Modern and prebiotic amino acids support distinct structural profiles in proteins

. 2022 Jun ; 12 (6) : 220040. [epub] 20220622

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35728622

The earliest proteins had to rely on amino acids available on early Earth before the biosynthetic pathways for more complex amino acids evolved. In extant proteins, a significant fraction of the 'late' amino acids (such as Arg, Lys, His, Cys, Trp and Tyr) belong to essential catalytic and structure-stabilizing residues. How (or if) early proteins could sustain an early biosphere has been a major puzzle. Here, we analysed two combinatorial protein libraries representing proxies of the available sequence space at two different evolutionary stages. The first is composed of the entire alphabet of 20 amino acids while the second one consists of only 10 residues (ASDGLIPTEV) representing a consensus view of plausibly available amino acids through prebiotic chemistry. We show that compact conformations resistant to proteolysis are surprisingly similarly abundant in both libraries. In addition, the early alphabet proteins are inherently more soluble and refoldable, independent of the general Hsp70 chaperone activity. By contrast, chaperones significantly increase the otherwise poor solubility of the modern alphabet proteins suggesting their coevolution with the amino acid repertoire. Our work indicates that while both early and modern amino acids are predisposed to supporting protein structure, they do so with different biophysical properties and via different mechanisms.

Zobrazit více v PubMed

Cleaves HJ. 2010. The origin of the biologically coded amino acids. J. Theor. Biol. 263, 490-498. (10.1016/j.jtbi.2009.12.014) PubMed DOI

Zaia DAM, Zaia CTBV, De Santana H. 2008. Which amino acids should be used in prebiotic chemistry studies? Orig. Life Evol. Biosph. 38, 469-488. (10.1007/s11084-008-9150-5) PubMed DOI

Trifonov EN. 2000. Consensus temporal order of amino acids and evolution of the triplet code. Gene 261, 139-151. (10.1016/S0378-1119(00)00476-5) PubMed DOI

Higgs PG, Pudritz RE. 2009. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9, 483-490. (10.1089/ast.2008.0280) PubMed DOI

Weber AL, Miller SL. 1981. Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 17, 273-284. (10.1007/BF01795749) PubMed DOI

Freeland S. 2010. ‘Terrestrial’ amino acids and their evolution. Amin. Acids, Pept. Proteins Org. Chem. 1, 43-75.

Philip GK, Freeland SJ. 2011. Did evolution select a nonrandom ‘alphabet’ of amino acids? Astrobiology 11, 235-240. (10.1089/ast.2010.0567) PubMed DOI

Ilardo M, et al. 2019. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci. Rep. 9, 1-9. (10.1038/s41598-019-47574-x) PubMed DOI PMC

Pace NR. 2001. The universal nature of biochemistry. Proc. Natl Acad. Sci. USA 98, 805-808. (10.1073/pnas.98.3.805) PubMed DOI PMC

Holliday GL, Fischer JD, Mitchell JBO, Thornton JM. 2011. Characterizing the complexity of enzymes on the basis of their mechanisms and structures with a bio-computational analysis. FEBS J. 278, 3835-3845. (10.1111/j.1742-4658.2011.08190.x) PubMed DOI PMC

Di Mauro E, Dunker AK, Trifonov EN. 2012. Disorder to order, nonlife to life: in the beginning there was a mistake. In Genesis—In the beginning: precursors of life, chemical models and early biological evolution (ed. Seckbach J), pp. 415-435. Berlin, Germany: Springer.

Tanaka J, Doi N, Takashima H, Yanagawa H. 2010. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids. Protein Sci. 19, 786-795. (10.1002/pro.358) PubMed DOI PMC

Newton MS, Morrone DJ, Lee KH, Seelig B. 2019. Genetic code evolution investigated through the synthesis and characterisation of proteins from reduced-alphabet libraries. ChemBioChem 20, 846-856. (10.1002/cbic.201800668) PubMed DOI

Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker D. 1997. Functional rapidly folding proteins from simplified amino acid sequences. Nat. Struct. Biol. 4, 805-809. (10.1038/nsb1097-805) PubMed DOI

Longo LM, Lee J, Blaber M. 2013. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proc. Natl Acad. Sci. USA 110, 2135-2139. (10.1073/pnas.1219530110) PubMed DOI PMC

Shibue R, Sasamoto T, Shimada M, Zhang B, Yamagishi A, Akanuma S. 2018. Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Sci. Rep. 8, 1-8. (10.1038/s41598-018-19561-1) PubMed DOI PMC

Solis AD. 2019. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds. BMC Evol. Biol. 19, 1-19. (10.1186/s12862-019-1464-6) PubMed DOI PMC

Giacobelli V, Fujishima K, Lepšík M, Tretyachenko V, Kadavá T, Bednárová L, Novák P, Hlouchová K. 2022. In vitro evolution reveals noncationic protein-RNA interaction mediated by metal ions. Mol. Biol. Evol. 39, msac032. (10.1093/molbev/msac032) PubMed DOI PMC

