Dorsal Striatum Is Compromised by Status Epilepticus Induced in Immature Developing Animal Experimental Model of Mesial Temporal Lobe Epilepsy
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Grants No. 309/01/0285.
Grant Agency of Czech Republic (GCAR)
Grants No. 304/07/1137.
Grant Agency of Czech Republic (GCAR)
PubMed
40244181
PubMed Central
PMC11989456
DOI
10.3390/ijms26073349
PII: ijms26073349
Knihovny.cz E-zdroje
- Klíčová slova
- basal ganglia, degenerative neuronal changes, dorsal striatum, epilepsy, rat brain, seizure, status epilepticus,
- MeSH
- corpus striatum * patologie metabolismus MeSH
- epilepsie temporálního laloku * patologie chemicky indukované MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- neurony patologie metabolismus MeSH
- pilokarpin MeSH
- potkani Wistar MeSH
- status epilepticus * patologie chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- pilokarpin MeSH
This study investigated the striatopallidal complex's involvement in status epilepticus (SE) caused by morphological neurodegenerative changes in a post-natal immature developing brain in a lithium-pilocarpine male Wistar albino rat model of mesial temporal lobe epilepsy. One hundred experimental pups were grouped by age as follows: 12, 15, 18, 21, and 25 days. SE was induced by lithium-pilocarpine. Brain sections were microscopically examined by Fluoro-Jade B fluorescence stain at intervals of 4, 12, 24, and 48 h and 1 week after SE. Each interval was composed of four induced SE pups and a control. Fluoro-Jade B positive neurons in the dorsal striatum (DS) were screened and plotted on stereotaxic rat brain maps. The DS showed consistent neuronal damage in pups aged 18, 21, and 25 days. The peak of the detected damage was observed in pups aged 18 days, and the start of the morphological sequela was observed 12 h post SE. The neuronal damage in the DS was distributed around its periphery, extending medially. The damaged neurons showed intense Fluoro-Jade B staining at the intervals of 12 and 24 h post SE. SE neuronal damage was evidenced in the post-natal developing brain selectively in the DS and was age-dependent with differing morphological sequela.
Department of Anatomy 2nd Medical Faculty Charles University 15006 Prague Czech Republic
Institute of Anatomy 1st Faculty of Medicine Charles University 12000 Prague Czech Republic
Zobrazit více v PubMed
Kubová H., Druga R., Lukasiuk K., Suchomelová L., Haugvicová R., Jirmanová I., Pitkänen A. Status epilepticus causes necrotic damage in the mediodorsal nucleus of the thalamus in immature rats. J. Neurosci. 2001;21:3593–3599. doi: 10.1523/JNEUROSCI.21-10-03593.2001. PubMed DOI PMC
Kubová H., Druga R., Haugvicová R., Suchomelová L., Pitkanen A. Dynamic changes of status epilepticus-induced neuronal degeneration in the mediodorsal nucleus of the thalamus during postnatal development of the rat. Epilepsia. 2002;43:54–60. doi: 10.1046/j.1528-1157.43.s.5.36.x. PubMed DOI
Doczi J., Bernásková K., Kubová H., Détari L., Világi I., Druga R., Mares P. Long-term changes of activity of cortical neurons after status epilepticus induced at early developmental stages in rats. Neurosci. Lett. 2003;352:125–128. doi: 10.1016/j.neulet.2003.08.043. PubMed DOI
Norden A.D., Blumenfeld H. The role of subcortical structures in human epilepsy. Epilepsy Behav. 2002;3:219–231. doi: 10.1016/s1525-5050(02)00029-x. PubMed DOI
Scholl E.A., Dudek F.E., Ekstrand J.J. Neuronal degeneration is observed in multiple regions outside the hippocampus after lithium pilocarpine-induced status epilepticus in the immature rat. Neuroscience. 2013;252:45–59. doi: 10.1016/j.neuroscience.2013.07.045. PubMed DOI PMC
