Coenzyme-protein interactions since early life

. 2025 Dec 04 ; 13 () : . [epub] 20251204

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41342454

Grantová podpora
LM20230 MEYS CR
10.52044/HFSP.RGEC272023.pc.gr.168579 Human Frontier Science Program
CZ.02.2.69/0.0/0.0/19_073/0016935 Grant Schemes at CU

Recent findings in protein evolution and peptide prebiotic plausibility have been setting the stage for reconsidering the role of peptides in the early stages of life's origin. Ancient protein families have been found to share common themes and proteins reduced in composition to prebiotically plausible amino acids have been reported capable of structure formation and key functions, such as binding to RNA. While this may suggest peptide relevance in early life, their functional repertoire, when composed of a limited number of early residues (missing some of the most sophisticated functional groups of today's alphabet) has been debated. Cofactors enrich the functional scope of about half of extant enzymes, but whether they could also bind to peptides lacking the evolutionary late amino acids remains speculative. The aim of this study was to resolve the early peptide propensity to bind organic cofactors by analysis of protein-coenzyme interactions across the Protein Data Bank (PDB). We find that the prebiotically plausible amino acids are more abundant in the binding sites of the most ancient coenzymes and that such interactions rely more frequently on the involvement of the protein backbone atoms and metal ion cofactors. Moreover, we have identified a few select examples in today's enzymes where coenzyme binding is supported solely by prebiotically available amino acids. These results imply the plausibility of a coenzyme-peptide functional collaboration preceding the establishment of the Central Dogma and full protein alphabet evolution.

Před aktualizací

doi: 10.1101/2023.10.28.563965 PubMed

Před aktualizací

doi: 10.7554/eLife.94174.1 PubMed

Před aktualizací

doi: 10.7554/eLife.94174.2 PubMed

Zobrazit více v PubMed

Alva V, Söding J, Lupas AN. A vocabulary of ancient peptides at the origin of folded proteins. eLife. 2015;4:e09410. doi: 10.7554/eLife.09410. PubMed DOI PMC

Ashkenazy H, Erez E, Martz E, Pupko T, Ben-Tal N. ConSurf 2010: calculating evolutionary conservation in sequence and structure of proteins and nucleic acids. Nucleic Acids Research. 2010;38:W529–W33. doi: 10.1093/nar/gkq399. PubMed DOI PMC

Ashkenazy H, Abadi S, Martz E, Chay O, Mayrose I, Pupko T, Ben-Tal N. ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Research. 2016;44:W344–W50. doi: 10.1093/nar/gkw408. PubMed DOI PMC

Aylward N. An ab initio computational study of thiamin synthesis from gaseous reactants of the interstellar medium. Biophysical Chemistry. 2006a;121:185–193. doi: 10.1016/j.bpc.2005.12.018. PubMed DOI

Aylward N, Bofinger N. A plausible prebiotic synthesis of pyridoxal phosphate: vitamin B6 - a computational study. Biophysical Chemistry. 2006b;123:113–121. doi: 10.1016/j.bpc.2006.04.014. PubMed DOI

Barrick JE, Breaker RR. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biology. 2007;8:R239. doi: 10.1186/gb-2007-8-11-r239. PubMed DOI PMC

Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, Alpi E, Bowler-Barnett EH, Britto R, Bye-A-Jee H, Cukura A, Denny P, Dogan T, Ebenezer T, Fan J, Garmiri P, da Costa Gonzales LJ, Hatton-Ellis E, Hussein A, Ignatchenko A, Insana G, Ishtiaq R, Joshi V, Jyothi D, Kandasaamy S, Lock A, Luciani A, Lugaric M, Luo J, Lussi Y, MacDougall A, Madeira F, Mahmoudy M, Mishra A, Moulang K, Nightingale A, Pundir S, Qi G, Raj S, Raposo P, Rice DL, Saidi R, Santos R, Speretta E, Stephenson J, Totoo P, Turner E, Tyagi N, Vasudev P, Warner K, Watkins X, Zaru R, Zellner H, Bridge AJ, Aimo L, Argoud-Puy G, Auchincloss AH, Axelsen KB, Bansal P, Baratin D, Batista Neto TM, Blatter MC, Bolleman JT, Boutet E, Breuza L, Gil BC, Casals-Casas C, Echioukh KC, Coudert E, Cuche B, de Castro E, Estreicher A, Famiglietti ML, Feuermann M, Gasteiger E, Gaudet P, Gehant S, Gerritsen V, Gos A, Gruaz N, Hulo C, Hyka-Nouspikel N, Jungo F, Kerhornou A, Le Mercier P, Lieberherr D, Masson P, Morgat A, Muthukrishnan V, Paesano S, Pedruzzi I, Pilbout S, Pourcel L, Poux S, Pozzato M, Pruess M, Redaschi N, Rivoire C, Sigrist CJA, Sonesson K, Sundaram S, Wu CH, Arighi CN, Arminski L, Chen C, Chen Y, Huang H, Laiho K, McGarvey P, Natale DA, Ross K, Vinayaka CR, Wang Q, Wang Y, Zhang J, The UniProt Consortium UniProt: the universal protein knowledgebase in 2023. Nucleic Acids Research. 2023;51:D523–D531. doi: 10.1093/nar/gkac1052. PubMed DOI PMC

Bonfio C, Valer L, Scintilla S, Shah S, Evans DJ, Jin L, Szostak JW, Sasselov DD, Sutherland JD, Mansy SS. UV-light-driven prebiotic synthesis of iron-sulfur clusters. Nature Chemistry. 2017;9:1229–1234. doi: 10.1038/nchem.2817. PubMed DOI PMC

Brack A, Orgel LE. Beta structures of alternating polypeptides and their possible prebiotic significance. Nature. 1975;256:383–387. doi: 10.1038/256383a0. PubMed DOI

Bromberg Y, Aptekmann AA, Mahlich Y, Cook L, Senn S, Miller M, Nanda V, Ferreiro DU, Falkowski PG. Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. Science Advances. 2022;8:eabj3984. doi: 10.1126/sciadv.abj3984. PubMed DOI PMC

Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chemical Society Reviews. 2012;41:5459–5472. doi: 10.1039/c2cs35109a. PubMed DOI

Caetano-Anollés G, Kim HS, Mittenthal JE. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture. PNAS. 2007;104:9358–9363. doi: 10.1073/pnas.0701214104. PubMed DOI PMC

Cheng H, Schaeffer RD, Liao Y, Kinch LN, Pei J, Shi S, Kim BH, Grishin NV. ECOD: An evolutionary classification of protein domains. PLOS Computational Biology. 2014;10:e1003926. doi: 10.1371/journal.pcbi.1003926. PubMed DOI PMC

Chu XY, Zhang HY. Cofactors as molecular fossils to trace the origin and evolution of proteins. Chembiochem. 2020;21:3161–3168. doi: 10.1002/cbic.202000027. PubMed DOI

Cleaves HJ. The origin of the biologically coded amino acids. Journal of Theoretical Biology. 2010;263:490–498. doi: 10.1016/j.jtbi.2009.12.014. PubMed DOI

Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biology. 2002;3:1–16. doi: 10.1186/gb-2002-3-5-research0025. PubMed DOI PMC

Corbella M, Pinto GP, Kamerlin SCL. Loop dynamics and the evolution of enzyme activity. Nature Reviews. Chemistry. 2023;7:536–547. doi: 10.1038/s41570-023-00495-w. PubMed DOI

Cvjetan N, Schuler LD, Ishikawa T, Walde P. Optimization and enhancement of the peroxidase-like activity of hemin in aqueous solutions of sodium dodecylsulfate. ACS Omega. 2023;8:42878–42899. doi: 10.1021/acsomega.3c05915. PubMed DOI PMC

Dana JM, Gutmanas A, Tyagi N, Qi G, O’Donovan C, Martin M, Velankar S. SIFTS: updated structure integration with function, taxonomy and sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Research. 2019;47:D482–D489. doi: 10.1093/nar/gky1114. PubMed DOI PMC

Dherbassy Q, Mayer RJ, Muchowska KB, Moran J. Metal-pyridoxal cooperativity in nonenzymatic transamination. Journal of the American Chemical Society. 2023;145:13357–13370. doi: 10.1021/jacs.3c03542. PubMed DOI

