Coenzyme-protein interactions since early life
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LM20230
MEYS CR
10.52044/HFSP.RGEC272023.pc.gr.168579
Human Frontier Science Program
CZ.02.2.69/0.0/0.0/19_073/0016935
Grant Schemes at CU
PubMed
41342454
PubMed Central
PMC12677900
DOI
10.7554/elife.94174
PII: 94174
Knihovny.cz E-zdroje
- Klíčová slova
- amino acid alphabet, coenzymes, evolutionary biology, genetic code evolution, none, peptides, protein evolution,
- MeSH
- aminokyseliny metabolismus MeSH
- databáze proteinů MeSH
- koenzymy * metabolismus chemie MeSH
- molekulární evoluce MeSH
- proteiny * metabolismus chemie MeSH
- původ života * MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- aminokyseliny MeSH
- koenzymy * MeSH
- proteiny * MeSH
Recent findings in protein evolution and peptide prebiotic plausibility have been setting the stage for reconsidering the role of peptides in the early stages of life's origin. Ancient protein families have been found to share common themes and proteins reduced in composition to prebiotically plausible amino acids have been reported capable of structure formation and key functions, such as binding to RNA. While this may suggest peptide relevance in early life, their functional repertoire, when composed of a limited number of early residues (missing some of the most sophisticated functional groups of today's alphabet) has been debated. Cofactors enrich the functional scope of about half of extant enzymes, but whether they could also bind to peptides lacking the evolutionary late amino acids remains speculative. The aim of this study was to resolve the early peptide propensity to bind organic cofactors by analysis of protein-coenzyme interactions across the Protein Data Bank (PDB). We find that the prebiotically plausible amino acids are more abundant in the binding sites of the most ancient coenzymes and that such interactions rely more frequently on the involvement of the protein backbone atoms and metal ion cofactors. Moreover, we have identified a few select examples in today's enzymes where coenzyme binding is supported solely by prebiotically available amino acids. These results imply the plausibility of a coenzyme-peptide functional collaboration preceding the establishment of the Central Dogma and full protein alphabet evolution.
Department of Cell Biology Charles University Prague Czech Republic
Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
doi: 10.1101/2023.10.28.563965 PubMed
Před aktualizacídoi: 10.7554/eLife.94174.1 PubMed
Před aktualizacídoi: 10.7554/eLife.94174.2 PubMed
Zobrazit více v PubMed
Alva V, Söding J, Lupas AN. A vocabulary of ancient peptides at the origin of folded proteins. eLife. 2015;4:e09410. doi: 10.7554/eLife.09410. PubMed DOI PMC
Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research. 2010;38:W529–W33. doi: 10.1093/nar/gkq399. PubMed DOI PMC
Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research. 2016;44:W344–W50. doi: 10.1093/nar/gkw408. PubMed DOI PMC
Aylward N. An ab initio computational study of thiamin synthesis from gaseous reactants of the interstellar medium. Biophysical Chemistry. 2006a;121:185–193. doi: 10.1016/j.bpc.2005.12.018. PubMed DOI
Aylward N, Bofinger N. A plausible prebiotic synthesis of pyridoxal phosphate: vitamin B6 - a computational study. Biophysical Chemistry. 2006b;123:113–121. doi: 10.1016/j.bpc.2006.04.014. PubMed DOI
Barrick JE, Breaker RR. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biology. 2007;8:R239. doi: 10.1186/gb-2007-8-11-r239. PubMed DOI PMC
Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bye-A-Jee H, Cukura A, Denny P, Dogan T, Ebenezer T, Fan J, Garmiri P, da Costa Gonzales LJ, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Joshi V, Jyothi D, Kandasaamy S, Lock A, Luciani A, Lugaric M, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Mishra A, Moulang K, Nightingale A, Pundir S, Qi G, Raj S, Raposo P, Rice DL, Saidi R, Santos R, Speretta E, Stephenson J, Totoo P, Turner E, Tyagi N, Vasudev P, Warner K, Watkins X, Zaru R, Zellner H, Bridge AJ, Aimo L, Argoud-Puy G, Auchincloss AH, Axelsen KB, Bansal P, Baratin D, Batista Neto TM, Blatter MC, Bolleman JT, Boutet E, Breuza L, Gil BC, Casals-Casas C, Echioukh KC, Coudert E, Cuche B, de Castro E, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gaudet P, Gehant S, Gerritsen V, Gos A, Gruaz N, Hulo C, Hyka-Nouspikel N, Jungo F, Kerhornou A, Le Mercier P, Lieberherr D, Masson P, Morgat A, Muthukrishnan V, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Poux S, Pozzato M, Pruess M, Redaschi N, Rivoire C, Sigrist CJA, Sonesson K, Sundaram S, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Q, Wang Y, Zhang J, The UniProt Consortium UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research. 2023;51:D523–D531. doi: 10.1093/nar/gkac1052. PubMed DOI PMC
Bonfio C, Valer L, Scintilla S, Shah S, Evans DJ, Jin L, Szostak JW, Sasselov DD, Sutherland JD, Mansy SS. UV-light-driven prebiotic synthesis of iron-sulfur clusters. Nature Chemistry. 2017;9:1229–1234. doi: 10.1038/nchem.2817. PubMed DOI PMC
Brack A, Orgel LE. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature. 1975;256:383–387. doi: 10.1038/256383a0. PubMed DOI
Bromberg Y, Aptekmann AA, Mahlich Y, Cook L, Senn S, Miller M, Nanda V, Ferreiro DU, Falkowski PG. Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. Science Advances. 2022;8:eabj3984. doi: 10.1126/sciadv.abj3984. PubMed DOI PMC
Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews. 2012;41:5459–5472. doi: 10.1039/c2cs35109a. PubMed DOI
Caetano-Anollés G, Kim HS, Mittenthal JE. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. PNAS. 2007;104:9358–9363. doi: 10.1073/pnas.0701214104. PubMed DOI PMC
Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, Kim BH, Grishin NV. ECOD: An evolutionary classification of protein domains. PLOS Computational Biology. 2014;10:e1003926. doi: 10.1371/journal.pcbi.1003926. PubMed DOI PMC
Chu XY, Zhang HY. Cofactors as molecular fossils to trace the origin and evolution of proteins. Chembiochem. 2020;21:3161–3168. doi: 10.1002/cbic.202000027. PubMed DOI
Cleaves HJ. The origin of the biologically coded amino acids. Journal of Theoretical Biology. 2010;263:490–498. doi: 10.1016/j.jtbi.2009.12.014. PubMed DOI
Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biology. 2002;3:1–16. doi: 10.1186/gb-2002-3-5-research0025. PubMed DOI PMC
Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nature Reviews. Chemistry. 2023;7:536–547. doi: 10.1038/s41570-023-00495-w. PubMed DOI
Cvjetan N, Schuler LD, Ishikawa T, Walde P. Optimization and enhancement of the peroxidase-like activity of hemin in aqueous solutions of sodium dodecylsulfate. ACS Omega. 2023;8:42878–42899. doi: 10.1021/acsomega.3c05915. PubMed DOI PMC
Dana JM, Gutmanas A, Tyagi N, Qi G, O’Donovan C, Martin M, Velankar S. SIFTS: updated structure integration with function, taxonomy and sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Research. 2019;47:D482–D489. doi: 10.1093/nar/gky1114. PubMed DOI PMC
Dherbassy Q, Mayer RJ, Muchowska KB, Moran J. Metal-pyridoxal cooperativity in nonenzymatic transamination. Journal of the American Chemical Society. 2023;145:13357–13370. doi: 10.1021/jacs.3c03542. PubMed DOI
Edwards H, Abeln S, Deane CM. Exploring fold space preferences of new-born and ancient protein superfamilies. PLOS Computational Biology. 2013;9:e1003325. doi: 10.1371/journal.pcbi.1003325. PubMed DOI PMC
Fairchild J, Islam S, Singh J, Bučar D-K, Powner MW. Prebiotically plausible chemoselective pantetheine synthesis in water. Science. 2024;383:911–918. doi: 10.1126/science.adk4432. PubMed DOI