Druga R., Mares P., Otáhal J., Kubová H. Degenerative neuronal changes in the rat thalamus induced by status epilepticus at different developmental stages. Epilepsy Res. 2005;63:43–65. doi: 10.1016/j.eplepsyres.2004.11.001. PubMed DOI
Mares P., Tsenov G., Aleksakhina K., Druga R., Kubová H. Changes of cortical interhemispheric responses after status epilepticus in immature rats. Epilepsia. 2005;46:31–37. doi: 10.1111/j.1528-1167.2005.01004.x. PubMed DOI
Druga R., Mares P., Kubová H. Time course of neuronal damage in the hippocampus following lithium-pilocarpine status epilepticus in 12-day-old rats. Brain Res. 2010;1355:174–179. doi: 10.1016/j.brainres.2010.07.072. PubMed DOI
Dematteis M., Kahane P., Vercueil L., Depaulis A. MRI evidence for the involvement of basal ganglia in epileptic seizures: An hypothesis. Epileptic Disord. 2003;5:161–164. PubMed
Spencer S.S. Neural networks in human epilepsy: Evidence of and implications for treatment. Epilepsia. 2002;43:219–227. doi: 10.1046/j.1528-1157.2002.26901.x. PubMed DOI
Briellmann R.S., Jackson G.D., Pell G.S., Mitchell L.A., Abbott D.F. Structural abnormalities remote from the seizure focus: A study using T2 relaxometry at 3 T. Neurology. 2004;63:2303–2308. doi: 10.1212/01.WNL.0000148646.31755.59. PubMed DOI
Covolan L., Mello L.E. Temporal profile of neuronal injury following pilocarpine or kainic acid-induced status epilepticus. Epilepsy Res. 2000;39:133–152. doi: 10.1016/S0920-1211(99)00119-9. PubMed DOI
Ben-Ari Y., Holmes G.L. Effects of seizures on developmental processes in the immature brain. Lancet Neurol. 2006;5:1055–1063. doi: 10.1016/S1474-4422(06)70626-3. PubMed DOI
Bouilleret V., Semah F., Chassoux F., Mantzaridez M., Biraben A., Trebossen R., Ribeiro M.J. Basal ganglia involvement in temporal lobe epilepsy: A functional and morphologic study. Neurology. 2008;70:177–184. doi: 10.1212/01.wnl.0000297514.47695.48. PubMed DOI
Bekiesinska-Figatowska M., Mierzewska H., Jurkiewicz E. Basal ganglia lesions in children and adults. Eur. J. Radiol. 2013;82:837–849. doi: 10.1016/j.ejrad.2012.12.006. PubMed DOI
Graybiel A.M. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci. 1990;13:244–254. doi: 10.1016/0166-2236(90)90104-I. PubMed DOI
Delgado J.M.R. Inhibitory functions in the neostriatum. In: Divac I., Oberg R.G.E., editors. The Neostriatum. Pergamon Press; London, UK: 1979. pp. 241–261. DOI
Alexander G.E., DeLong M.R. Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J. Neurophysiol. 1985;53:1401–1416. doi: 10.1152/jn.1985.53.6.1401. PubMed DOI
Alheid G.F., Heimer L. New perspectives in basal forebrain organization of special relevance for neuropsychiatric disorders: The striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience. 1988;27:1–39. doi: 10.1016/0306-4522(88)90217-5. PubMed DOI
Gerfen C.R. The neostriatal mosaic: Multiple levels of compartmental organization in the basal ganglia. Annu. Rev. Neurosci. 1992;15:285–320. doi: 10.1146/annurev.ne.15.030192.001441. PubMed DOI
Haber S.N. The primate basal ganglia: Parallel and integrative networks. J. Chem. Neuroanat. 2003;26:317–330. doi: 10.1016/j.jchemneu.2003.10.003. PubMed DOI
Druga R. Neocortical inhibitory system. Folia Biol. 2009;55:201–217. PubMed
Parent A., Hazrati L.N. Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res. Brain Res. Rev. 1995;20:91–127. doi: 10.1016/0165-0173(94)00007-c. PubMed DOI
Parent A., Hazrati L.N. Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res. Brain Res. Rev. 1995;20:128–154. doi: 10.1016/0165-0173(94)00008-d. PubMed DOI
McFarland N.R., Haber S.N. Convergent inputs from thalamic motor nuclei and frontal cortical areas to the dorsal striatum in the primate. J. Neurosci. 2000;20:3798–3813. doi: 10.1523/JNEUROSCI.20-10-03798.2000. PubMed DOI PMC
Heimer L., Switzer R.D., Van Hoesen G.W. Ventral striatum and ventral pallidum: Components of the motor system? TINS. 1982;5:83–87.