Longo LM, Despotović D, Weil-Ktorza O, Walker MJ, Jabłońska J, Fridmann-Sirkis Y, Varani G, Metanis N, Tawfik DS. 2020. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc. Natl Acad. Sci. USA 117, 15 731-15 739. (10.1073/pnas.2001989117) PubMed DOI PMC

Houben B, et al. 2020. Autonomous aggregation suppression by acidic residues explains why chaperones favour basic residues. EMBO J. 39, 1-22. (10.15252/embj.2019102864) PubMed DOI PMC

Keefe AD, Szostak JW. 2001. Functional proteins from a random-sequence library. Nature 410, 715-718. (10.1038/35070613) PubMed DOI PMC

Chiarabelli C, Vrijbloed JW, Thomas RM, Luisi PL. 2006. Investigation of de novo totally random biosequences. Chem. Biodivers. 3, 827-839. (10.1002/cbdv.200690087) PubMed DOI

Labean TH, Butt TR, Kauffman SA, Schultes EA. 2011. Protein folding absent selection. Genes (Basel). 2, 608-626. (10.3390/genes2030608) PubMed DOI PMC

Yu JF, Cao Z, Yang Y, Wang CL, Su ZD, Zhao YW, Wang JH, Zhou Y. 2016. Natural protein sequences are more intrinsically disordered than random sequences. Cell. Mol. Life Sci. 73, 2949-2957. (10.1007/s00018-016-2138-9) PubMed DOI PMC

Tretyachenko V, et al. 2017. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. Sci. Rep. 7, 1-9. (10.1038/s41598-017-15635-8) PubMed DOI PMC

Tretyachenko V, Voracek V, Soucek R, Fujishima K, Hlouchova K. 2021. CoLide: combinatorial library design tool for probing protein sequence space. Bioinformatics 37, 482-489. (10.1093/bioinformatics/btaa804) PubMed DOI PMC

Bateman A, et al. 2021. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480-D489. (10.1093/nar/gkaa1100) PubMed DOI PMC

Crooks GE, Hon G, Chandonia JM, Brenner SE. 2004. WebLogo: a sequence logo generator. Genome Res. 14, 1188-1190. (10.1101/gr.849004) PubMed DOI PMC

Vymětal J, Vondrášek J, Hlouchová K. 2019. Sequence versus composition: what prescribes IDP biophysical properties? Entropy 21, 1-8. (10.3390/e21070654) PubMed DOI PMC

Garnier J, Gibrat JF, Robson B. 1996. GOR method for predicting protein secondary structure from amino acid sequence. Methods Enzymol. 266, 540-553. (10.1016/S0076-6879(96)66034-0) PubMed DOI

Frishman D, Argos P. 1997. Seventy-five percent accuracy in protein secondary structure prediction. Proteins Struct. Funct. Genet. 27, 329-335. (10.1002/(SICI)1097-0134(199703)27:3<329::AID-PROT1>3.0.CO;2-8) PubMed DOI

Levin JM. 1997. Exploring the limits of nearest neighbour secondary structure prediction. Protein Eng. 10, 771-776. (10.1093/protein/10.7.771) PubMed DOI

Jones T. 1999. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202. (10.1006/jmbi.1999.3091) PubMed DOI

Cuff JA, Barton GJ. 2000. Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins 40, 502-511. (10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q) PubMed DOI

Heffernan R, Paliwal K, Lyons J, Singh J, Yang Y, Zhou Y. 2018. Single-sequence-based prediction of protein secondary structures and solvent accessibility by deep whole-sequence learning. J. Comput. Chem. 39, 2210-2216. (10.1002/jcc.25534) PubMed DOI

Fang Y, Gao S, Tai D, Middaugh CR, Fang J. 2013. Identification of properties important to protein aggregation using feature selection. BMC Bioinform. 14, 314. (10.1186/1471-2105-14-314) PubMed DOI PMC

Hebditch M, Carballo-Amador MA, Charonis S, Curtis R, Warwicker J. 2017. Protein-Sol: a web tool for predicting protein solubility from sequence. Bioinformatics 33, 3098-3100. (10.1093/bioinformatics/btx345) PubMed DOI PMC

Niwa T, Ying BW, Saito K, Jin W, Takada S, Ueda T, Taguchi H. 2009. Bimodal protein solubility distribution revealed by an aggregation analysis of the entire ensemble of Escherichia coli proteins. Proc. Natl Acad. Sci. USA 106, 4201-4206. (10.1073/pnas.0811922106) PubMed DOI PMC

Johannes S, et al. 2012. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682. (10.1038/nmeth.2019) PubMed DOI PMC

Melderen LV, Aertsen A. 2009. Regulation and quality control by Lon-dependent proteolysis. Res. Microbiol. 160, 645-651. (10.1016/j.resmic.2009.08.021) PubMed DOI

Niwa T, Uemura E, Matsuno Y, Taguchi H. 2019. Translation-coupled protein folding assay using a protease to monitor the folding status. Protein Sci. 28, 1252-1261. PubMed PMC

White SH. 1994. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences. J. Mol. Evol. 38, 383-394. (10.1007/BF00163155) PubMed DOI