Edwards H, Abeln S, Deane CM. Exploring fold space preferences of new-born and ancient protein superfamilies. PLOS Computational Biology. 2013;9:e1003325. doi: 10.1371/journal.pcbi.1003325. PubMed DOI PMC

Fairchild J, Islam S, Singh J, Bučar D-K, Powner MW. Prebiotically plausible chemoselective pantetheine synthesis in water. Science. 2024;383:911–918. doi: 10.1126/science.adk4432. PubMed DOI

Fischer JD, Holliday GL, Thornton JM. The CoFactor database: organic cofactors in enzyme catalysis. Bioinformatics. 2010;26:2496–2497. doi: 10.1093/bioinformatics/btq442. PubMed DOI PMC

Frenkel-Pinter M, Haynes JW, Martin C, Petrov AS, Burcar BT, Krishnamurthy R, Hud NV, Leman LJ, Williams LD. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. PNAS. 2019;116:16338–16346. doi: 10.1073/pnas.1904849116. PubMed DOI PMC

Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ. Prebiotic peptides: molecular hubs in the origin of life. Chemical Reviews. 2020;120:4707–4765. doi: 10.1021/acs.chemrev.9b00664. PubMed DOI

Fried SD, Fujishima K, Makarov M, Cherepashuk I, Hlouchova K. Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids. Journal of the Royal Society, Interface. 2022;19:20210641. doi: 10.1098/rsif.2021.0641. PubMed DOI PMC

Gamiz-Arco G, Gutierrez-Rus LI, Risso VA, Ibarra-Molero B, Hoshino Y, Petrović D, Justicia J, Cuerva JM, Romero-Rivera A, Seelig B, Gavira JA, Kamerlin SCL, Gaucher EA, Sanchez-Ruiz JM. Heme-binding enables allosteric modulation in an ancient TIM-barrel glycosidase. Nature Communications. 2021;12:380. doi: 10.1038/s41467-020-20630-1. PubMed DOI PMC

Giacobelli VG, Fujishima K, Lepšík M, Tretyachenko V, Kadavá T, Makarov M, Bednárová L, Novák P, Hlouchová K. In vitro evolution reveals noncationic protein-RNA interaction mediated by metal ions. Molecular Biology and Evolution. 2022;39:1–11. doi: 10.1093/molbev/msac032. PubMed DOI PMC

Gilbert W. The RNA world superlattices point ahead. Nature. 1986;319:618. doi: 10.1038/319618a0. DOI

Goldman AD, Bernhard TM, Dolzhenko E, Landweber LF. LUCApedia: a database for the study of ancient life. Nucleic Acids Research. 2013;41:D1079–D82. doi: 10.1093/nar/gks1217. PubMed DOI PMC

Goldman AD, Kacar B. Cofactors are remnants of life’s origin and early evolution. Journal of Molecular Evolution. 2021;89:127–133. doi: 10.1007/s00239-020-09988-4. PubMed DOI PMC

Goncearenco A, Berezovsky IN. Prototypes of elementary functional loops unravel evolutionary connections between protein functions. Bioinformatics. 2010;26:i497–i503. doi: 10.1093/bioinformatics/btq374. PubMed DOI PMC

Gutierrez-Rus LI, Gamiz-Arco G, Gavira JA, Gaucher EA, Risso VA, Sanchez-Ruiz JM. Protection of catalytic cofactors by polypeptides as a driver for the emergence of primordial enzymes. Molecular Biology and Evolution. 2023;40:1–8. doi: 10.1093/molbev/msad126. PubMed DOI PMC

Henriques Pereira DP, Leethaus J, Beyazay T, do Nascimento Vieira A, Kleinermanns K, Tüysüz H, Martin WF, Preiner M. Role of geochemical protoenzymes (geozymes) in primordial metabolism: specific abiotic hydride transfer by metals to the biological redox cofactor NAD. The FEBS Journal. 2022;289:3148–3162. doi: 10.1111/febs.16329. PubMed DOI PMC

Higgs PG, Pudritz RE. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology. 2009;9:483–490. doi: 10.1089/ast.2008.0280. PubMed DOI

