Peptides before and during the nucleotide world: an origins story emphasizing cooperation between proteins and nucleic acids

. 2022 Feb ; 19 (187) : 20210641. [epub] 20220209

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35135297

Recent developments in Origins of Life research have focused on substantiating the narrative of an abiotic emergence of nucleic acids from organic molecules of low molecular weight, a paradigm that typically sidelines the roles of peptides. Nevertheless, the simple synthesis of amino acids, the facile nature of their activation and condensation, their ability to recognize metals and cofactors and their remarkable capacity to self-assemble make peptides (and their analogues) favourable candidates for one of the earliest functional polymers. In this mini-review, we explore the ramifications of this hypothesis. Diverse lines of research in molecular biology, bioinformatics, geochemistry, biophysics and astrobiology provide clues about the progression and early evolution of proteins, and lend credence to the idea that early peptides served many central prebiotic roles before they were encodable by a polynucleotide template, in a putative 'peptide-polynucleotide stage'. For example, early peptides and mini-proteins could have served as catalysts, compartments and structural hubs. In sum, we shed light on the role of early peptides and small proteins before and during the nucleotide world, in which nascent life fully grasped the potential of primordial proteins, and which has left an imprint on the idiosyncratic properties of extant proteins.

Zobrazit více v PubMed

Powner MW, Gerland B, Sutherland JD. 2009. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239-242. (10.1038/nature08013) PubMed DOI

Becker S, et al. 2019. Unified prebiotically plausible synthesis of pyrimidine and purine RNA ribonucleotides. Science 366, 76-82. (10.1126/science.aax2747) PubMed DOI

Wochner A, Attwater J, Coulson A, Holliger P. 2011. Ribozyme-catalyzed transcription of an active ribozyme. Science 332, 209-212. (10.1126/science.1200752) PubMed DOI

Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP. 2001. RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292, 1319-1325. (10.1126/science.1060786) PubMed DOI

Horning DP, Joyce GF. 2016. Amplification of RNA by an RNA polymerase ribozyme. Proc. Natl Acad. Sci. USA 113, 9786-9791. (10.1073/pnas.1610103113) PubMed DOI PMC

Bartel DP, Szostak JW. 1993. Isolation of new ribozymes from a large pool of random sequences. Science 261, 1411-1418. (10.1126/science.7690155) PubMed DOI

Xu J, Chmela V, Green NJJ, Russell DAA, Janicki MJJ, Góra RWW, Szabla R, Bond A, Sutherland JD. 2020. Selective prebiotic formation of RNA pyrimidine and DNA purine nucleosides. Nature 582, 60-66. (10.1038/s41586-020-2330-9) PubMed DOI PMC

Bhowmik S, Krishnamurthy R. 2019. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 11, 1009-1018. (10.1038/s41557-019-0322-x) PubMed DOI PMC

Miller SL. 1953. A production of amino acids under possible primitive earth conditions. Science 117, 528-529. (10.1126/science.117.3046.528) PubMed DOI

Parker ET, Cleaves HJ, Dworkin JP, Glavin DP, Callahan M, Aubrey A, Lazcano A, Bada JL. 2011. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc. Natl Acad. Sci. USA 108, 5526-5531. (10.1073/pnas.1019191108) PubMed DOI PMC

Cronin JR, Pizzarello S. 1983. Amino acids in meteorites. Adv. Sp. Res. 3, 5-18. (10.1016/0273-1177(83)90036-4) PubMed DOI

Glavin DP, Elsila JE, McLain HL, Aponte JC, Parker ET, Dworkin JP, Hill DH, Connolly HC, Lauretta DS. 2021. Extraterrestrial amino acids and L-enantiomeric excesses in the CM2 carbonaceous chondrites Aguas Zarcas and Murchison. Meteorit. Planet. Sci. 56, 148-173. (10.1111/maps.13451) DOI

Forsythe JG, Yu SS, Mamajanov I, Grover MA, Krishnamurthy R, Fernández FM, Hud NV. 2015. Ester-mediated amide bond formation driven by wet-dry cycles: a possible path to polypeptides on the prebiotic Earth. Angew Chem. 127, 10 009-10 013. (10.1002/ange.201503792) PubMed DOI PMC

Imai EI, Honda H, Hatori K, Brack A, Matsuno K. 1999. Elongation of oligopeptides in a simulated submarine hydrothermal system. Science 283, 831-833. (10.1126/science.283.5403.831) PubMed DOI

Furukawa Y, Otake T, Ishiguro T, Nakazawa H, Kakegawa T. 2012. Abiotic formation of valine peptides under conditions of high temperature and high pressure. Orig. Life Evol. Biosph. 42, 519-531. (10.1007/s11084-012-9295-0) PubMed DOI