Fischer JD, Holliday GL, Thornton JM. The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics. 2010;26:2496–2497. doi: 10.1093/bioinformatics/btq442. PubMed DOI PMC
Frenkel-Pinter M, Haynes JW, Martin C, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. PNAS. 2019;116:16338–16346. doi: 10.1073/pnas.1904849116. PubMed DOI PMC
Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic peptides: molecular hubs in the origin of life. Chemical Reviews. 2020;120:4707–4765. doi: 10.1021/acs.chemrev.9b00664. PubMed DOI
Fried SD, Fujishima K, Makarov M, Cherepashuk I, Hlouchova K. Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids. Journal of the Royal Society, Interface. 2022;19:20210641. doi: 10.1098/rsif.2021.0641. PubMed DOI PMC
Gamiz-Arco G, Gutierrez-Rus LI, Risso VA, Ibarra-Molero B, Hoshino Y, Petrović D, Justicia J, Cuerva JM, Romero-Rivera A, Seelig B, Gavira JA, Kamerlin SCL, Gaucher EA, Sanchez-Ruiz JM. Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nature Communications. 2021;12:380. doi: 10.1038/s41467-020-20630-1. PubMed DOI PMC
Giacobelli VG, Fujishima K, Lepšík M, Tretyachenko V, Kadavá T, Makarov M, Bednárová L, Novák P, Hlouchová K. In vitro evolution reveals noncationic protein-RNA interaction mediated by metal ions. Molecular Biology and Evolution. 2022;39:1–11. doi: 10.1093/molbev/msac032. PubMed DOI PMC
Gilbert W. The RNA world superlattices point ahead. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI
Goldman AD, Bernhard TM, Dolzhenko E, Landweber LF. LUCApedia: a database for the study of ancient life. Nucleic Acids Research. 2013;41:D1079–D82. doi: 10.1093/nar/gks1217. PubMed DOI PMC
Goldman AD, Kacar B. Cofactors are remnants of life’s origin and early evolution. Journal of Molecular Evolution. 2021;89:127–133. doi: 10.1007/s00239-020-09988-4. PubMed DOI PMC
Goncearenco A, Berezovsky IN. Prototypes of elementary functional loops unravel evolutionary connections between protein functions. Bioinformatics. 2010;26:i497–i503. doi: 10.1093/bioinformatics/btq374. PubMed DOI PMC
Gutierrez-Rus LI, Gamiz-Arco G, Gavira JA, Gaucher EA, Risso VA, Sanchez-Ruiz JM. Protection of catalytic cofactors by polypeptides as a driver for the emergence of primordial enzymes. Molecular Biology and Evolution. 2023;40:1–8. doi: 10.1093/molbev/msad126. PubMed DOI PMC
Henriques Pereira DP, Leethaus J, Beyazay T, do Nascimento Vieira A, Kleinermanns K, Tüysüz H, Martin WF, Preiner M. Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD. The FEBS Journal. 2022;289:3148–3162. doi: 10.1111/febs.16329. PubMed DOI PMC
Higgs PG, Pudritz RE. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology. 2009;9:483–490. doi: 10.1089/ast.2008.0280. PubMed DOI
Holliday GL, Thornton JM, Marquet A, Smith AG, Rébeillé F, Mendel R, Schubert HL, Lawrence AD, Warren MJ. Evolution of enzymes and pathways for the biosynthesis of cofactors. Natural Product Reports. 2007;24:972–987. doi: 10.1039/b703107f. PubMed DOI
Ilardo MA, Freeland SJ. Testing for adaptive signatures of amino acid alphabet evolution using chemistry space. Journal of Systems Chemistry. 2014;5:1–9. doi: 10.1186/1759-2208-5-1. DOI
Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL. Arpeggio: A web server for calculating and visualising interatomic interactions in protein structures. Journal of Molecular Biology. 2017;429:365–371. doi: 10.1016/j.jmb.2016.12.004. PubMed DOI PMC
Keefe AD, Newton GL, Miller SL. A possible prebiotic synthesis of pantetheine, a precursor to coenzyme a. Nature. 1995;PMID:683–685. doi: 10.1038/373683a0. PubMed DOI
Keefe AD, Szostak JW. Functional proteins from a random-sequence library. Nature. 2001;410:715–718. doi: 10.1038/35070613. PubMed DOI PMC
Kessel A, Ben-Tal N. Introduction to Proteins: Structure, Function, and Motion. Chapman & Hall; 2018. DOI
Kessel A, Ben-Tal N. From Molecules to Cells: The Origin of Life on Earth. Kindle E-Book; 2022.