Holliday GL, Thornton JM, Marquet A, Smith AG, Rébeillé F, Mendel R, Schubert HL, Lawrence AD, Warren MJ. Evolution of enzymes and pathways for the biosynthesis of cofactors. Natural Product Reports. 2007;24:972–987. doi: 10.1039/b703107f. PubMed DOI

Ilardo MA, Freeland SJ. Testing for adaptive signatures of amino acid alphabet evolution using chemistry space. Journal of Systems Chemistry. 2014;5:1–9. doi: 10.1186/1759-2208-5-1. DOI

Jubb HC, Higueruelo AP, Ochoa-Montaño B, Pitt WR, Ascher DB, Blundell TL. Arpeggio: A web server for calculating and visualising interatomic interactions in protein structures. Journal of Molecular Biology. 2017;429:365–371. doi: 10.1016/j.jmb.2016.12.004. PubMed DOI PMC

Keefe AD, Newton GL, Miller SL. A possible prebiotic synthesis of pantetheine, a precursor to coenzyme a. Nature. 1995;PMID:683–685. doi: 10.1038/373683a0. PubMed DOI

Keefe AD, Szostak JW. Functional proteins from a random-sequence library. Nature. 2001;410:715–718. doi: 10.1038/35070613. PubMed DOI PMC

Kessel A, Ben-Tal N. Introduction to Proteins: Structure, Function, and Motion. Chapman & Hall; 2018. DOI

Kessel A, Ben-Tal N. From Molecules to Cells: The Origin of Life on Earth. Kindle E-Book; 2022.

Kirschning A. Coenzymes and their role in the evolution of life. Angewandte Chemie. 2021;60:6242–6269. doi: 10.1002/anie.201914786. PubMed DOI PMC

Kirschning A. On the evolutionary history of the twenty encoded amino acids. Chemistry. 2022;28:e202201419. doi: 10.1002/chem.202201419. PubMed DOI PMC

Kolodny R, Nepomnyachiy S, Tawfik DS, Ben-Tal N. Bridging themes: short protein segments found in different architectures. Molecular Biology and Evolution. 2021;38:2191–2208. doi: 10.1093/molbev/msab017. PubMed DOI PMC

Kovacs NA, Petrov AS, Lanier KA, Williams LD. Frozen in time: the history of proteins. Molecular Biology and Evolution. 2017;34:1252–1260. doi: 10.1093/molbev/msx086. PubMed DOI PMC

Lane N, Martin WF. The origin of membrane bioenergetics. Cell. 2012;151:1406–1416. doi: 10.1016/j.cell.2012.11.050. PubMed DOI

Laskowski RA, Swindells MB. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling. 2011;51:2778–2786. doi: 10.1021/ci200227u. PubMed DOI

Laurino P, Tóth-Petróczy Á, Meana-Pañeda R, Lin W, Truhlar DG, Tawfik DS. An ancient fingerprint indicates the common ancestry of rossmann-fold enzymes utilizing different ribose-based cofactors. PLOS Biology. 2016;14:e1002396. doi: 10.1371/journal.pbio.1002396. PubMed DOI PMC

Lazcano A. Planetary change and biochemical adaptation: molecular evolution of corrinoid and heme biosyntheses. Hematology. 2012;17 Suppl 1:S7–S10. doi: 10.1179/102453312X13336169155015. PubMed DOI

Lemay-St-Denis C, Pelletier JN. From a binding module to essential catalytic activity: how nature stumbled on a good thing. Chemical Communications. 2023;59:12560–12572. doi: 10.1039/d3cc04209j. PubMed DOI

Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics. 2006;22:1658–1659. doi: 10.1093/bioinformatics/btl158. PubMed DOI

Longo LM, Jabłońska J, Vyas P, Kanade M, Kolodny R, Ben-Tal N, Tawfik DS. On the emergence of P-Loop NTPase and Rossmann enzymes from a Beta-Alpha-Beta ancestral fragment. eLife. 2020a;9:64415. doi: 10.7554/eLife.64415. PubMed DOI PMC