Voorn P., Vanderschuren L.J., Groenewegen H.J., Robbins T.W., Pennartz C.M. Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci. 2004;27:468–474. doi: 10.1016/j.tins.2004.06.006. PubMed DOI
Graybiel A.M. The basal ganglia: Learning new tricks and loving it. Curr. Opin. Neurobiol. 2005;15:638–644. doi: 10.1016/j.conb.2005.10.006. PubMed DOI
Graybiel A.M., Grafton S.T. The striatum: Where skills and habits meet. Cold Spring Harb. Perspect. Biol. 2015;7:a021691. doi: 10.1101/cshperspect.a021691. PubMed DOI PMC
Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci. 1990;13:254–258. doi: 10.1016/0166-2236(90)90105-j. PubMed DOI
Van der Werf Y.D., Witter M.P., Groenewegen H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain research. Brain Res. Rev. 2002;39:107–140. doi: 10.1016/s0165-0173(02)00181-9. PubMed DOI
Tepper J.M., Wilson C.J., Koós T. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res. Rev. 2008;58:272–281. doi: 10.1016/j.brainresrev.2007.10.008. PubMed DOI PMC
Nauta W.J., Mehler W.R. Projections of the lentiform nucleus in the monkey. Brain Res. 1966;1:3–42. doi: 10.1016/0006-8993(66)90103-X. PubMed DOI
McDonald A.J. Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience. 1991;44:1–14. doi: 10.1016/0306-4522(91)90247-L. PubMed DOI
McDonald A.J. Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience. 1991;44:15–33. doi: 10.1016/0306-4522(91)90248-M. PubMed DOI
Reep R.L., Cheatwood J.L., Corwin J.V. The associative striatum: Organization of cortical projections to the dorsocentral striatum in rats. J. Comp. Neurol. 2003;467:271–292. doi: 10.1002/cne.10868. PubMed DOI
Wu J.H., Corwin J.V., Reep R.L. Organization of the corticostriatal projection from rat medial agranular cortex to far dorsolateral striatum. Brain Res. 2009;1280:69–76. doi: 10.1016/j.brainres.2009.05.044. PubMed DOI
Tepper J.M., Bolam J.P. Functional diversity and specificity of neostriatal interneurons. Curr. Opin. Neurobiol. 2004;14:685–692. doi: 10.1016/j.conb.2004.10.003. PubMed DOI
Pitkänen A., Pikkarainen M., Nurminen N., Ylinen A. Reciprocal connections between the amygdala and the hippocampal formation, perirhinal cortex, and postrhinal cortex in rat. A review. Ann. N. Y. Acad. Sci. 2000;911:369–391. doi: 10.1111/j.1749-6632.2000.tb06738.x. PubMed DOI
Slaght S.J., Paz T., Mahon S., Maurice N., Charpier S., Deniau J.M. Functional organization of the circuits connecting the cerebral cortex and the basal ganglia: Implications for the role of the basal ganglia in epilepsy. Epileptic Disord. 2002;4:S9–S22. doi: 10.1684/j.1950-6945.2002.tb00542.x. PubMed DOI
Löscher W., Schirmer M., Freichel C., Gernert M. Distribution of GABAergic neurons in the striatum of amygdala-kindled rats: An immunohistochemical and in situ hybridization study. Brain Res. 2006;1083:50–60. doi: 10.1016/j.brainres.2006.01.096. PubMed DOI
Haber S.N., Calzavara R. The cortico-basal ganglia integrative network: The role of the thalamus. Brain Res. Bull. 2009;78:69–74. doi: 10.1016/j.brainresbull.2008.09.013. PubMed DOI PMC
Kincaid A.E., Wilson C.J. Corticostriatal innervation of the patch and matrix in the rat neostriatum. J. Comp. Neurol. 1996;374:578–592. doi: 10.1002/(SICI)1096-9861(19961028)374:4<578::AID-CNE7>3.0.CO;2-Z. PubMed DOI
Graybiel A.M., Ragsdale C.W. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc. Natl. Acad. Sci. USA. 1978;75:5723–5726. doi: 10.1073/pnas.75.11.5723. PubMed DOI PMC
Brimblecombe K.R., Cragg S.J. The Striosome and Matrix Compartments of the Striatum: A Path through the Labyrinth from Neurochemistry toward Function. ACS Chem. Neurosci. 2017;8:235–242. doi: 10.1021/acschemneuro.6b00333. PubMed DOI
Grofová I. The identification of striatal and pallidal neurons projecting to substantia nigra. An experimental study by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 1975;91:286–291. doi: 10.1016/0006-8993(75)90550-8. PubMed DOI
Leontovich T.A. Neuronal structure of striatopallidum in mammals. J. Nevropatol. Psychiatry. 1954;65:168–179.
