Compartmental neuronal degeneration in the ventral striatum induced by status epilepticus in young rats' brain in comparison with adults

. 2024 Jun ; 84 (4) : 328-341. [epub] 20240417

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid38631684

Grantová podpora
Grantová Agentura České Republiky

According to experimental and clinical studies, status epilepticus (SE) causes neurodegenerative morphological changes not only in the hippocampus and other limbic structures, it also affects the thalamus and the neocortex. In addition, several studies reported atrophy, metabolic changes, and neuronal degeneration in the dorsal striatum. The literature lacks studies investigating potential neuronal damage in the ventral component of the striatopallidal complex (ventral striatum [VS] and ventral pallidum) in SE experimentations. To better understand the development of neuronal damage in the striatopallidal complex associated with SE, the detected neuronal degeneration in the compartments of the VS, namely, the nucleus accumbens (NAc) and the olfactory tubercle (OT), was analyzed. The experiments were performed on Wistar rats at age of 25-day-old pups and 3-month-old adult animals. Lithium-pilocarpine model of SE was used. Lithium chloride (3 mmol/kg, ip) was injected 24 h before administering pilocarpine (40 mg/kg, ip). This presented study demonstrates the variability of post SE neuronal damage in 25-day-old pups in comparison with 3-month-old adult rats. The NAc exhibited small to moderate number of Fluoro-Jade B (FJB)-positive neurons detected 4 and 8 h post SE intervals. The number of degenerated neurons in the shell subdivision of the NAc significantly increased at survival interval of 12 h after the SE. FJB-positive neurons were evidently more prominent occupying the whole anteroposterior and mediolateral extent of the nucleus at longer survival intervals of 24 and 48 h after the SE. This was also the case in the bordering vicinity between the shell and the core compartments but with clusters of degenerating cells. The severity of damage of the shell subdivision of the NAc reached its peak at an interval of 24 h post SE. Isolated FJB-positive neurons were detected in the ventral peripheral part of the core compartment. Degenerated neurons persisted in the shell subdivision of the NAc 1 week after SE. However, the quantity of cell damage had significantly reduced in comparison with the aforementioned shorter intervals. The third layer of the OT exhibited more degenerated neurons than the second layer. The FJB-positive cells in the young animals were higher than in the adult animals. The morphology of those cells was identical in the two age groups except in the OT.

Zobrazit více v PubMed

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041

Bekiesinska‐Figatowska, M., Mierzewska, H., & Jurkiewicz, E. (2013). Basal ganglia lesions in children and adults. European Journal of Radiology, 82(5), 837–849. https://doi.org/10.1016/j.ejrad.2012.12.006

Ben‐Ari, S., Toiber, D., Sas, A. S., Soreq, H., & Ben‐Shaul, Y. (2006). Modulated splicing‐associated gene expression in P19 cells expressing distinct acetylcholinesterase splice variants. Journal of Neurochemistry, 97(Suppl 1), 24–34. https://doi.org/10.1111/j.1471-4159.2006.03725.x

Ben‐Ari, Y., Holmes G. L. (2006). Effects of seizures on developmental processes in the immature brain. Lancet Neurology, 5(12), 1055–1063. https://doi.org/10.1016/S1474-4422(06)70626-3

Berendse, H. W., & Groenewegen, H. J. (1990). Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. The Journal of Comparative Neurology, 299(2), 187–228. https://doi.org/10.1002/cne.902990206

Bertram, E. H. (2013). Neuronal circuits in epilepsy: Do they matter? Experimental Neurology, 244, 67–74. https://doi.org/10.1016/j.expneurol.2012.01.028

Bonilha, L., Edwards, J. C., Kinsman, S. L., Morgan, P. S., Fridriksson, J., Rorden, C., Rumboldt, Z., Roberts, D. R., Eckert, M. A., & Halford, J. J. (2010). Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy. Epilepsia, 51(4), 519–528. https://doi.org/10.1111/j.1528-1167.2009.02506.x

Bouilleret, V., Semah, F., Chassoux, F., Mantzaridez, M., Biraben, A., Trebossen, R., & Ribeiro, M. J. (2008). Basal ganglia involvement in temporal lobe epilepsy: A functional and morphologic study. Neurology, 70(3), 177–184. https://doi.org/10.1212/01.wnl.0000297514.47695.48