Takahagi W, et al. 2019. Peptide synthesis under the alkaline hydrothermal conditions on Enceladus. ACS Earth Sp. Chem. 3, 2559-2568. (10.1021/acsearthspacechem.9b00108) DOI

McGeoch MW, Dikler S, McGeoch JEM. 2020. Hemolithin: a meteoritic protein containing iron and lithium. (http://arxiv.org/abs/2002.11688)

Kitadai N, Maruyama S. 2018. Origins of building blocks of life: a review. Geosci. Front. 9, 1117-1153. (10.1016/j.gsf.2017.07.007) DOI

Rode BM. 1999. Peptides and the origin of life. Peptides 20, 773-786. (10.1016/S0196-9781(99)00062-5) PubMed DOI

Giacobelli VG, Fujishima K, Lepšík M, Tretyachenko V, Kadavá T, Bednárová L, Novák P, Hlouchová K. 2021. In vitro evolution reveals primordial RNA-protein interaction mediated by metal cations. BioRxiv. (10.1101/2021.08.01.454623) PubMed DOI PMC

Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. 2020. Polyamines mediate folding of primordial hyperacidic helical proteins. Biochemistry 59, 4456-4462. (10.1021/acs.biochem.0c00800) PubMed DOI PMC

Longo LM, Lee J, Blaber M. 2013. Simplified protein design biased for prebiotic amino acids yields a foldable, halophilic protein. Proc. Natl Acad. Sci. USA 110, 2135-2139. (10.1073/pnas.1219530110) PubMed DOI PMC

Shibue R, Sasamoto T, Shimada M, Zhang B, Yamagishi A, Akanuma S. 2018. Comprehensive reduction of amino acid set in a protein suggests the importance of prebiotic amino acids for stable proteins. Sci. Rep. 8, 1227. (10.1038/s41598-018-19561-1) PubMed DOI PMC

Makarov M, et al. 2021. Enzyme catalysis prior to aromatic residues: reverse engineering of a dephospho-CoA kinase. Protein Sci. 30, 1022-1034. (10.1002/pro.4068) PubMed DOI PMC

Yagi S, Padhi AK, Vucinic J, Barbe S, Schiex T, Nakagawa R, Simoncini D, Zhang KY, Tagami S. 2021. Seven amino acid types suffice to reconstruct the core fold of RNA polymerase. bioRxiv. (https://www.biorxiv.org/content/10.1101/2021.02.22.432383v1) PubMed

Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker D. 1997. Functional rapidly folding proteins from simplified amino acid sequences. Nat. Struct. Biol. 4, 805-809. (10.1038/nsb1097-805) PubMed DOI

Longo LM, Tenorio CA, Kumru OS, Middaugh CR, Blaber M. 2015. A single aromatic core mutation converts a designed ‘primitive’ protein from halophile to mesophile folding. Protein Sci. 24, 27-37. (10.1002/pro.2580) PubMed DOI PMC

Kimura M, Akanuma S. 2020. Reconstruction and characterization of thermally stable and catalytically active proteins comprising an alphabet of ∼13 amino acids. J. Mol. Evol. 88, 372-381. (10.1007/s00239-020-09938-0) PubMed DOI

Eschenmoser A, Krishnamurthy R. 2000. Chemical etiology of nucleic acid structure. Pure Appl. Chem. 72, 343-345. (10.1351/pac200072030343) DOI

Gardner PP, Holland BR, Moulton V, Hendy M, Penny D. 2003. Optimal alphabets for an RNA world. Proc. R. Soc. B 270, 1177-1182. (10.1098/rspb.2003.2355) PubMed DOI PMC

Szathmáry E. 2003. Why are there four letters in the genetic alphabet? Nat. Rev. Genet. 4, 995-1001. (10.1038/nrg1231) PubMed DOI

Gorlero M, Wieczorek R, Adamala K, Giorgi A, Schininà ME, Stano P, Luisi PL. 2009. Ser-his catalyses the formation of peptides and PNAs. FEBS Lett. 583, 153-156. (10.1016/j.febslet.2008.11.052) PubMed DOI

Foden CS, Islam S, Fernández-García C, Maugeri L, Sheppard TD, Powner MW. 2020. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865-869. (10.1126/science.abd5680) PubMed DOI

Rodriguez-Garcia M, Surman AJ, Cooper GJT, Suárez-Marina I, Hosni Z, Lee MP, Cronin L. 2015. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun. 6, 8385. (10.1038/ncomms9385) PubMed DOI PMC