DiFiglia M., Aronin N. Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus. J. Neurosci. 1982;2:1267–1274. doi: 10.1523/JNEUROSCI.02-09-01267.1982. PubMed DOI PMC
Tepper J.M., Sharpe N.A., Koós T.Z., Trent F. Postnatal development of the rat neostriatum: Electrophysiological, light- and electron-microscopic studies. Dev. Neurosci. 1998;20:125–145. doi: 10.1159/000017308. PubMed DOI
Trinka E., Cock H., Hesdorffer D., Rossetti A.O., Scheffer I.E., Shinnar S., Shorvon S., Lowenstein D.H. A definition and classification of status epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia. 2015;56:1515–1523. doi: 10.1111/epi.13121. PubMed DOI
Buckmaster P.S. Laboratory animal models of temporal lobe epilepsy. Comp. Med. 2004;54:473–485. PubMed
Sengupta P. The Laboratory Rat: Relating Its Age With Human’s. Int. J. Prev. Med. 2013;4:624–630. PubMed PMC
Lévesque M., Avoli M., Bernard C. Animal models of temporal lobe epilepsy following systemic chemoconvulsant administration. J. Neurosci. Methods. 2016;260:45–52. doi: 10.1016/j.jneumeth.2015.03.009. PubMed DOI PMC
Garant D.S., Gale K. Lesions of substantia nigra protect against experimentally induced seizures. Brain Res. 1983;273:156–161. doi: 10.1016/0006-8993(83)91105-8. PubMed DOI
Mizrahi E.M. Acute and chronic effects of seizures in the developing brain: Lessons from clinical experience. Epilepsia. 1999;40:S42–S66. doi: 10.1111/j.1528-1157.1999.tb00878.x. PubMed DOI
Deransart C., Depaulis A. The control of seizures by the basal ganglia? A review of experimental data. Epileptic Disord. 2002;4:S61–S72. PubMed
Avchalumov Y., Kirschstein T., Köhling R. Altered physiology and pharmacology in the corticostriatal system in a model of temporal lobe epilepsy. Epilepsia. 2011;52:151–157. doi: 10.1111/j.1528-1167.2010.02779.x. PubMed DOI
Rektor I., Kuba R., Brázdil M., Chrastina J. Do the basal ganglia inhibit seizure activity in temporal lobe epilepsy? Epilepsy Behav. 2012;25:56–59. doi: 10.1016/j.yebeh.2012.04.125. PubMed DOI
Scott R.C. What are the effects of prolonged seizures in the brain? Epileptic Disord. 2014;16:S6–S11. doi: 10.1684/epd.2014.0689. PubMed DOI PMC
Bernasconi N., Bernasconi A., Caramanos Z., Antel S.B., Andermann F., Arnold D.L. Mesial temporal damage in temporal lobe epilepsy: A volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Pt 2Brain. 2003;126:462–469. doi: 10.1093/brain/awg034. PubMed DOI
Goffin K., Van Paesschen W., Dupont P., Van Laere K. Longitudinal microPET imaging of brain glucose metabolism in rat lithium-pilocarpine model of epilepsy. Exp. Neurol. 2009;217:205–209. doi: 10.1016/j.expneurol.2009.02.008. PubMed DOI
