In Vitro Evolution Reveals Noncationic Protein-RNA Interaction Mediated by Metal Ions
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35137196
PubMed Central
PMC8892947
DOI
10.1093/molbev/msac032
PII: 6524634
Knihovny.cz E-zdroje
- Klíčová slova
- RNA–protein interaction, genetic code evolution, mRNA-display, protein evolution,
- MeSH
- aminokyseliny * genetika MeSH
- ionty MeSH
- RNA * genetika MeSH
- simulace molekulární dynamiky MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny * MeSH
- ionty MeSH
- RNA * MeSH
RNA-peptide/protein interactions have been of utmost importance to life since its earliest forms, reaching even before the last universal common ancestor (LUCA). However, the ancient molecular mechanisms behind this key biological interaction remain enigmatic because extant RNA-protein interactions rely heavily on positively charged and aromatic amino acids that were absent (or heavily under-represented) in the early pre-LUCA evolutionary period. Here, an RNA-binding variant of the ribosomal uL11 C-terminal domain was selected from an approximately 1010 library of partially randomized sequences, all composed of ten prebiotically plausible canonical amino acids. The selected variant binds to the cognate RNA with a similar overall affinity although it is less structured in the unbound form than the wild-type protein domain. The variant complex association and dissociation are both slower than for the wild-type, implying different mechanistic processes involved. The profile of the wild-type and mutant complex stabilities along with molecular dynamics simulations uncovers qualitative differences in the interaction modes. In the absence of positively charged and aromatic residues, the mutant uL11 domain uses ion bridging (K+/Mg2+) interactions between the RNA sugar-phosphate backbone and glutamic acid residues as an alternative source of stabilization. This study presents experimental support to provide a new perspective on how early protein-RNA interactions evolved, where the lack of aromatic/basic residues may have been compensated by acidic residues plus metal ions.
Department of Biochemistry Faculty of Science Charles University Prague Czech Republic
Department of Cell Biology Faculty of Science Charles University BIOCEV Prague Czech Republic
Earth Life Science Institute Tokyo Institute of Technology Tokyo Japan
Graduate School of Media and Governance Keio University Fujisawa Japan
Institute of Microbiology Czech Academy of Sciences Vestec Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Allnér O, Nilsson L, Villa A.. 2012. Magnesium ion-water coordination and exchange in biomolecular simulations. J Chem Theory Comput. 8(4):1493–1502. PubMed
Balcerak A, Trebinska-Stryjewska A, Konopinski R, Wakula M, Grzybowska EA.. 2019. RNA-protein interactions: disorder, moonlighting and junk contribute to eukaryotic complexity. Open Biol. 9(6):190096. PubMed PMC
Blanco C, Bayas M, Yan F, Chen IA.. 2018. Analysis of evolutionarily independent protein-RNA complexes yields a criterion to evaluate the relevance of prebiotic scenarios. Curr Biol. 28(4):526–537.e5. PubMed
Bochicchio A, Krepl M, Yang F, Varani G, Sponer J, Carloni P.. 2018. Molecular basis for the increased affinity of an RNA recognition motif with re-engineered specificity: a molecular dynamics and enhanced sampling simulations study. PLoS Comput Biol. 14:e1006642. PubMed PMC
Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP.. 2012. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem Soc Rev. 41(16):5459–5472. PubMed
Campagne S, Krepl M, Sponer J, Allain FHT.. 2019. Combining NMR spectroscopy and molecular dynamic simulations to solve and analyze the structure of protein–RNA complexes. Methods Enzymol. 614:393–422. PubMed
Cleaves HJ. 2010. The origin of the biologically coded amino acids. J Theor Biol. 263(4):490–498. PubMed
Conn GL, Gittis AG, Lattman EE, Misra VK, Draper DE.. 2002. A compact RNA tertiary structure contains a buried backbone-K+ complex. J Mol Biol. 318(4):963–973. PubMed
Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS.. 2020. Polyamines mediate folding of primordial hyperacidic helical proteins. Biochemistry 59(46):4456–4462. PubMed PMC
Doi N, Kakukawa K, Oishi Y, Yanagawa H.. 2011. High solubility of random-sequence proteins consisting of five kinds of primitive amino acids. Chem Synth Biol. 18:119–137. PubMed
Granold M, Hajieva P, Toşa MI, Irimie FD, Moosmann B.. 2018. Modern diversification of the amino acid repertoire driven by oxygen. Proc Natl Acad Sci U S A. 115(1):41–46. PubMed PMC
Higgs PG, Pudritz RE.. 2009. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9(5):483–490. PubMed
Hsiao C, Mohan S, Kalahar BK, Williams LD.. 2009. Peeling the onion: ribosomes are ancient molecular fossils. Mol Biol Evol. 26(11):2415–2425. PubMed
Jacobs TM, Yumerefendi H, Kuhlman B, Leaver-Fay A.. 2015. SwiftLib: rapid degenerate-codon-library optimization through dynamic programming. Nucleic Acids Res. 43:e34. PubMed PMC
Koehl P, Levitt M.. 1999. Structure-based conformational preferences of amino acids. Proc Natl Acad Sci U S A. 96(22):12524–12529. PubMed PMC
Krepl M, Blatter M, Cléry A, Damberger FF, Allain FHT, Sponer J.. 2017. Structural study of the Fox-1 RRM protein hydration reveals a role for key water molecules in RRM-RNA recognition. Nucleic Acids Res. 45(13):8046–8063. PubMed PMC