Bornberg-Bauer E, Hlouchova K, Lange A. 2021. Structure and function of naturally evolved de novo proteins. Curr. Opin. Struct. Biol. 68, 175-183. (10.1016/j.sbi.2020.11.010) PubMed DOI

Neme R, Amador C, Yildirim B, McConnell E, Tautz D. 2017. Random sequences are an abundant source of bioactive RNAs or peptides. Nat. Ecol. Evol. 1, 1-7. (10.1038/s41559-017-0127) PubMed DOI PMC

Kamtekar S, Hecht MH. 1995. Protein motifs. 7. The four-helix bundle: what determines a fold? FASEB J. 9, 1013-1022. (10.1096/fasebj.9.11.7649401) PubMed DOI

Rojas NR, Kamtekar S, Simons CT, McLean JE, Vogel KM, Spiro TG, Farid RS, Hecht MH. 1997. De novo heme proteins from designed combinatorial libraries. Protein Sci. 6, 2512-2524. PubMed PMC

Davidson AR, Sauer RT. 1994. Folded proteins occur frequently in libraries of random amino acid sequences. Proc. Natl Acad. Sci. USA 91, 2146-2150. (10.1073/pnas.91.6.2146) PubMed DOI PMC

Benner SA. 1989. Enzyme kinetics and molecular evolution. Chem. Rev. 89, 789-806. (10.1021/cr00094a004) DOI

Raggi L, Bada JL, Lazcano A. 2016. On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Phys. Chem. Chem. Phys. 18, 20 028-20 032. (10.1039/C6CP00793G) PubMed DOI

Brack A, Orgel LE. 1975. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature 256, 383-387. (10.1038/256383a0) PubMed DOI

Kovacs NA, Petrov AS, Lanier KA, Williams LD. 2017. Frozen in time: the history of proteins. Mol. Biol. Evol. 34, 1252-1260. (10.1093/molbev/msx086) PubMed DOI PMC

Lupas AN, Alva V. 2017. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. J. Struct. Biol. 198, 74-81. (10.1016/j.jsb.2017.04.007) PubMed DOI

Lawrence MS, Phillips KJ, Liu DR. 2007. Supercharging proteins can impart unusual resilience. J. Am. Chem. Soc. 129, 10 110-10 112. (10.1021/ja071641y) PubMed DOI PMC

Kimura M, Akanuma S. 2020. Reconstruction and characterization of thermally stable and catalytically active proteins comprising an alphabet of ∼13 amino acids. J. Mol. Evol. 88, 372-381. (10.1007/s00239-020-09938-0) PubMed DOI

Makarov M, et al. 2021. Enzyme catalysis prior to aromatic residues: reverse engineering of a dephospho-CoA kinase. Protein Sci. 30, 1022-1034. (10.1002/pro.4068) PubMed DOI PMC

Longo LM, Tenorio CA, Kumru OS, Middaugh CR, Blaber M. 2015. A single aromatic core mutation converts a designed ‘primitive’ protein from halophile to mesophile folding. Protein Sci. 24, 27-37. (10.1002/pro.2580) PubMed DOI PMC

Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. 2020. Polyamines mediate folding of primordial hyperacidic helical proteins. Biochemistry 59, 4456-4462. (10.1021/acs.biochem.0c00800) PubMed DOI PMC

Wang MS, Hoegler KJ, Hecht MH. 2019. Unevolved de novo proteins have innate tendencies to bind transition metals. Life 9, 8. PubMed PMC

Yadid I, Kirshenbaum N, Sharon M, Dym O, Tawfik DS. 2010. Metamorphic proteins mediate evolutionary transitions of structure. Proc. Natl Acad. Sci. USA 107, 7287-7292. (10.1073/pnas.0912616107) PubMed DOI PMC

Islas S, Velasco AM, Becerra A, Delaye L, Lazcano A. 2003. Hyperthermophily and the origin and earliest evolution of life. Int. Microbiol. 6, 87-94. (10.1007/s10123-003-0113-4) PubMed DOI

Woolfson DN. 2021. A brief history of de novo protein design: minimal, rational, and computational. J. Mol. Biol. 433, 167160. (10.1016/j.jmb.2021.167160) PubMed DOI

Hecht MH, Zarzhitsky S, Karas C, Chari S. 2018. Are natural proteins special? Can we do that? Curr. Opin. Struct. Biol. 48, 124-132. (10.1016/j.sbi.2017.11.009) PubMed DOI

Tong CL, Lee KH, Seelig B. 2021. De novo proteins from random sequences through in vitro evolution. Current Opinion in Structural Biology 68, 129-134. (10.1016/j.sbi.2020.12.014) PubMed DOI PMC

Rebollo IR, Sabisz M, Baeriswyl V, Heinis C. 2014. Identification of target-binding peptide motifs by high-throughput sequencing of phage-selected peptides. Nucleic Acids Res. 42, e169. (10.1093/nar/gku940) PubMed DOI PMC

Afgan E, et al. 2018. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537-W544. (10.1093/nar/gky379) PubMed DOI PMC

Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K. 2022. Modern and prebiotic amino acids support distinct structural profiles in proteins. Figshare. (10.6084/m9.figshare.c.6032490) PubMed DOI PMC

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.6032490

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...