Mraovitch S., Calando Y. Interactions between limbic, thalamo-striatal-cortical, and central autonomic pathways during epileptic seizure progression. J. Comp. Neurol. 1999;411:145–161. doi: 10.1002/(SICI)1096-9861(19990816)411:1<145::AID-CNE11>3.0.CO;2-1. PubMed DOI
Lee J., Park K., Lee S., Whang K., Kang M., Park C., Huh Y. Differential changes of calcium binding proteins in the rat striatum after kainic acid-induced seizure. Neurosci. Lett. 2002;333:87–90. doi: 10.1016/S0304-3940(02)00987-4. PubMed DOI
Szyndler J., Maciejak P., Turzyńska D., Sobolewska A., Taracha E., Skórzewska A., Lehner M., Bidziński A., Hamed A., Wisłowska-Stanek A., et al. Mapping of c-Fos expression in the rat brain during the evolution of pentylenetetrazol-kindled seizures. Epilepsy Behav. 2009;16:216–224. doi: 10.1016/j.yebeh.2009.07.030. PubMed DOI
Ohno Y., Shimizu S., Harada Y., Morishita M., Ishihara S., Kumafuji K., Sasa M., Serikawa T. Regional expression of Fos-like immunoreactivity following seizures in Noda epileptic rat (NER) Epilepsy Res. 2009;87:70–76. doi: 10.1016/j.eplepsyres.2009.07.012. PubMed DOI
Yu W., Calos M., Pilitsis J., Shin D.S. Deconstructing the neural and ionic involvement of seizure-like events in the striatal network. Neurobiol. Dis. 2013;52:128–136. doi: 10.1016/j.nbd.2012.11.019. PubMed DOI
Nascimento V.S., Oliveira A.A., Freitas R.M., Sousa F.C., Vasconcelos S.M., Viana G.S., Fonteles M.M. Pilocarpine-induced status epilepticus: Monoamine level, muscarinic and dopaminergic receptors alterations in striatum of young rats. Neurosci. Lett. 2005;383:165–170. doi: 10.1016/j.neulet.2005.04.006. PubMed DOI
Moeller F., Siebner H.R., Wolff S., Muhle H., Boor R., Granert O., Jansen O., Stephani U., Siniatchkin M. Changes in activity of striato-thalamo-cortical network precede generalized spike wave discharges. NeuroImage. 2008;39:1839–1849. doi: 10.1016/j.neuroimage.2007.10.058. PubMed DOI
Velísková J., Claudio O.I., Galanopoulou A.S., Kyrozis A., Lado F.A., Ravizza T., Velísek L., Moshé S.L. Developmental aspects of the basal ganglia and therapeutic perspectives. Epileptic Disord. 2002;4:S73–S82. doi: 10.1684/j.1950-6945.2002.tb00548.x. PubMed DOI
Cavalheiro E.A., Leite J.P., Bortolotto Z.A., Turski W.A., Ikonomidou C., Turski L. Long-term effects of pilocarpine in rats: Structural damage of the brain triggers kindling and spontaneous recurrent seizures. Epilepsia. 1991;32:778–782. doi: 10.1111/j.1528-1157.1991.tb05533.x. PubMed DOI
Cavalheiro E.A. The pilocarpine model of epilepsy. Ital. J. Neurol. Sci. 1995;16:33–37. doi: 10.1007/BF02229072. PubMed DOI
Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. Elsevier Academic Press; Amsterdam, The Netherlands: 2007.