Hill AR, Orgel LE, Wu T. 1993. The limits of template-directed synthesis with nucleoside-5′-phosphoro(2-methyl)imidazolides. Orig. Life Evol. Biosph. 23, 285-290. (10.1007/BF01582078) PubMed DOI

Giurgiu C, Li L, O'Flaherty DK, Tam CP, Szostak JW. 2017. A mechanistic explanation for the regioselectivity of nonenzymatic RNA primer extension. J. Am. Chem. Soc. 139, 16 741-16 747. (10.1021/jacs.7b08784) PubMed DOI PMC

Sheng J, Li L, Engelhart AE, Gan J, Wang J, Szostak JW. 2014. Structural insights into the effects of 2′-5′ linkages on the RNA duplex. Proc. Natl Acad. Sci. USA 111, 3050-3055. (10.1073/pnas.1317799111) PubMed DOI PMC

Jeffares DC, Poole AM, Penny D. 1998. Relics from the RNA world. J. Mol. Evol. 46, 18-36. (10.1007/PL00006280) PubMed DOI

Frenkel-Pinter M, Frenkel-Pinter M, Samanta M, Ashkenasy G, Leman LJ, Leman LJ. 2020. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev. 120, 4707-4765. (10.1021/acs.chemrev.9b00664) PubMed DOI

Lu Y, Yeung N, Sieracki N, Marshall NM. 2009. Design of functional metalloproteins. Nature 460, 855-862. (10.1038/nature08304) PubMed DOI PMC

Holliday GL, Thornton JM, Marquet A, Smith AG, Rébeillé F, Mendel R, Schubert HL, Lawrence AD, Warren MJ. 2007. Evolution of enzymes and pathways for the biosynthesis of cofactors. Nat. Prod. Rep. 24, 972-987. (10.1039/b703107f) PubMed DOI

Chu XY, Zhang HY. 2020. Cofactors as molecular fossils to trace the origin and evolution of proteins. ChemBioChem 21, 3161-3168. (10.1002/cbic.202000027) PubMed DOI

Tagami S, Attwater J, Holliger P. 2017. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Nat. Chem. 9, 325-332. (10.1038/nchem.2739) PubMed DOI PMC

Hsiao C, Mohan S, Kalahar BK, Williams LD. 2009. Peeling the onion: ribosomes are ancient molecular fossils. Mol. Biol. Evol. 26, 2415-2425. (10.1093/molbev/msp163) PubMed DOI

Guth-Metzler R, et al. 2020. Cutting in-line with iron: ribosomal function and non-oxidative RNA cleavage. Nucleic Acids Res. 48, 8663-8674. (10.1093/nar/gkaa586) PubMed DOI PMC

Berens C, Streicher B, Schroeder R, Hillen W. 1998. Visualizing metal-ion-binding sites in group I introns by iron(II)-mediated Fenton reactions. Chem. Biol. 5, 163-175. (10.1016/S1074-5521(98)90061-8) PubMed DOI

Deechongkit S, Dawson PE, Kelly JW. 2004. Toward assessing the position-dependent contributions of backbone hydrogen bonding to β-sheet folding thermodynamics employing amide-to-ester perturbations. J. Am. Chem. Soc. 126, 16 762-16 771. (10.1021/ja045934s) PubMed DOI

Deechongkit S, Nguyen H, Powers ET, Dawson PE, Gruebele M, Kelly JW. 2004. Context-dependent contributions of backbone hydrogen bonding to β-sheet folding energetics. Nature 430, 101-105. (10.1038/nature02611) PubMed DOI

Fialho DM, Karunakaran SC, Greeson KW, Martínez I, Schuster GB, Krishnamurthy R, Hud NV. 2021. Depsipeptide nucleic acids: prebiotic formation, oligomerization, and self-assembly of a new proto-nucleic acid candidate. J. Am. Chem. Soc. 143, 13 525-13 537. (10.1021/jacs.1c02287) PubMed DOI

Wittung P, Nielsen PE, Buchardt O, Egholm M, Nordén B. 1994. DNA-like double helix formed by peptide nucleic acid. Nature 368, 561-563. (10.1038/368561a0) PubMed DOI

Mulkidjanian AY, Bychkov AY, Dibrova DV, Galperin MY, Koonin EV. 2012. Origin of first cells at terrestrial, anoxic geothermal fields. Proc. Natl Acad. Sci. USA 109, E821-E830. (10.1073/pnas.1117774109) PubMed DOI PMC

Kalervo Airas R. 1996. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli. Eur. J. Biochem. 240, 223-231. (10.1111/j.1432-1033.1996.0223h.x) PubMed DOI