Kirschning A. Coenzymes and their role in the evolution of life. Angewandte Chemie. 2021;60:6242–6269. doi: 10.1002/anie.201914786. PubMed DOI PMC
Kirschning A. On the evolutionary history of the twenty encoded amino acids. Chemistry. 2022;28:e202201419. doi: 10.1002/chem.202201419. PubMed DOI PMC
Kolodny R, Nepomnyachiy S, Tawfik DS, Ben-Tal N. Bridging themes: short protein segments found in different architectures. Molecular Biology and Evolution. 2021;38:2191–2208. doi: 10.1093/molbev/msab017. PubMed DOI PMC
Kovacs NA, Petrov AS, Lanier KA, Williams LD. Frozen in time: the history of proteins. Molecular Biology and Evolution. 2017;34:1252–1260. doi: 10.1093/molbev/msx086. PubMed DOI PMC
Lane N, Martin WF. The origin of membrane bioenergetics. Cell. 2012;151:1406–1416. doi: 10.1016/j.cell.2012.11.050. PubMed DOI
Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI
Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS. An ancient fingerprint indicates the common ancestry of rossmann-fold enzymes utilizing different ribose-based cofactors. PLOS Biology. 2016;14:e1002396. doi: 10.1371/journal.pbio.1002396. PubMed DOI PMC
Lazcano A. Planetary change and biochemical adaptation: molecular evolution of corrinoid and heme biosyntheses. Hematology. 2012;17 Suppl 1:S7–S10. doi: 10.1179/102453312X13336169155015. PubMed DOI
Lemay-St-Denis C, Pelletier JN. From a binding module to essential catalytic activity: how nature stumbled on a good thing. Chemical Communications. 2023;59:12560–12572. doi: 10.1039/d3cc04209j. PubMed DOI
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI
Longo LM, Jabłońska J, Vyas P, Kanade M, Kolodny R, Ben-Tal N, Tawfik DS. On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment. eLife. 2020a;9:64415. doi: 10.7554/eLife.64415. PubMed DOI PMC
Longo LM, Petrović D, Kamerlin SCL, Tawfik DS. Short and simple sequences favored the emergence of N-helix phospho-ligand binding sites in the first enzymes. PNAS. 2020b;117:5310–5318. doi: 10.1073/pnas.1911742117. PubMed DOI PMC
Lupas AN, Alva V. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. Journal of Structural Biology. 2017;198:74–81. doi: 10.1016/j.jsb.2017.04.007. PubMed DOI
Makarov M, Meng J, Tretyachenko V, Srb P, Březinová A, Giacobelli VG, Bednárová L, Vondrášek J, Dunker AK, Hlouchová K. Enzyme catalysis prior to aromatic residues: Reverse engineering of a dephospho-CoA kinase. Protein Science. 2021;30:1022–1034. doi: 10.1002/pro.4068. PubMed DOI PMC
Menor-Salván C, Burcar BT, Bouza M, Fialho DM, Fernández FM, Hud NV. A shared prebiotic formation of neopterins and guanine nucleosides from pyrimidine bases. Chemistry. 2022;28:e202200714. doi: 10.1002/chem.202200714. PubMed DOI PMC
Miller SL, Schlesinger G. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M) Journal of Molecular Evolution. 1993;36:302–307. doi: 10.1007/BF00182177. PubMed DOI
Milner-White EJ, Russell MJ. Functional capabilities of the earliest peptides and the emergence of life. Genes. 2011;2:671–688. doi: 10.3390/genes2040671. PubMed DOI PMC
Monteverde DR, Gómez-Consarnau L, Suffridge C, Sañudo-Wilhelmy SA. Life’s utilization of B vitamins on early Earth. Geobiology. 2017;15:3–18. doi: 10.1111/gbi.12202. PubMed DOI
Muchowska KB, Varma SJ, Moran J. Nonenzymatic metabolic reactions and life’s origins. Chemical Reviews. 2020;120:7708–7744. doi: 10.1021/acs.chemrev.0c00191. PubMed DOI
Mukhopadhyay A, Borkakoti N, Pravda L, Tyzack JD, Thornton JM, Velankar S. Finding enzyme cofactors in Protein Data Bank. Bioinformatics. 2019;35:3510–3511. doi: 10.1093/bioinformatics/btz115. PubMed DOI PMC