Berendse H.W., Galis-de Graaf Y., Groenewegen H.J. Topographical organization and relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J. Comp. Neurol. 1992;316:314–347. doi: 10.1002/cne.903160305. PubMed DOI
Druga R., Rokyta R., Benes V., Jr. Thalamocaudate projections in the macaque monkey (a horseradish peroxidase study) J. Hirnforsch. 1991;32:765–774. PubMed
Suchomelová L., Kubová H., Haugvicová R., Druga R., Mares P. Are acute changes after status epilepticus in immature rats persistent? Physiol. Res. 2002;51:185–192. PubMed
Hoover W.B., Vertes R.P. Anatomical analysis of afferent projections to the medial prefrontal cortex in the rat. Brain Struct. Funct. 2007;212:149–179. doi: 10.1007/s00429-007-0150-4. PubMed DOI
Cheatwood J.L., Corwin J.V., Reep R.L. Overlap and interdigitation of cortical and thalamic afferents to dorsocentral striatum in the rat. Brain Res. 2005;1036:90–100. doi: 10.1016/j.brainres.2004.12.049. PubMed DOI
Sgambato V., Maurice N., Besson M.J., Thierry A.M., Deniau J.M. Effect of a functional impairment of corticostriatal transmission on cortically evoked expression of c-Fos and zif 268 in the rat basal ganglia. Neuroscience. 1999;93:1313–1321. doi: 10.1016/S0306-4522(99)00267-5. PubMed DOI
Holopainen I.E. Seizures in the developing brain: Cellular and molecular mechanisms of neuronal damage, neurogenesis and cellular reorganization. Neurochem. Int. 2008;52:935–947. doi: 10.1016/j.neuint.2007.10.021. PubMed DOI
Hoffer Z.S., Alloway K.D. Organization of corticostriatal projections from the vibrissal representations in the primary motor and somatosensory cortical areas of rodents. J. Comp. Neurol. 2001;439:87–103. doi: 10.1002/cne.1337. PubMed DOI
Schilman E.A., Uylings H.B., Galis-de Graaf Y., Joel D., Groenewegen H.J. The orbital cortex in rats topographically projects to central parts of the caudate-putamen complex. Neurosci. Lett. 2008;432:40–45. doi: 10.1016/j.neulet.2007.12.024. PubMed DOI
Kamishina H., Yurcisin G.H., Corwin J.V., Reep R.L. Striatal projections from the rat lateral posterior thalamic nucleus. Brain Res. 2008;1204:24–39. doi: 10.1016/j.brainres.2008.01.094. PubMed DOI
Brown L.L., Smith D.M., Goldbloom L.M. Organizing principles of cortical integration in the rat neostriatum: Corticostriate map of the body surface is an ordered lattice of curved laminae and radial points. J. Comp. Neurol. 1998;392:468–488. PubMed
Turski W.A., Cavalheiro E.A., Bortolotto Z.A., Mello L.M., Schwarz M., Turski L. Seizures produced by pilocarpine in mice: A behavioral, electroencephalographic and morphological analysis. Brain Res. 1984;321:237–253. doi: 10.1016/0006-8993(84)90177-x. PubMed DOI
Naito A., Kita H. The cortico-nigral projection in the rat: An anterograde tracing study with biotinylated dextran amine. Brain Res. 1994;637:317–322. doi: 10.1016/0006-8993(94)91252-1. PubMed DOI
Côté P.Y., Sadikot A.F., Parent A. Complementary Distribution of Calbindin D-28k and Parvalbumin in the Basal Forebrain and Midbrain of the Squirrel Monkey. Eur. J. Neurosci. 1991;3:1316–1329. doi: 10.1111/j.1460-9568.1991.tb00064.x. PubMed DOI
Ichinohe N., Teng B., Kitai S.T. Morphological study of the tegmental pedunculopontine nucleus, substantia nigra and subthalamic nucleus, and their interconnections in rat organotypic culture. Anat. Embryol. 2000;201:435–453. doi: 10.1007/s004290050331. PubMed DOI
Al-Redouan A., Salaj M., Kubova H., Druga R. Compartmental neuronal degeneration in the ventral striatum induced by status epilepticus in young rats’ brain in comparison with adults. Int. J. Dev. Neurosci. 2024;84:328–341. doi: 10.1002/jdn.10331. PubMed DOI
Schmued L.C., Hopkins K.J. Fluoro-Jade: Novel fluorochromes for detecting toxicant-induced neuronal degeneration. Toxicol. Pathol. 2000;28:91–99. doi: 10.1177/019262330002800111. PubMed DOI
Schmued L.C., Hopkins K.J. Fluoro-Jade B: A high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874:123–130. doi: 10.1016/s0006-8993(00)02513-0. PubMed DOI
Festing M.F. Design and statistical methods in studies using animal models of development. ILAR J. 2006;47:5–14. doi: 10.1093/ilar.47.1.5. PubMed DOI
Festing M.F., Altman D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002;43:244–258. doi: 10.1093/ilar.43.4.244. PubMed DOI
Charan J., Kantharia N.D. How to calculate sample size in animal studies? J. Pharm. Pharmacol. 2013;4:303–306. doi: 10.4103/0976-500X.119726. PubMed DOI PMC