Bray MS, Lenz TK, Haynes JW, Bowman JC, Petrov AS, Reddi AR, Hud NV, Williams LD, Glass JB. 2018. Multiple prebiotic metals mediate translation. Proc. Natl Acad. Sci. USA 115, 12 164-12 169. (10.1073/pnas.1803636115) PubMed DOI PMC

Sosnick TR. 2008. Kinetic barriers and the role of topology in protein and RNA folding. Protein Sci. 17, 1308-1318. (10.1110/ps.036319.108) PubMed DOI PMC

Thirumalai D, Woodson SA. 1996. Kinetics of folding of proteins and RNA. Acc. Chem. Res. 29, 433-439. (10.1021/ar9500933) DOI

Higgs PG, Pudritz RE. 2009. A thermodynamic basis for prebiotic amino acid synthesis and the nature of the first genetic code. Astrobiology 9, 483-490. (10.1089/ast.2008.0280) PubMed DOI

Trifonov EN. 2000. Consensus temporal order of amino acids and evolution of the triplet code. Gene 261, 139-151. (10.1016/S0378-1119(00)00476-5) PubMed DOI

Granold M, Hajieva P, Toşa MI, Irimie FD, Moosmann B. 2018. Modern diversification of the amino acid repertoire driven by oxygen. Proc. Natl Acad. Sci. USA 115, 41-46. (10.1073/pnas.1717100115) PubMed DOI PMC

Zaia DAM, Zaia CTBV, De Santana H. 2008. Which amino acids should be used in prebiotic chemistry studies? Orig. Life Evol. Biosph. 38, 469-488. (10.1007/s11084-008-9150-5) PubMed DOI

Brooks DJ, Fresco JR, Lesk AM, Singh M. 2002. Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol. Biol. Evol. 19, 1645-1655. (10.1093/oxfordjournals.molbev.a003988) PubMed DOI

Fournier GP, Andam CP, Alm EJ, Gogarten JP. 2011. Molecular evolution of aminoacyl tRNA synthetase proteins in the early history of life. Orig. Life Evol. Biosph. 41, 621-632. (10.1007/s11084-011-9261-2) PubMed DOI

Bradley LH, Thumfort PP, Hecht MH. 2006. De novo proteins from binary-patterned combinatorial libraries. Methods Mol. Biol. 340, 53-69. (10.1385/1-59745-116-9:53) PubMed DOI

Etchebest C, Benros C, Bornot A, Camproux AC, De Brevern AG. 2007. A reduced amino acid alphabet for understanding and designing protein adaptation to mutation. Eur. Biophys. J. 36, 1059-1069. (10.1007/s00249-007-0188-5) PubMed DOI

Fellouse FA, Wiesmann C, Sidhu SS. 2004. Synthetic antibodies from a four-amino-acid code: a dominant role for tyrosine in antigen recognition. Proc. Natl Acad. Sci. USA 101, 12 467-12 472. (10.1073/pnas.0401786101) PubMed DOI PMC

Reader J, Joyce GF. 2002. A ribozyme composed of only two different nucleotides. Nature 420, 841-844. (10.1038/nature01185) PubMed DOI

Greenwald J, Friedmann MP, Riek R. 2016. Amyloid aggregates arise from amino acid condensations under prebiotic conditions. Angew. Chem. Int. Ed. 55, 11 609-11 613. (10.1002/anie.201605321) PubMed DOI

Georgelin T, Jaber M, Bazzi H, Lambert JF. 2013. Formation of activated biomolecules by condensation on mineral surfaces: a comparison of peptide bond formation and phosphate condensation. Orig. Life Evol. Biosph. 43, 429-443. (10.1007/s11084-013-9345-2) PubMed DOI

Wolos A, Roszak R, Zadlo-Dobrowolska A, Beker W, Mikulak-Klucznik B, Spólnik G, Dygas M, Szymkuć S, Grzybowski BA. 2020. Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science 369, aaw1955. (10.1126/science.aaw1955) PubMed DOI

Kim SC, O'Flaherty DK, Giurgiu C, Zhou L, Szostak JW. 2021. The Emergence of RNA from the heterogeneous products of prebiotic nucleotide synthesis. J. Am. Chem. Soc. 143, 3267-3279. (10.1021/jacs.0c12955) PubMed DOI

Weber AL, Pizzarello S. 2006. The peptide-catalyzed stereospecific synthesis of tetroses: a possible model for prebiotic molecular evolution. Proc. Natl Acad. Sci. USA 103, 12 713-12 717. (10.1073/pnas.0602320103) PubMed DOI PMC