Kumachi S, Husimi Y, Nemoto N.. 2016. An RNA binding peptide consisting of four types of amino acid by in vitro selection using cDNA display. ACS Omega. 1(1):52–57. PubMed PMC
Lepsik M. 2021. Molecular dynamics of CL11 and CL11-E complexes with 58rRNA. Mendeley Data, V1. doi: 10.17632/hsg96vsxdw.1. DOI
Longo LM, Despotović D, Weil-Ktorza O, Walker MJ, Jabłońska J, Fridmann-Sirkis Y, Varani G, Metanis N, Tawfik DS.. 2020. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc Natl Acad Sci U S A. 117(27):15731–15739. PubMed PMC
Longo LM, Lee J, Blaber M.. 2013. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proc Natl Acad Sci U S A. 110(6):2135–2139. PubMed PMC
Longo LM, Tenorio CA, Kumru OS, Middaugh CR, Blaber M.. 2015. A single aromatic core mutation converts a designed “primitive” protein from halophile to mesophile folding. Protein Sci. 24(1):27–37. PubMed PMC
Lupas AN, Alva V.. 2017. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. J Struct Biol. 198(2):74–81. PubMed
Makarov M, Meng J, Tretyachenko V, Srb P, Březinová A, Giacobelli VG, Bednárová L, Vondrášek J, Dunker AK, Hlouchová K.. 2021. Enzyme catalysis prior to aromatic residues: reverse engineering of a dephospho-CoA kinase. Protein Sci. 30(5):1022–1034. PubMed PMC
Neburkova J, Sedlak F, Zackova Suchanova J, Kostka L, Sacha P, Subr V, Etrych T, Simon P, Barinkova J, Krystufek R, et al.2018. Inhibitor-GCPII interaction: selective and robust system for targeting cancer cells with structurally diverse nanoparticles. Mol Pharm. 15(8):2932–2945. PubMed
Newton MS, Morrone DJ, Lee KH, Seelig B.. 2019. Genetic code evolution investigated through the synthesis and characterisation of proteins from reduced-alphabet libraries. Chembiochem. 20(6):846–856. PubMed
Niwa T, Uemura E, Matsuno Y, Taguchi H.. 2019. Translation-coupled protein folding assay using a protease to monitor the folding status. Protein Sci. 28(7):1252–1261. PubMed PMC
Petrov AS, Bernier CR, Hsiao C, Okafor CD, Tannenbaum E, Stern J, Gaucher E, Schneider D, Hud NV, Harvey SC, et al.2012. RNA-magnesium-protein interactions in large ribosomal subunit. J Phys Chem B. 116(28):8113–8120. PubMed
Petrov AS, Bowman JC, Harvey SC, Williams LD.. 2011. Bidentate RNA-magnesium clamps: on the origin of the special role of magnesium in RNA folding. RNA 17(2):291–297. PubMed PMC
Pokorná P, Kruse H, Krepl M, Šponer J.. 2018. QM/MM calculations on protein-RNA complexes: understanding limitations of classical MD simulations and search for reliable cost-effective QM methods. J Chem Theory Comput. 14(10):5419–5433. PubMed
Raggi L, Bada JL, Lazcano A.. 2016. On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Phys Chem Chem Phys. 18(30):20028–20032. PubMed
Reyes SG, Kuruma Y, Fujimi M, Yamazaki M, Eto S, Nishikawa S, Tamaki S, Kobayashi A, Mizuuchi R, Rothschild L, et al.2021. PURE mRNA display and cDNA display provide rapid detection of core epitope motif via high-throughput sequencing. Biotechnol Bioeng. 118(4):1736–1749. PubMed
Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner A, Yusupova G.. 2019. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat Commun. 10:1–12. PubMed PMC
Shibue R, Sasamoto T, Shimada M, Zhang B, Yamagishi A, Akanuma S.. 2018. Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Sci Rep. 8:1227. PubMed PMC
Shitov VV, Semenov NA, Gozman NY.. 1984. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. Telecommun Radio Eng. 38–39:14–16.
Solis AD. 2019. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds. BMC Evol Biol. 19:158. PubMed PMC
Srivastava A, Ahmad S, Gromiha MM.. 2018. Deciphering RNA-recognition patterns of intrinsically disordered proteins. Int J Mol Sci. 19:1595. PubMed PMC
Tanaka J, Yanagawa H, Doi N.. 2011. Comparison of the frequency of functional SH3 domains with different limited sets of amino acids using mRNA display. PLoS One 6(3):e18034. PubMed PMC
Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K.. 2021. Structured proteins are abundant in unevolved sequence space. bioRxiv [Internet]:2021.08.29.458031. Available from: http://biorxiv.org/content/early/2021/09/13/2021.08.29.458031.abstract.
Trifonov EN. 2000. Consensus temporal order of amino acids and evolution of the triplet code. Gene 261(1):139–151. PubMed
Uversky VN. 2009. Intrinsically disordered proteins and their environment: effects of strong denaturants, temperature, pH, Counter ions, membranes, binding partners, osmolytes, and macromolecular crowding. Protein J. 28(7–8):305–325. PubMed
Vázquez-Salazar A, Lazcano A.. 2018. Early life: embracing the RNA world. Curr Biol. 28(5):R220–R222. PubMed
Xing Y, Draper DE.. 1995. Stabilization of a ribosomal RNA tertiary structure by ribosomal protein L11. J Mol Biol. 249(2):319–331. PubMed
Yamagami R, Bingaman JL, Frankel EA, Bevilacqua PC.. 2018. Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis. Nat Commun. 9:2149. PubMed PMC
Zaia DAM, Zaia CTBV, De Santana H.. 2008. Which amino acids should be used in prebiotic chemistry studies? Orig Life Evol Biosph. 38(6):469–488. PubMed
Peptides En Route from Prebiotic to Biotic Catalysis
Experimental characterization of de novo proteins and their unevolved random-sequence counterparts
Modern and prebiotic amino acids support distinct structural profiles in proteins