Naraoka H, Takano Y, Dworkin JP, Oba Y, Hamase K, Furusho A, Ogawa NO, Hashiguchi M, Fukushima K, Aoki D, Schmitt-Kopplin P, Aponte JC, Parker ET, Glavin DP, McLain HL, Elsila JE, Graham HV, Eiler JM, Orthous-Daunay F-R, Wolters C, Isa J, Vuitton V, Thissen R, Sakai S, Yoshimura T, Koga T, Ohkouchi N, Chikaraishi Y, Sugahara H, Mita H, Furukawa Y, Hertkorn N, Ruf A, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Tachibana S, Connolly HC, Jr, Lauretta DS, Abe M, Yada T, Nishimura M, Yogata K, Nakato A, Yoshitake M, Suzuki A, Miyazaki A, Furuya S, Hatakeda K, Soejima H, Hitomi Y, Kumagai K, Usui T, Hayashi T, Yamamoto D, Fukai R, Kitazato K, Sugita S, Namiki N, Arakawa M, Ikeda H, Ishiguro M, Hirata N, Wada K, Ishihara Y, Noguchi R, Morota T, Sakatani N, Matsumoto K, Senshu H, Honda R, Tatsumi E, Yokota Y, Honda C, Michikami T, Matsuoka M, Miura A, Noda H, Yamada T, Yoshihara K, Kawahara K, Ozaki M, Iijima Y-I, Yano H, Hayakawa M, Iwata T, Tsukizaki R, Sawada H, Hosoda S, Ogawa K, Okamoto C, Hirata N, Shirai K, Shimaki Y, Yamada M, Okada T, Yamamoto Y, Takeuchi H, Fujii A, Takei Y, Yoshikawa K, Mimasu Y, Ono G, Ogawa N, Kikuchi S, Nakazawa S, Terui F, Tanaka S, Saiki T, Yoshikawa M, Watanabe S-I, Tsuda Y. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science. 2023;379:eabn9033. doi: 10.1126/science.abn9033. PubMed DOI
Narunsky A, Kessel A, Solan R, Alva V, Kolodny R, Ben-Tal N. On the evolution of protein-adenine binding. PNAS. 2020;117:4701–4709. doi: 10.1073/pnas.1911349117. PubMed DOI PMC
Nepomnyachiy S, Ben-Tal N, Kolodny R. Complex evolutionary footprints revealed in an analysis of reused protein segments of diverse lengths. PNAS. 2017;114:11703–11708. doi: 10.1073/pnas.1707642114. PubMed DOI PMC
Pinna S, Kunz C, Halpern A, Harrison SA, Jordan SF, Ward J, Werner F, Lane N. A prebiotic basis for ATP as the universal energy currency. PLOS Biology. 2022;20:e3001437. doi: 10.1371/journal.pbio.3001437. PubMed DOI PMC
Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The future of origin of life research: bridging decades-old divisions. Life. 2020;10:20. doi: 10.3390/life10030020. PubMed DOI PMC
Putignano V, Rosato A, Banci L, Andreini C. MetalPDB in 2018: a database of metal sites in biological macromolecular structures. Nucleic Acids Research. 2018;46:D459–D464. doi: 10.1093/nar/gkx989. PubMed DOI PMC
Qiu K, Ben-Tal N, Kolodny R. Similar protein segments shared between domains of different evolutionary lineages. Protein Science. 2022;31:e4407. doi: 10.1002/pro.4407. PubMed DOI PMC
Reyes-Prieto F, Hernández-Morales R, Jácome R, Becerra A, Lazcano A. Coenzymes, viruses and the RNA world. Biochimie. 2012;94:1467–1473. doi: 10.1016/j.biochi.2012.01.004. PubMed DOI
Romero Romero ML, Yang F, Lin YR, Toth-Petroczy A, Berezovsky IN, Goncearenco A, Yang W, Wellner A, Kumar-Deshmukh F, Sharon M, Baker D, Varani G, Tawfik DS. Simple yet functional phosphate-loop proteins. PNAS. 2018;115:E11943–E11950. doi: 10.1073/pnas.1812400115. PubMed DOI PMC
Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society. 1997;154:377–402. doi: 10.1144/gsjgs.154.3.0377. PubMed DOI
Sanchez Rocha AC. SanchezRocha-coenzymes2024. swh:1:rev:b7a0323cf5b44a1250c02ab8c5ec1f407d29934cSoftware Heritage. 2025 https://archive.softwareheritage.org/swh:1:dir:04bd335162a58a7d32d9a6cfa5be5782b3333964;origin=https://github.com/AlmaCarolina-SanchezRocha/SanchezRocha-Coenzymes2024;visit=swh:1:snp:d74cf4b57fdc61504c74f03c91bb1bf93a97314a;anchor=swh:1:rev:b7a0323cf5b44a1250c02ab8c5ec1f407d29934c
Seitz C, Eisenreich W, Huber C. The Abiotic formation of pyrrole under volcanic, hydrothermal conditions-an initial step towards life’s first breath? Life. 2021;11:1–10. doi: 10.3390/life11090980. PubMed DOI PMC