Longo LM, Petrović D, Kamerlin SCL, Tawfik DS. Short and simple sequences favored the emergence of N-helix phospho-ligand binding sites in the first enzymes. PNAS. 2020b;117:5310–5318. doi: 10.1073/pnas.1911742117. PubMed DOI PMC

Lupas AN, Alva V. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. Journal of Structural Biology. 2017;198:74–81. doi: 10.1016/j.jsb.2017.04.007. PubMed DOI

Makarov M, Meng J, Tretyachenko V, Srb P, Březinová A, Giacobelli VG, Bednárová L, Vondrášek J, Dunker AK, Hlouchová K. Enzyme catalysis prior to aromatic residues: Reverse engineering of a dephospho-CoA kinase. Protein Science. 2021;30:1022–1034. doi: 10.1002/pro.4068. PubMed DOI PMC

Menor-Salván C, Burcar BT, Bouza M, Fialho DM, Fernández FM, Hud NV. A shared prebiotic formation of neopterins and guanine nucleosides from pyrimidine bases. Chemistry. 2022;28:e202200714. doi: 10.1002/chem.202200714. PubMed DOI PMC

Miller SL, Schlesinger G. Prebiotic syntheses of vitamin coenzymes: I. Cysteamine and 2-mercaptoethanesulfonic acid (coenzyme M) Journal of Molecular Evolution. 1993;36:302–307. doi: 10.1007/BF00182177. PubMed DOI

Milner-White EJ, Russell MJ. Functional capabilities of the earliest peptides and the emergence of life. Genes. 2011;2:671–688. doi: 10.3390/genes2040671. PubMed DOI PMC

Monteverde DR, Gómez-Consarnau L, Suffridge C, Sañudo-Wilhelmy SA. Life’s utilization of B vitamins on early Earth. Geobiology. 2017;15:3–18. doi: 10.1111/gbi.12202. PubMed DOI

Muchowska KB, Varma SJ, Moran J. Nonenzymatic metabolic reactions and life’s origins. Chemical Reviews. 2020;120:7708–7744. doi: 10.1021/acs.chemrev.0c00191. PubMed DOI

Mukhopadhyay A, Borkakoti N, Pravda L, Tyzack JD, Thornton JM, Velankar S. Finding enzyme cofactors in Protein Data Bank. Bioinformatics. 2019;35:3510–3511. doi: 10.1093/bioinformatics/btz115. PubMed DOI PMC

Naraoka H, Takano Y, Dworkin JP, Oba Y, Hamase K, Furusho A, Ogawa NO, Hashiguchi M, Fukushima K, Aoki D, Schmitt-Kopplin P, Aponte JC, Parker ET, Glavin DP, McLain HL, Elsila JE, Graham HV, Eiler JM, Orthous-Daunay F-R, Wolters C, Isa J, Vuitton V, Thissen R, Sakai S, Yoshimura T, Koga T, Ohkouchi N, Chikaraishi Y, Sugahara H, Mita H, Furukawa Y, Hertkorn N, Ruf A, Yurimoto H, Nakamura T, Noguchi T, Okazaki R, Yabuta H, Sakamoto K, Tachibana S, Connolly HC, Jr, Lauretta DS, Abe M, Yada T, Nishimura M, Yogata K, Nakato A, Yoshitake M, Suzuki A, Miyazaki A, Furuya S, Hatakeda K, Soejima H, Hitomi Y, Kumagai K, Usui T, Hayashi T, Yamamoto D, Fukai R, Kitazato K, Sugita S, Namiki N, Arakawa M, Ikeda H, Ishiguro M, Hirata N, Wada K, Ishihara Y, Noguchi R, Morota T, Sakatani N, Matsumoto K, Senshu H, Honda R, Tatsumi E, Yokota Y, Honda C, Michikami T, Matsuoka M, Miura A, Noda H, Yamada T, Yoshihara K, Kawahara K, Ozaki M, Iijima Y-I, Yano H, Hayakawa M, Iwata T, Tsukizaki R, Sawada H, Hosoda S, Ogawa K, Okamoto C, Hirata N, Shirai K, Shimaki Y, Yamada M, Okada T, Yamamoto Y, Takeuchi H, Fujii A, Takei Y, Yoshikawa K, Mimasu Y, Ono G, Ogawa N, Kikuchi S, Nakazawa S, Terui F, Tanaka S, Saiki T, Yoshikawa M, Watanabe S-I, Tsuda Y. Soluble organic molecules in samples of the carbonaceous asteroid (162173) Ryugu. Science. 2023;379:eabn9033. doi: 10.1126/science.abn9033. PubMed DOI

Narunsky A, Kessel A, Solan R, Alva V, Kolodny R, Ben-Tal N. On the evolution of protein-adenine binding. PNAS. 2020;117:4701–4709. doi: 10.1073/pnas.1911349117. PubMed DOI PMC

Nepomnyachiy S, Ben-Tal N, Kolodny R. Complex evolutionary footprints revealed in an analysis of reused protein segments of diverse lengths. PNAS. 2017;114:11703–11708. doi: 10.1073/pnas.1707642114. PubMed DOI PMC

Pinna S, Kunz C, Halpern A, Harrison SA, Jordan SF, Ward J, Werner F, Lane N. A prebiotic basis for ATP as the universal energy currency. PLOS Biology. 2022;20:e3001437. doi: 10.1371/journal.pbio.3001437. PubMed DOI PMC

Preiner M, Asche S, Becker S, Betts HC, Boniface A, Camprubi E, Chandru K, Erastova V, Garg SG, Khawaja N, Kostyrka G, Machné R, Moggioli G, Muchowska KB, Neukirchen S, Peter B, Pichlhöfer E, Radványi Á, Rossetto D, Salditt A, Schmelling NM, Sousa FL, Tria FDK, Vörös D, Xavier JC. The future of origin of life research: bridging decades-old divisions. Life. 2020;10:20. doi: 10.3390/life10030020. PubMed DOI PMC

Putignano V, Rosato A, Banci L, Andreini C. MetalPDB in 2018: a database of metal sites in biological macromolecular structures. Nucleic Acids Research. 2018;46:D459–D464. doi: 10.1093/nar/gkx989. PubMed DOI PMC

Qiu K, Ben-Tal N, Kolodny R. Similar protein segments shared between domains of different evolutionary lineages. Protein Science. 2022;31:e4407. doi: 10.1002/pro.4407. PubMed DOI PMC

Reyes-Prieto F, Hernández-Morales R, Jácome R, Becerra A, Lazcano A. Coenzymes, viruses and the RNA world. Biochimie. 2012;94:1467–1473. doi: 10.1016/j.biochi.2012.01.004. PubMed DOI

Romero Romero ML, Yang F, Lin YR, Toth-Petroczy A, Berezovsky IN, Goncearenco A, Yang W, Wellner A, Kumar-Deshmukh F, Sharon M, Baker D, Varani G, Tawfik DS. Simple yet functional phosphate-loop proteins. PNAS. 2018;115:E11943–E11950. doi: 10.1073/pnas.1812400115. PubMed DOI PMC

Russell MJ, Hall AJ. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society. 1997;154:377–402. doi: 10.1144/gsjgs.154.3.0377. PubMed DOI

Sanchez Rocha AC. SanchezRocha-coenzymes2024. swh:1:rev:b7a0323cf5b44a1250c02ab8c5ec1f407d29934cSoftware Heritage. 2025 https://archive.softwareheritage.org/swh:1:dir:04bd335162a58a7d32d9a6cfa5be5782b3333964;origin=https://github.com/AlmaCarolina-SanchezRocha/SanchezRocha-Coenzymes2024;visit=swh:1:snp:d74cf4b57fdc61504c74f03c91bb1bf93a97314a;anchor=swh:1:rev:b7a0323cf5b44a1250c02ab8c5ec1f407d29934c

Seitz C, Eisenreich W, Huber C. The Abiotic formation of pyrrole under volcanic, hydrothermal conditions-an initial step towards life’s first breath? Life. 2021;11:1–10. doi: 10.3390/life11090980. PubMed DOI PMC

Skolnick J, Zhou H, Gao M. On the possible origin of protein homochirality, structure, and biochemical function. PNAS. 2019;116:26571–26579. doi: 10.1073/pnas.1908241116. PubMed DOI PMC

Söding J, Lupas AN. More than the sum of their parts: on the evolution of proteins from peptides. BioEssays. 2003;25:837–846. doi: 10.1002/bies.10321. PubMed DOI

Thauer RK, Bonacker LG. Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Foundation Symposium. 1994;180:210–222. doi: 10.1002/9780470514535.ch12. PubMed DOI

Tokuriki N, Tawfik DS. Protein dynamism and evolvability. Science. 2009;324:203–207. doi: 10.1126/science.1169375. PubMed DOI

Toledo-Patiño S, Pascarelli S, Uechi GI, Laurino P. Insertions and deletions mediated functional divergence of Rossmann fold enzymes. PNAS. 2022;119:e2207965119. doi: 10.1073/pnas.2207965119. PubMed DOI PMC

Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K. Modern and prebiotic amino acids support distinct structural profiles in proteins. Open Biology. 2022;12:220040. doi: 10.1098/rsob.220040. PubMed DOI PMC

Trifonov EN. Consensus temporal order of amino acids and evolution of the triplet code. Gene. 2000;261:139–151. doi: 10.1016/s0378-1119(00)00476-5. PubMed DOI

Varadi M, Berrisford J, Deshpande M, Nair SS, Gutmanas A, Armstrong D, Pravda L, Al-Lazikani B, Anyango S, Barton GJ, Berka K, Blundell T, Borkakoti N, Dana J, Das S, Dey S, Micco PD, Fraternali F, Gibson T, Helmer-Citterich M, Hoksza D, Huang LC, Jain R, Jubb H, Kannas C, Kannan N, Koca J, Krivak R, Kumar M, Levy ED, Madeira F, Madhusudhan MS, Martell HJ, MacGowan S, McGreig JE, Mir S, Mukhopadhyay A, Parca L, Paysan-Lafosse T, Radusky L, Ribeiro A, Serrano L, Sillitoe I, Singh G, Skoda P, Svobodova R, Tyzack J, Valencia A, Fernandez EV, Vranken W, Wass M, Thornton J, Sternberg M, Orengo C, Velankar S, PDBe-KB consortium PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Research. 2020;48:D344–D353. doi: 10.1093/nar/gkz853. PubMed DOI PMC

Velankar S, Dana JM, Jacobsen J, van Ginkel G, Gane PJ, Luo J, Oldfield TJ, O’Donovan C, Martin M-J, Kleywegt GJ. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Research. 2013;41:D483–D489. doi: 10.1093/nar/gks1258. PubMed DOI PMC

Wächtershäuser G. Groundworks for an evolutionary biochemistry: the iron-sulphur world. Progress in Biophysics and Molecular Biology. 1992;58:85–201. doi: 10.1016/0079-6107(92)90022-x. PubMed DOI

Weber AL, Miller SL. Reasons for the occurrence of the twenty coded protein amino acids. Journal of Molecular Evolution. 1981;17:273–284. doi: 10.1007/BF01795749. PubMed DOI

White HB. Coenzymes as fossils of an earlier metabolic state. Journal of Molecular Evolution. 1976;7:101–104. doi: 10.1007/BF01732468. PubMed DOI

White HB. Evolution of coenzymes and the origin of pyridine nucleotides. The Pyridine Nucleotide Coenzymes. Econometrica. 1982;50:1–17. doi: 10.1016/b978-0-12-244750-1.50010-5. DOI

Wong JT, Bronskill PM. Inadequacy of prebiotic synthesis as origin of proteinous amino acids. Journal of Molecular Evolution. 1979;13:115–125. doi: 10.1007/BF01732867. PubMed DOI

Wu HH, Pun MD, Wise CE, Streit BR, Mus F, Berim A, Kincannon WM, Islam A, Partovi SE, Gang DR, DuBois JL, Lubner CE, Berkman CE, Lange BM, Peters JW. The pathway for coenzyme M biosynthesis in bacteria. PNAS. 2022;119:e2207190119. doi: 10.1073/pnas.2207190119. PubMed DOI PMC

Zaia DAM, Zaia CTBV, De Santana H. Which amino acids should be used in prebiotic chemistry studies? Origins of Life and Evolution of the Biosphere. 2008;38:469–488. doi: 10.1007/s11084-008-9150-5. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...