Brog, J. S., Salyapongse, A., Deutch, A. Y., & Zahm, D. S. (1993). The patterns of afferent innervation of the core and shell in the “accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold. The Journal of Comparative Neurology, 338(2), 255–278. https://doi.org/10.1002/cne.903380209

Bubser, M., Scruggs, J. L., Young, C. D., & Deutch, A. Y. (2000). The distribution and origin of the calretinin‐containing innervation of the nucleus accumbens of the rat. The European Journal of Neuroscience, 12(5), 1591–1598. https://doi.org/10.1046/j.1460-9568.2000.00052.x

Cansler, H. L., Wright, K. N., Stetzik, L. A., & Wesson, D. W. (2020). Neurochemical organization of the ventral striatum's olfactory tubercle. Journal of Neurochemistry, 152(4), 425–448. https://doi.org/10.1111/jnc.14919

Castro, D. C., & Bruchas, M. R. (2019). A motivational and neuropeptidergic hub: Anatomical and functional diversity within the nucleus accumbens shell. Neuron, 102(3), 529–552. https://doi.org/10.1016/j.neuron.2019.03.003

Cavalheiro, E. A., Leite, J. P., Bortolotto, Z. A., Turski, W. A., Ikonomidou, C., & Turski, L. (1991). Long‐term effects of pilocarpine in rats: Structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia, 32(6), 778–782. https://doi.org/10.1111/j.1528-1157.1991.tb05533.x

Cavdar, S., Onat, F., Cakmak, Y. O., Saka, E., Yananli, H. R., & Aker, R. (2006). Connections of the zona incerta to the reticular nucleus of the thalamus in the rat. Journal of Anatomy, 209(2), 251–258. https://doi.org/10.1111/j.1469-7580.2006.00600.x

Chen, H. X., Liang, F. C., Gu, P., Xu, B. L., Xu, H. J., Wang, W. T., Hou, J. Y., Xie, D. X., Chai, X. Q., & An, S. J. (2020). Exosomes derived from mesenchymal stem cells repair a Parkinson's disease model by inducing autophagy. Cell Death & Disease, 11(4), 288. https://doi.org/10.1038/s41419-020-2473-5

Covolan, L., & Mello, L. E. (2000). Temporal profile of neuronal injury following pilocarpine or kainic acid‐induced status epilepticus. Epilepsy Research, 39(2), 133–152. https://doi.org/10.1016/S0920-1211(99)00119-9

de Olmos, J. S., & Heimer, L. (1999). The concepts of the ventral striatopallidal system and extended amygdala. Annals of the New York Academy of Sciences, 877, 1–32. https://doi.org/10.1111/j.1749-6632.1999.tb09258.x

Druga, R. (1987). Rhinencephalic structures and their anatomical organization. Acta Universitatis Carolinae. Medica. Monographia, 117, 1–175.

Druga, R., Mares, P., & Kubová, H. (2010). Time course of neuronal damage in the hippocampus following lithium‐pilocarpine status epilepticus in 12‐day‐old rats. Brain Research, 1355, 174–179. https://doi.org/10.1016/j.brainres.2010.07.072

Druga, R., Mares, P., Otáhal, J., & Kubová, H. (2005). Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages. Epilepsy Research, 63(1), 43–65. https://doi.org/10.1016/j.eplepsyres.2004.11.001

Fallon, J. H., Riley, J. N., Sipe, J. C., & Moore, R. Y. (1978). The islands of Calleja: Organization and connections. The Journal of Comparative Neurology, 181(2), 375–395. https://doi.org/10.1002/cne.901810209

Graybiel, A. M. (2008). Habits, rituals, and the evaluative brain. Annual Review of Neuroscience, 31, 359–387. https://doi.org/10.1146/annurev.neuro.29.051605.112851

Grill, F., Nyberg, L., & Rieckmann, A. (2021). Neural correlates of reward processing: Functional dissociation of two components within the ventral striatum. Brain and Behavior: A Cognitive Neuroscience Perspective, 11(2), e01987. https://doi.org/10.1002/brb3.1987

Groenewegen, H. J., Berendse, H. W., & Haber, S. N. (1993). Organization of the output of the ventral striatopallidal system in the rat: Ventral pallidal efferents. Neuroscience, 57(1), 113–142. https://doi.org/10.1016/0306-4522(93)90115-V

