pulse cascades - new analytical functions for rectangular selective inversion and in-phase excitation in nmr. Chem. Phys. Lett. 1990;165:469–476. doi: 10.1016/0009-2614(90)87025-M. DOI
Emsley L, Bodenhausen G. Optimization of shaped selective pulses for nmr using a quaternion description of their overall propagators. J. Magn. Reson. 1992;97:135–148.
Berendsen HJC, Postma JPM, Vangunsteren WF, Dinola A, Haak JR. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 1984;81:3684–3690. doi: 10.1063/1.448118. DOI
Herrmann T, Guntert P, Wuthrich K. Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. J. Mol. Biol. 2002;319:209–227. doi: 10.1016/S0022-2836(02)00241-3. PubMed DOI
Herrmann T, Guntert P, Wuthrich K. Protein NMR structure determination with automated NOE-identification in the NOESY spectra using the new software ATNOS. J. Biomol. NMR. 2002;24:171–189. doi: 10.1023/A:1021614115432. PubMed DOI
Guntert P. Automated NMR structure calculation with CYANA. Methods Mol. Biol. 2004;278:353–378. PubMed
Shen Y, Delaglio F, Cornilescu G, Bax A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR. 2009;44:213–223. doi: 10.1007/s10858-009-9333-z. PubMed DOI PMC
Case DA, et al. The Amber biomolecular simulation programs. J. Comput. Chem. 2005;26:1668–1688. doi: 10.1002/jcc.20290. PubMed DOI PMC
Case, D. A. et al. AMBER 12 (University of California, 2012)
Doreleijers JF, et al. CING: an integrated residue-based structure validation program suite. J. Biomol. NMR. 2012;54:267–283. doi: 10.1007/s10858-012-9669-7. PubMed DOI PMC
Case, D. A. et al. AMBER 14 (University of California, 2014).
Cornell WD, et al. A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules. J. Am. Chem. Soc. 1995;117:5179–5197. doi: 10.1021/ja00124a002. DOI
Perez A, et al. Refinenement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007;92:3817–3829. doi: 10.1529/biophysj.106.097782. PubMed DOI PMC
Banas P, et al. Performance of molecular mechanics force fields for RNA simulations: stability of UUCG and GNRA hairpins. J. Chem. Theory. Comput. 2010;6:3836–3849. doi: 10.1021/ct100481h. PubMed DOI PMC
Zgarbova M, et al. Refinement of the cornell et al. nucleic acids force field based on reference quantum chemical calculations of glycosidic torsion profiles. J. Chem. Theory. Comput. 2011;7:2886–2902. doi: 10.1021/ct200162x. PubMed DOI PMC
Hornak V, et al. Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins. 2006;65:712–725. doi: 10.1002/prot.21123. PubMed DOI PMC
Maier JA, et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory. Comput. 2015;11:3696–3713. doi: 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Berendsen HJC, Grigera JR, Straatsma TP. The missing term in effective pair potentials. J. Phys. Chem. 1987;91:6269–6271. doi: 10.1021/j100308a038. DOI
Joung IS, Cheatham TE. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B. 2008;112:9020–9041. doi: 10.1021/jp8001614. PubMed DOI PMC
Krepl M, et al. Can we execute stable microsecond-scale atomistic simulations of protein-RNA complexes ? J. Chem. Theory Comput. 2015;11:1220–1243. doi: 10.1021/ct5008108. PubMed DOI
Krepl M, Clery A, Blatter M, Allain FH, Sponer J. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Res. 2016;44:6452–6470. doi: 10.1093/nar/gkw438. PubMed DOI PMC
Darden T, York D, Pedersen L. Particle mesh ewald - An N.Log(N) method for ewald sums in large systems. J. Chem. Phys. 1993;98:10089–10092. doi: 10.1063/1.464397. DOI
Essmann U, et al. A smooth particle mesh ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Ryckaert JP, Ciccotti G, Berendsen HJC. Numerical-integration of cartesian equations of motion of a system with constraints - molecular-dynamics of n-alkanes. J. Comput. Phys. 1977;23:327–341. doi: 10.1016/0021-9991(77)90098-5. DOI
Hopkins CW, Le Grand S, Walker RC, Roitberg AE. Long-time-step molecular dynamics through hydrogen mass repartitioning. J. Chem. Theory. Comput. 2015;11:1864–1874. doi: 10.1021/ct5010406. PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview