Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: A molecular dynamics and enhanced sampling simulations study
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
R01 GM103834
NIGMS NIH HHS - United States
R35 GM126942
NIGMS NIH HHS - United States
PubMed
30521520
PubMed Central
PMC6307825
DOI
10.1371/journal.pcbi.1006642
PII: PCOMPBIOL-D-18-01097
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- mikro RNA chemie genetika metabolismus MeSH
- molekulární modely MeSH
- motiv rozpoznávající RNA * genetika MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- proteinové inženýrství MeSH
- proteiny vázající RNA chemie genetika metabolismus MeSH
- RNA chemie metabolismus MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky MeSH
- stabilita RNA MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- výpočetní biologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mikro RNA MeSH
- MIRN20b microRNA, human MeSH Prohlížeč
- MIRN21 microRNA, human MeSH Prohlížeč
- proteiny vázající RNA MeSH
- RNA MeSH
The RNA recognition motif (RRM) is the most common RNA binding domain across eukaryotic proteins. It is therefore of great value to engineer its specificity to target RNAs of arbitrary sequence. This was recently achieved for the RRM in Rbfox protein, where four mutations R118D, E147R, N151S, and E152T were designed to target the precursor to the oncogenic miRNA 21. Here, we used a variety of molecular dynamics-based approaches to predict specific interactions at the binding interface. Overall, we have run approximately 50 microseconds of enhanced sampling and plain molecular dynamics simulations on the engineered complex as well as on the wild-type Rbfox·pre-miRNA 20b from which the mutated systems were designed. Comparison with the available NMR data on the wild type molecules (protein, RNA, and their complex) served to establish the accuracy of the calculations. Free energy calculations suggest that further improvements in affinity and selectivity are achieved by the S151T replacement.
Department of Chemistry University of Washington Seattle Washington United States of America
Institute of Biophysics of the Czech Academy of Sciences Brno Czech Republic
JARA HPC Jülich Supercomputing Centre Forschungszentrum Jülich GmbH Jülich Germany
Zobrazit více v PubMed
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. 10.1126/science.1058040 PubMed DOI
Birney E, Kumar S, Krainer AR. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Research. 1993;21(25):5803–16. PubMed PMC
Auweter SD, Fasan R, Reymond L, Underwood JG, Black DL, Pitsch S, et al. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. The EMBO Journal. 2006;25:163–73. 10.1038/sj.emboj.7600918 PubMed DOI PMC
Burd C, Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994;265:615–21. PubMed
Maris C, Dominguez C, Allain FH-T. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. The FEBS journal. 2005;272:2118–31. 10.1111/j.1742-4658.2005.04653.x PubMed DOI
Chen Y, Zubovic L, Yang F, Godin K, Pavelitz T, Castellanos J, et al. Rbfox proteins regulate microRNA biogenesis by sequence-specific binding to their precursors and target downstream Dicer. Nucleic Acids Research. 2016;44(9):4381–95. 10.1093/nar/gkw177 PubMed DOI PMC
Maris C, Dominguez C, Allain FHT. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS Journal. 2005;272:2118–31. 10.1111/j.1742-4658.2005.04653.x PubMed DOI
Chen Y, Yang F, Zubovic L, Pavelitz T, Yang W, Godin K, et al. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins. Nature Chemical Biology. 2016;12(9):717–23. 10.1038/nchembio.2128 PubMed DOI PMC
Cléry A, Blatter M, Allain FHT. RNA recognition motifs: boring? Not quite. Current Opinion in Structural Biology. 2008;18(3):290–8. 10.1016/j.sbi.2008.04.002 PubMed DOI
Afroz T, Cienikova Z, Cléry A, Allain FH. One, two, three, four! How multiple RRMs read the genome sequence. Methods in enzymology. 558: Elsevier; 2015. p. 235–78. 10.1016/bs.mie.2015.01.015 PubMed DOI