Groenewegen, H. J., & Uylings, H. B. (2000). The prefrontal cortex and the integration of sensory, limbic and autonomic information. Progress in Brain Research, 126, 3–28. https://doi.org/10.1016/S0079-6123(00)26003-2

Haber, S. N., Kim, K. S., Mailly, P., & Calzavara, R. (2006). Reward‐related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive‐based learning. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(32), 8368–8376. https://doi.org/10.1523/JNEUROSCI.0271-06.2006

Haber, S. N., & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 35(1), 4–26. https://doi.org/10.1038/npp.2009.129

Hopkins, K. J., Wang, G., & Schmued, L. C. (2000). Temporal progression of kainic acid induced neuronal and myelin degeneration in the rat forebrain. Brain Research, 864(1), 69–80. https://doi.org/10.1016/S0006-8993(00)02137-5

Jongen‐Rêlo, A. L., Kaufmann, S., & Feldon, J. (2002). A differential involvement of the shell and core subterritories of the nucleus accumbens of rats in attentional processes. Neuroscience, 111(1), 95–109. https://doi.org/10.1016/S0306-4522(01)00521-8

Jongen‐Rêlo, A. L., Voorn, P., & Groenewegen, H. J. (1994). Immunohistochemical characterization of the shell and core territories of the nucleus accumbens in the rat. The European Journal of Neuroscience, 6(8), 1255–1264. https://doi.org/10.1111/j.1460-9568.1994.tb00315.x

Kalia, L. V., & Lang, A. E. (2015). Parkinson's disease. Lancet (London, England), 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3

Kim, H. F., & Hikosaka, O. (2015). Parallel basal ganglia circuits for voluntary and automatic behaviour to reach rewards. Brain: A Journal of Neurology, 138(Pt 7), 1776–1800. https://doi.org/10.1093/brain/awv134

Kubota, Y., Mikawa, S., & Kawaguchi, Y. (1993). Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. Neuroreport, 5(3), 205–208. https://doi.org/10.1097/00001756-199312000-00004

Kubová, H., Druga, R., Haugvicová, R., Suchomelová, L., & Pitkanen, A. (2002). Dynamic changes of status epilepticus‐induced neuronal degeneration in the mediodorsal nucleus of the thalamus during postnatal development of the rat. Epilepsia, 43(Suppl 5), 54–60. https://doi.org/10.1046/j.1528-1157.43.s.5.36.x

Kubová, H., Druga, R., Lukasiuk, K., Suchomelová, L., Haugvicová, R., Jirmanová, I., & Pitkänen, A. (2001). Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. The Journal of Neuroscience, 21(10), 3593–3599. https://doi.org/10.1523/JNEUROSCI.21-10-03593.2001

Löscher, W., & Ebert, U. (1996). Basic mechanisms of seizure propagation: Targets for rational drug design and rational polypharmacy. Epilepsy Research. Supplement, 11, 17–43.

Margerison, J. H., & Corsellis, J. A. (1966). Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain, 89(3), 499–530. https://doi.org/10.1093/brain/89.3.499

Maytal, J., Shinnar, S., Moshé, S. L., & Alvarez, L. A. (1989). Low morbidity and mortality of status epilepticus in children. Pediatrics, 83(3), 323–331. https://doi.org/10.1542/peds.83.3.323

Mello, L. E., Cavalheiro, E. A., Tan, A. M., Kupfer, W. R., Pretorius, J. K., Babb, T. L., & Finch, D. M. (1993). Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: Cell loss and mossy fiber sprouting. Epilepsia, 34(6), 985–995. https://doi.org/10.1111/j.1528-1157.1993.tb02123.x

Meredith, G. E., Pennartz, C. M., & Groenewegen, H. J. (1993). The cellular framework for chemical signalling in the nucleus accumbens. Progress in Brain Research, 99, 3–24. https://doi.org/10.1016/S0079-6123(08)61335-7

Millhouse, O. E., & Heimer, L. (1984). Cell configurations in the olfactory tubercle of the rat. The Journal of Comparative Neurology, 228(4), 571–597. https://doi.org/10.1002/cne.902280409

Nairismägi, J., Pitkänen, A., Kettunen, M. I., Kauppinen, R. A., & Kubova, H. (2006). Status epilepticus in 12‐day‐old rats leads to temporal lobe neurodegeneration and volume reduction: A histologic and MRI study. Epilepsia, 47(3), 479–488. https://doi.org/10.1111/j.1528-1167.2006.00455.x

Norden, A. D., & Blumenfeld, H. (2002). The role of subcortical structures in human epilepsy. Epilepsy & Behavior, 3(3), 219–231. https://doi.org/10.1016/S1525-5050(02)00029-X

O'Donnell, P., & Grace, A. A. (1993). Physiological and morphological properties of accumbens core and shell neurons recorded in vitro. Synapse, 13(2), 135–160. https://doi.org/10.1002/syn.890130206

O'Donnell, P., Lavín, A., Enquist, L. W., Grace, A. A., Card, J. P. (1997). Interconnected parallel circuits between rat nucleus accumbens and thalamus revealed by retrograde transynaptic transport of pseudorabies virus. Journal of Neuroscience, 17(6), 2143–2167. https://doi.org/10.1523/JNEUROSCI.17-06-02143.1997

Parkes, L., Fulcher, B. D., Yücel, M., & Fornito, A. (2017). Transcriptional signatures of connectomic subregions of the human striatum. Genes, Brain, and Behavior, 16(7), 647–663. https://doi.org/10.1111/gbb.12386

Paxinos, G., & Watson, C. (1997). The rat brain in stereotaxic coordinates (3rd ed.). Academic Press.

Pereira de Vasconcelos, A., Mazarati, A. M., Wasterlain, C. G., & Nehlig, A. (1999). Self‐sustaining status epilepticus after a brief electrical stimulation of the perforant path: A 2‐deoxyglucose study. Brain Research, 838(1–2), 110–118. https://doi.org/10.1016/S0006-8993(99)01729-1

Pigache, R. M. (1970). The anatomy of “paleocortex”. A critical review. Ergebnisse der Anatomie und Entwicklungsgeschichte, 43(6), 3–62.

Pitkänen, A., Tuunanen, J., Kälviäinen, R., Partanen, K., & Salmenperä, T. (1998). Amygdala damage in experimental and human temporal lobe epilepsy. Epilepsy Research, 32(1–2), 233–253. https://doi.org/10.1016/S0920-1211(98)00055-2

Price, D. D., Harkins, S. W., & Baker, C. (1987). Sensory‐affective relationships among different types of clinical and experimental pain. Pain, 28(3), 297–307. https://doi.org/10.1016/0304-3959(87)90065-0

Priel, M. R., dos Santos, N. F., & Cavalheiro, E. A. (1996). Developmental aspects of the pilocarpine model of epilepsy. Epilepsy Research, 26(1), 115–121. https://doi.org/10.1016/S0920-1211(96)00047-2

Quiroz, C., Orrú, M., Rea, W., Ciudad‐Roberts, A., Yepes, G., Britt, J. P., & Ferré, S. (2016). Local control of extracellular dopamine levels in the medial nucleus accumbens by a glutamatergic projection from the infralimbic cortex. The Journal of Neuroscience, 36(3), 851–859. https://doi.org/10.1523/JNEUROSCI.2850-15.2016

Reynolds, S. M., & Zahm, D. S. (2005). Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. The Journal of Neuroscience, 25(50), 11757–11767. https://doi.org/10.1523/JNEUROSCI.3432-05.2005

Schmued, L. C., & Hopkins, K. J. (2000a). Fluoro‐Jade B: A high affinity fluorescent marker for the localization of neuronal degeneration. Brain Research, 874(2), 123–130. https://doi.org/10.1016/S0006-8993(00)02513-0

Schmued, L. C., & Hopkins, K. J. (2000b). Fluoro‐Jade: Novel fluorochromes for detecting toxicant‐induced neuronal degeneration. Toxicologic Pathology, 28(1), 91–99. https://doi.org/10.1177/019262330002800111

Scholl, E. A., Dudek, F. E., & Ekstrand, J. J. (2013). Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine‐induced status epilepticus in the immature rat. Neuroscience, 252, 45–59. https://doi.org/10.1016/j.neuroscience.2013.07.045

Shinnar, S., Pellock, J. M., Moshé, S. L., Maytal, J., O'Dell, C., Driscoll, S. M., Alemany, M., Newstein, D., & DeLorenzo, R. J. (1997). In whom does status epilepticus occur: Age‐related differences in children. Epilepsia, 38(8), 907–914. https://doi.org/10.1111/j.1528-1157.1997.tb01256.x