Skolnick J, Zhou H, Gao M. On the possible origin of protein homochirality, structure, and biochemical function. PNAS. 2019;116:26571–26579. doi: 10.1073/pnas.1908241116. PubMed DOI PMC
Söding J, Lupas AN. More than the sum of their parts: on the evolution of proteins from peptides. BioEssays. 2003;25:837–846. doi: 10.1002/bies.10321. PubMed DOI
Thauer RK, Bonacker LG. Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Foundation Symposium. 1994;180:210–222. doi: 10.1002/9780470514535.ch12. PubMed DOI
Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324:203–207. doi: 10.1126/science.1169375. PubMed DOI
Toledo-Patiño S, Pascarelli S, Uechi GI, Laurino P. Insertions and deletions mediated functional divergence of Rossmann fold enzymes. PNAS. 2022;119:e2207965119. doi: 10.1073/pnas.2207965119. PubMed DOI PMC
Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K. Modern and prebiotic amino acids support distinct structural profiles in proteins. Open Biology. 2022;12:220040. doi: 10.1098/rsob.220040. PubMed DOI PMC
Trifonov EN. Consensus temporal order of amino acids and evolution of the triplet code. Gene. 2000;261:139–151. doi: 10.1016/s0378-1119(00)00476-5. PubMed DOI
Varadi M, Berrisford J, Deshpande M, Nair SS, Gutmanas A, Armstrong D, Pravda L, Al-Lazikani B, Anyango S, Barton GJ, Berka K, Blundell T, Borkakoti N, Dana J, Das S, Dey S, Micco PD, Fraternali F, Gibson T, Helmer-Citterich M, Hoksza D, Huang LC, Jain R, Jubb H, Kannas C, Kannan N, Koca J, Krivak R, Kumar M, Levy ED, Madeira F, Madhusudhan MS, Martell HJ, MacGowan S, McGreig JE, Mir S, Mukhopadhyay A, Parca L, Paysan-Lafosse T, Radusky L, Ribeiro A, Serrano L, Sillitoe I, Singh G, Skoda P, Svobodova R, Tyzack J, Valencia A, Fernandez EV, Vranken W, Wass M, Thornton J, Sternberg M, Orengo C, Velankar S, PDBe-KB consortium PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Research. 2020;48:D344–D353. doi: 10.1093/nar/gkz853. PubMed DOI PMC
Velankar S, Dana JM, Jacobsen J, van Ginkel G, Gane PJ, Luo J, Oldfield TJ, O’Donovan C, Martin M-J, Kleywegt GJ. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Research. 2013;41:D483–D489. doi: 10.1093/nar/gks1258. PubMed DOI PMC
Wächtershäuser G. Groundworks for an evolutionary biochemistry: the iron-sulphur world. Progress in Biophysics and Molecular Biology. 1992;58:85–201. doi: 10.1016/0079-6107(92)90022-x. PubMed DOI
Weber AL, Miller SL. Reasons for the occurrence of the twenty coded protein amino acids. Journal of Molecular Evolution. 1981;17:273–284. doi: 10.1007/BF01795749. PubMed DOI
White HB. Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution. 1976;7:101–104. doi: 10.1007/BF01732468. PubMed DOI
White HB. Evolution of coenzymes and the origin of pyridine nucleotides. The Pyridine Nucleotide Coenzymes. Econometrica. 1982;50:1–17. doi: 10.1016/b978-0-12-244750-1.50010-5. DOI
Wong JT, Bronskill PM. Inadequacy of prebiotic synthesis as origin of proteinous amino acids. Journal of Molecular Evolution. 1979;13:115–125. doi: 10.1007/BF01732867. PubMed DOI
Wu HH, Pun MD, Wise CE, Streit BR, Mus F, Berim A, Kincannon WM, Islam A, Partovi SE, Gang DR, DuBois JL, Lubner CE, Berkman CE, Lange BM, Peters JW. The pathway for coenzyme M biosynthesis in bacteria. PNAS. 2022;119:e2207190119. doi: 10.1073/pnas.2207190119. PubMed DOI PMC
Zaia DAM, Zaia CTBV, De Santana H. Which amino acids should be used in prebiotic chemistry studies? Origins of Life and Evolution of the Biosphere. 2008;38:469–488. doi: 10.1007/s11084-008-9150-5. PubMed DOI