Krichevsky AM, Gabriely G. miR-21: a small multi-faceted RNA. Journal of Cellular and Molecular Medicine. 2009;13(1):39–53. 10.1111/j.1582-4934.2008.00556.x PubMed DOI PMC
Šponer J, Krepl M, Banáš P, Kührová P, Zgarbová M, Jurečka P, et al. How to understand atomistic molecular dynamics simulations of RNA and protein–RNA complexes? Wiley Interdisciplinary Reviews: RNA. 2017;8(3). PubMed
Sponer J, Bussi G, Krepl M, Banas P, Bottaro S, Cunha RA, et al. RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview. Chemical reviews. 2018;118(8):4177–338. 10.1021/acs.chemrev.7b00427 PubMed DOI PMC
Krepl M, Cléry A, Blatter M, Allain FHT, Sponer J. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs. Nucleic Acids Research. 2016;44:6452–70. 10.1093/nar/gkw438 PubMed DOI PMC
Krepl M, Blatter M, Cléry A, Damberger FF, Allain FHT, Sponer J. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Research. 2017;45(13):8046–63. 10.1093/nar/gkx418 PubMed DOI PMC
dit Konte ND KM, Damberger FF, Ripin N, Duss O, Sponer J, Allain FH-T. Aromatic side-chain conformational switch on the surface of the RNA Recognition Motif enables RNA discrimination. Nature Communication. 2017;8. PubMed PMC
Wang LaF, Richard A and Berne BJ. Replica exchange with solute scaling: a more efficient version of replica exchange with solute tempering (REST2). The Journal of Physical Chemistry B. 2011;115:9431 10.1021/jp204407d PubMed DOI PMC
Caliandro R, Rossetti G., Carloni P. Local Fluctuations and Conformational Transitions in Protein. Journal of Chemical Theory and Computation. 2012;8:10. PubMed
Bottaro S, Di Palma F, Bussi G. The role of nucleobase interactions in RNA structure and dynamics. Nucleic Acids Research. 2014;42:13306–14. 10.1093/nar/gku972 PubMed DOI PMC
Krepl M, Havrila M, Stadlbauer P, Banas P, Otyepka M, Pasulka J, et al. Can We Execute Stable Microsecond-Scale Atomistic Simulations of Protein–RNA Complexes? Journal of Chemical Theory and Computation. 2015;11:1220–43. 10.1021/ct5008108 PubMed DOI
Steinbrecher T, Latzer J, Case DA. Revised AMBER Parameters for Bioorganic Phosphates. Journal of Chemical Theory and Computation. 2012;8(11):4405–12. 10.1021/ct300613v PubMed DOI PMC
Izadi S, Anandakrishnan R, Onufriev AV. Building Water Models: A Different Approach. The Journal of Physical Chemistry Letters. 2014;5(21):3863–71. 10.1021/jz501780a PubMed DOI PMC
Oubridge C IN, Evans PR, Teo C-H, Nagai K. Crystal structure at 1.92 Å resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994;372:432–8. 10.1038/372432a0 PubMed DOI
Kurisaki I, Takayanagi M, Nagaoka M. Combined Mechanism of Conformational Selection and Induced Fit in U1A–RNA Molecular Recognition. Biochemistry. 2014;53:3646–57. 10.1021/bi401708q PubMed DOI
Blakaj DM, McConnell KJ, Beveridge DL, Baranger AM. Molecular Dynamics and Thermodynamics of Protein−RNA Interactions: Mutation of a Conserved Aromatic Residue Modifies Stacking Interactions and Structural Adaptation in the U1A−Stem Loop 2 RNA Complex. Journal of the American Chemical Society. 2001;123:2548–51. PubMed
Kührová P, Best RB, Bottaro S, Bussi G, Sponer J, Otyepka M, et al. Computer folding of RNA tetraloops: identification of key force field deficiencies. Journal of Chemical Theory and Computation. 2016;12(9):4534–48. 10.1021/acs.jctc.6b00300 PubMed DOI PMC
Zirbel CL, Šponer JE, Šponer J, Stombaugh J, Leontis NB. Classification and energetics of the base-phosphate interactions in RNA. Nucleic acids research. 2009;37(15):4898–918. 10.1093/nar/gkp468 PubMed DOI PMC
Bergonzo C, Cheatham TE. Improved Force Field Parameters Lead to a Better Description of RNA Structure. Journal of Chemical Theory and Computation. 2015;11(9):3969–72. 10.1021/acs.jctc.5b00444 PubMed DOI
Bottaro S, Bussi G, Kennedy SD, Turner DH, Lindorff-Larsen K. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations. Science Advances. 2018;4(5). PubMed PMC
Kuhrova P, Mlynsky V, Zgarbova M, Krepl M, Bussi G, Best RB, et al. IMPROVING THE PERFORMANCE OF THE RNA AMBER FORCE FIELD BY TUNING THE HYDROGEN-BONDING INTERACTIONS. bioRxiv. 2018.
Lavery R, Maddocks JH, Pasi M, Zakrzewska K. Analyzing ion distributions around DNA. Nucleic Acids Res. 2014;42(12):8138–49. 10.1093/nar/gku504 PubMed DOI PMC
Leontis NB. The non-Watson-Crick base pairs and their associated isostericity matrices. Nucleic Acids Research. 2002;30:3497–531. PubMed PMC
Auffinger P, Hashem Y. Nucleic acid solvation: from outside to insight. Current Opinion in Structural Biology. 2007;17(3):325–33. 10.1016/j.sbi.2007.05.008 PubMed DOI
Auffinger P, Westhof E. Water and ion binding around RNA and DNA (C,G) oligomers11Edited by I. Tinoco. Journal of Molecular Biology. 2000;300(5):1113–31. 10.1006/jmbi.2000.3894 PubMed DOI
Krasovska MV, Sefcikova J, Réblová K, Schneider B, Walter NG, Šponer J. Cations and Hydration in Catalytic RNA: Molecular Dynamics of the Hepatitis Delta Virus Ribozyme. Biophysical Journal. 2006;91(2):626–38. 10.1529/biophysj.105.079368 PubMed DOI PMC
Frank AT, Law SM, Brooks CL. A Simple and Fast Approach for Predicting 1H and 13C Chemical Shifts: Toward Chemical Shift-Guided Simulations of RNA. The Journal of Physical Chemistry B. 2014;118(42):12168–75. 10.1021/jp508342x PubMed DOI PMC
Neal S NA, Zhang H, Wishart DS. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. Journal of Biomolecular NMR. 2003;26(3):215–40. PubMed
Han B, Liu Y, Ginzinger SW, Wishart DS. SHIFTX2: significantly improved protein chemical shift prediction. Journal of Biomolecular NMR. 2011;50(1):43 10.1007/s10858-011-9478-4 PubMed DOI PMC
Fukunishi H, Watanabe O, Takada S. On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction. The Journal of Chemical Physics. 2002;116(20):9058–67.
Affentranger R, Tavernelli I, Di Iorio EE. A novel Hamiltonian replica exchange MD protocol to enhance protein conformational space sampling. Journal of Chemical Theory and Computation. 2006;2(2):217–28. 10.1021/ct050250b PubMed DOI
Sanbonmatsu K, Garcia A. Structure of Met‐enkephalin in explicit aqueous solution using replica exchange molecular dynamics. Proteins: Structure, Function, and Bioinformatics. 2002;46(2):225–34. PubMed
Henriksen NM, Roe DR, Cheatham TE. Reliable Oligonucleotide Conformational Ensemble Generation in Explicit Solvent for Force Field Assessment Using Reservoir Replica Exchange Molecular Dynamics Simulations. The Journal of Physical Chemistry B. 2013;117(15):4014–27. 10.1021/jp400530e PubMed DOI PMC
Bergonzo C, Henriksen NM, Roe DR, Cheatham TE. Highly sampled tetranucleotide and tetraloop motifs enable evaluation of common RNA force fields. RNA. 2015;21(9):1578–90. 10.1261/rna.051102.115 PubMed DOI PMC
Sugita Y, Okamoto Y. Replica-exchange multicanonical algorithm and multicanonical replica-exchange method for simulating systems with rough energy landscape. Chemical Physics Letters. 2000;329(3–4):261–70.
Itoh SG, Okumura H, Okamoto Y. Replica-exchange method in van der Waals radius space: Overcoming steric restrictions for biomolecules. The Journal of Chemical Physics. 2010;132(13):134105 10.1063/1.3372767 PubMed DOI
Liu P, Kim B, Friesner RA, Berne B. Replica exchange with solute tempering: A method for sampling biological systems in explicit water. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(39):13749–54. 10.1073/pnas.0506346102 PubMed DOI PMC
Fajer M, Hamelberg D, McCammon JA. Replica-exchange accelerated molecular dynamics (REXAMD) applied to thermodynamic integration. Journal of Chemical Theory and Computation. 2008;4(10):1565–9. 10.1021/ct800250m PubMed DOI PMC
Zacharias M. Combining elastic network analysis and molecular dynamics simulations by hamiltonian replica exchange. Journal of chemical theory and computation. 2008;4(3):477–87. 10.1021/ct7002258 PubMed DOI
Vreede J, Wolf MG, de Leeuw SW, Bolhuis PG. Reordering hydrogen bonds using Hamiltonian replica exchange enhances sampling of conformational changes in biomolecular systems. The Journal of Physical Chemistry B. 2009;113(18):6484–94. 10.1021/jp809641j PubMed DOI
Lee MS, Olson MA. Protein folding simulations combining self-guided Langevin dynamics and temperature-based replica exchange. Journal of Chemical Theory and Computation. 2010;6(8):2477–87. 10.1021/ct100062b PubMed DOI
Gapsys V, Michielssens S, Seeliger D, de Groot BL. Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large‐Scale Mutation Scan. Angewandte Chemie. 2016;128(26):7490–4. PubMed PMC
Gapsys V, de Groot BL. Alchemical Free Energy Calculations for Nucleotide Mutations in Protein–DNA Complexes. Journal of Chemical Theory and Computation. 2017;13(12):6275–89. 10.1021/acs.jctc.7b00849 PubMed DOI
Seeliger D, Buelens FP, Goette M, de Groot BL, Grubmüller H. Towards computional specificity screening of DNA-binding proteins. Nucleic acids research. 2011;39(19):8281–90. 10.1093/nar/gkr531 PubMed DOI PMC
Goette M, Grubmüller H. Accuracy and convergence of free energy differences calculated from nonequilibrium switching processes. Journal of computational chemistry. 2009;30(3):447–56. 10.1002/jcc.21073 PubMed DOI
Tsuda K MY, Inoue M, Kigawa T, Terada T, Shirouzu M, Yokoyama S. Solution structure of RNA binding domain in RNA binding motif protein 9. 2005.
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research. 2014;42(W1):252–8. PubMed PMC
Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Research. 2009;37(Database issue):387–92. PubMed PMC
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201. 10.1093/bioinformatics/bti770 PubMed DOI
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis. 2009;30(S1):162–73. PubMed
Case DA BR, Botello-Smith W, Cerutti DS, Cheatham TE III, Darden TA, Duke RE, Giese TJ, Gohlke H, Goetz AW,Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee TS, LeGrand S, Li P, Lin C, Luchko T, Luo R, Madej B, Mermelstein D, Merz KM, Monard G, Nguyen H, Nguyen HT, Omelyan I, Onufriev A, Roe DR, Roitberg A, Sagui C, Simmerling CL, Swails J, Walker RC, Wang J, Wolf RM, Wu X, Xiao L, York DM, Kollman PA. AMBER 2016 San Francisco: University of California; 2016.
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of Simple Potential Functions for Simulating Liquid Water. The Journal of Chemical Physics. 1983;79(2):926–35.
Joung IS, Cheatham TE. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. The Journal of Physical Chemistry B. 2008;112(30):9020–41. 10.1021/jp8001614 PubMed DOI PMC
Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Journal of Chemical Theory and Computation. 2015;11:3696–713. 10.1021/acs.jctc.5b00255 PubMed DOI PMC
Zgarbova M, Otyepka M, Sponer J, Mladek A, Banas P, Cheatham TE 3rd, et al. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. Journal of Chemical Theory and Computation. 2011;7(9):2886 10.1021/ct200162x PubMed DOI PMC
Leimkuhler BJ, Skeel RD. Symplectic Numerical Integrators in Constrained Hamiltonian Systems. Journal of Computational Physics. 1994;112(1):117–25.
Darden T, York D, Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–92.
Hoover WG. Canonical dynamics: equilibrium phase-space distributions. Physical Review A. 1985;31(3):1695. PubMed
Parrinello M RA. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics. 1981;52(12):7182.
Abraham MJ, Murtola T., Schulz R., Pall S., Smith J C., Hess B., Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1(2):6.
D.A. Case RMB, Botello-Smith W., Cerutti D.S., Cheatham T.E. III, Darden T.A., Duke R.E., Giese T.J., Gohlke H., Goetz A.W., Homeyer N., Izadi S., Janowski P., Kaus J., Kovalenko A., Lee T.S., LeGrand S., Li P., Lin C., Luchko T., Luo R., Madej B., Mermelstein D., Merz K.M., Monard G., Nguyen H., Nguyen H.T., Omelyan I., Onufriev A., Roe D.R., Roitberg A., Sagui C., Simmerling C.L., Swails J., Walker R.C., Wang J., Wolf R.M., Wu X., Xiao L., York D.M. and Kollman P.A. AMBER 2014 San Francisco: University of California; 2014.
Bussi G. Hamiltonian replica exchange in GROMACS: a flexible implementation. Molecular Physics. 2014;112(3–4):379–84.
Roe DR, Cheatham TE. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. Journal of Chemical Theory and Computation. 2013;9:3084–95. 10.1021/ct400341p PubMed DOI
Roe DR, Bergonzo C., Cheatham T. E. Evaluation of Enhanced Sampling Provided by Accelerated Molecular Dynamics with Hamiltonian Replica Exchange Methods. The Journal of Physical Chemistry B. 2014;118(13):3543–52. 10.1021/jp4125099 PubMed DOI PMC
Bergonzo C, Henriksen NM, Roe DR, Swails JM, Roitberg AE, Cheatham TE. Multidimensional Replica Exchange Molecular Dynamics Yields a Converged Ensemble of an RNA Tetranucleotide. Journal of Chemical Theory and Computation. 2014;10:492–9. 10.1021/ct400862k PubMed DOI PMC
Parzen E. On Estimation of a Probability Density Function and Mode. The Annals of Mathematical Statistics. 1962;33(3):1065–76.
Westerlund AM, Harpole TJ, Blau C, Delemotte L. Inference of Calmodulin’s Ca2+-Dependent Free Energy Landscapes via Gaussian Mixture Model Validation. Journal of Chemical Theory and Computation. 2018;14(1):63–71. 10.1021/acs.jctc.7b00346 PubMed DOI
Zhou T, Caflisch A. Distribution of Reciprocal of Interatomic Distances: A Fast Structural Metric. Journal of Chemical Theory and Computation. 2012;8(8):2930–7. 10.1021/ct3003145 PubMed DOI
Best RB, Hummer G, Eaton WA. Native contacts determine protein folding mechanisms in atomistic simulations. Proceedings of the National Academy of Sciences. 2013;110(44):17874. PubMed PMC
McGibbon Robert T, Beauchamp Kyle A, Harrigan Matthew P, Klein C, Swails Jason M, Hernández Carlos X, et al. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophysical Journal. 2015;109(8):1528–32. 10.1016/j.bpj.2015.08.015 PubMed DOI PMC
Gapsys V, Michielssens S, Seeliger D, de Groot BL. pmx: Automated protein structure and topology generation for alchemical perturbations. Journal of Computational Chemistry. 2015;36(5):348–54. 10.1002/jcc.23804 PubMed DOI PMC
Gapsys V, Seeliger D, de Groot BL. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations. Journal of Chemical Theory and Computation. 2012;8(7):2373–82. 10.1021/ct300220p PubMed DOI
Crooks GE. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Physical Review E. 1999;60(3):2721–6. PubMed
Shirts MR, Bair E., Hooker G., Pande V. S. Equilibrium Free Energies from Nonequilibrium Measurements Using Maximum-Likelihood Methods. Physical Review Letters. 2003;91(14):140601 10.1103/PhysRevLett.91.140601 PubMed DOI
Cruz JA, Blanchet M-F, Boniecki M, Bujnicki JM, Chen S-J, Cao S, et al. RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction. RNA. 2012;18(4):610–25. 10.1261/rna.031054.111 PubMed DOI PMC
Parisien M CJ, Westhof E, Major F. New metrics for comparing and assessing discrepancies between RNA 3D structures and models. RNA. 2009;15(10):1875–85. 10.1261/rna.1700409 PubMed DOI PMC
Dibenedetto D, Rossetti G, Caliandro R, Carloni P. A Molecular Dynamics Simulation-Based Interpretation of Nuclear Magnetic Resonance Multidimensional Heteronuclear Spectra of α-Synuclein·Dopamine Adducts. Biochemistry. 2013;52(38):6672–83. 10.1021/bi400367r PubMed DOI
Baxa MC, Haddadian EJ, Jumper JM, Freed KF, Sosnick TR. Loss of conformational entropy in protein folding calculated using realistic ensembles and its implications for NMR-based calculations. Proceedings of the National Academy of Sciences. 2014;111(43):15396. PubMed PMC
Neal S, Nip AM, Zhang H, Wishart DS. Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. Journal of Biomolecular NMR. 2003;26(3):215–40. PubMed