Stafstrom, C. E., & Sutula, T. P. (2005). Models of epilepsy in the developing and adult brain: Implications for neuroprotection. Epilepsy & Behavior, 7(3), S18–S24. https://doi.org/10.1016/j.yebeh.2005.08.005

Suchomelová, L., Kubová, H., Haugvicová, R., Druga, R., & Mares, P. (2002). Are acute changes after status epilepticus in immature rats persistent? Physiological Research, 51(2), 185–192. https://doi.org/10.33549/physiolres.930166

Turner, B. H., Gupta, K. C., & Mishkin, M. (1978). The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. The Journal of Comparative Neurology, 177(3), 381–396. https://doi.org/10.1002/cne.901770303

Turski, W. A., Cavalheiro, E. A., Schwarz, M., Czuczwar, S. J., Kleinrok, Z., & Turski, L. (1983). Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study. Behavioural Brain Research, 9(3), 315–335. https://doi.org/10.1016/0166-4328(83)90136-5

van Dongen, Y. C., Deniau, J. M., Pennartz, C. M., Galis‐de Graaf, Y., Voorn, P., Thierry, A. M., & Groenewegen, H. J. (2005). Anatomical evidence for direct connections between the shell and core subregions of the rat nucleus accumbens. Neuroscience, 136(4), 1049–1071. https://doi.org/10.1016/j.neuroscience.2005.08.050

Volkow, N. D., & Morales, M. (2015). The brain on drugs: From reward to addiction. Cell, 162(4), 712–725. https://doi.org/10.1016/j.cell.2015.07.046

Wang, J., Zhang, Y., Zhang, H., Wang, K., Wang, H., Qian, D., Qi, S., Yang, K., & Long, H. (2020). Nucleus accumbens shell: A potential target for drug‐resistant epilepsy with neuropsychiatric disorders. Epilepsy Research, 164, 106365. https://doi.org/10.1016/j.eplepsyres.2020.106365

Wei, D., Yang, F., Wang, Y., Yang, F., Wu, C., Wu, S. X., & Jiang, W. (2015). Degeneration and regeneration of GABAergic interneurons in the dentate gyrus of adult mice in experimental models of epilepsy. CNS Neuroscience & Therapeutics, 21(1), 52–60. https://doi.org/10.1111/cns.12330

Wright, C. I., & Groenewegen, H. J. (1996). Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaloid afferents in the nucleus accumbens of the rat. Neuroscience, 73(2), 359–373. https://doi.org/10.1016/0306-4522(95)00592-7

Záborszky, L., Alheid, G. F., Beinfeld, M. C., Eiden, L. E., Heimer, L., & Palkovits, M. (1985). Cholecystokinin innervation of the ventral striatum: A morphological and radioimmunological study. Neuroscience, 14(2), 427–453. https://doi.org/10.1016/0306-4522(85)90302-1

Zahm, D. S. (2000). An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neuroscience and Biobehavioral Reviews, 24(1), 85–105. https://doi.org/10.1016/S0149-7634(99)00065-2

Zahm, D. S., & Brog, J. S. (1992). On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience, 50(4), 751–767. https://doi.org/10.1016/0306-4522(92)90202-D

Zahm, D. S., Williams, E., & Wohltmann, C. (1996). Ventral striatopallidothalamic projection: IV. Relative involvements of neurochemically distinct subterritories in the ventral pallidum and adjacent parts of the rostroventral forebrain. The Journal of Comparative Neurology, 364(2), 340–362. https://doi.org/10.1002/(SICI)1096-9861(19960108)364:2<340::AID-CNE11>3.0.CO;2-T

Zhang, Z., Zhang, H., Wen, P., Zhu, X., Wang, L., Liu, Q., Wang, J., He, X., Wang, H., & Xu, F. (2017). Whole‐brain mapping of the inputs and outputs of the medial part of the olfactory tubercle. Frontiers in Neural Circuits, 11, 52. https://doi.org/10.3389/fncir.2017.00052

Zhao, X., Yang, R., Wang, K., Zhang, Z., Wang, J., Tan, X., Zhang, J., Mei, Y., Chan, Q., Xu, J., Feng, Q., & Xu, Y. (2018). Connectivity‐based parcellation of the nucleus accumbens into core and shell portions for stereotactic target localization and alterations in each NAc subdivision in mTLE patients. Human Brain Mapping, 39(3), 1232–1245. https://doi.org/10.1002/hbm.23912

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...