Pearce BKD, Tupper AS, Pudritz RE, Higgs PG. 2018. Constraining the time interval for the origin of life on Earth. Astrobiology 18, 343-364. (10.1089/ast.2017.1674) PubMed DOI

Amit M, Cheng G, Hamley IW, Ashkenasy N. 2012. Conductance of amyloid β based peptide filaments: structure-function relations. Soft Matter 8, 8690-8696. (10.1039/c2sm26017d) DOI

Mehta AK, et al. 2008. Facial symmetry in protein self-assembly. J. Am. Chem. Soc. 130, 9829-9835. (10.1021/ja801511n) PubMed DOI

Maury CPJ. 2009. Self-propagating β-sheet polypeptide structures as prebiotic informational molecular entities: the amyloid world. Orig. Life Evol. Biosph. 39, 141-150. (10.1007/s11084-009-9165-6) PubMed DOI

Carny O, Gazit E. 2005. A model for the role of short self-assembled peptides in the very early stages of the origin of life. FASEB J. 19, 1051-1055. (10.1096/fj.04-3256hyp) PubMed DOI

Hordijk W. 2017. Autocatalytic confusion clarified. J. Theor. Biol. 435, 22-28. (10.1016/j.jtbi.2017.09.003) PubMed DOI

Lee DH, Granja JR, Martinez JA, Severin K, Ghadiri MR. 1996. A self-replicating peptide. Nature 382, 525-528. (10.1038/382525a0) PubMed DOI

Rout SK, Friedmann MP, Riek R, Greenwald J. 2018. A prebiotic template-directed peptide synthesis based on amyloids. Nat. Commun. 9, 234. (10.1038/s41467-017-02742-3) PubMed DOI PMC

Takahashi Y, Mihara H. 2004. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorg. Med. Chem. 12, 693-699. (10.1016/j.bmc.2003.11.022) PubMed DOI

Lee DH, Severin K, Yokobayashi Y, Ghadiri MR. 1997. Emergence of symbiosis in peptide self-replication through a hypercyclic network. Nature 390, 591-594. (10.1038/37569) PubMed DOI

Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA, Hu X, Degrado WF, Korendovych IV. 2014. Short peptides self-assemble to produce catalytic amyloids. Nat. Chem. 6, 303-309. (10.1038/nchem.1894) PubMed DOI PMC

Zhang C, et al. 2014. Self-assembled peptide nanofibers designed as biological enzymes for catalyzing ester hydrolysis. ACS Nano 8, 11 715-11 723. (10.1021/nn5051344) PubMed DOI

Omosun TO, et al. 2017. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 9, 805-809. (10.1038/nchem.2738) PubMed DOI

Bonfio C, Godino E, Corsini M, Fabrizi de Biani F, Guella G, Mansy SS. 2018. Prebiotic iron–sulfur peptide catalysts generate a pH gradient across model membranes of late protocells. Nat. Catal. 1, 616-623. (10.1038/s41929-018-0116-3) DOI

Söding J, Lupas AN. 2003. More than the sum of their parts: on the evolution of proteins from peptides. Bioessays 25, 837-846. (10.1002/bies.10321) PubMed DOI

Kolodny R, Nepomnyachiy S, Tawfik DS, Ben-Tal N. 2021. Bridging themes: short protein segments found in different architectures. Mol. Biol. Evol. 38, 2191-2208. (10.1093/molbev/msab017) PubMed DOI PMC

Chaudhuri I, Söding J, Lupas AN. 2008. Evolution of the β-propeller fold. Proteins Struct. Funct. Genet. 71, 795-803. (10.1002/prot.21764) PubMed DOI

Alva V, Söding J, Lupas AN. 2015. A vocabulary of ancient peptides at the origin of folded proteins. eLife 4, e09410. (10.7554/eLife.09410) PubMed DOI PMC

Longo L, Jabłońska J, Vyas P, Kanade M, Kolodny R, Ben-Tal N, Tawfik DS. 2020. On the emergence of P-Loop NTPase and Rossmann enzymes from a beta-alpha-beta ancestral fragment. eLife 9, e64415. (10.7554/eLife.64415) PubMed DOI PMC

Bowman JC, Petrov AS, Frenkel-Pinter M, Penev PI, Williams LD. 2020. Root of the tree: the significance, evolution, and origins of the ribosome. Chem. Rev. 120, 4848-4878. (10.1021/acs.chemrev.9b00742) PubMed DOI

Lupas AN, Alva V. 2017. Ribosomal proteins as documents of the transition from unstructured (poly)peptides to folded proteins. J. Struct. Biol. 198, 74-81. (10.1016/j.jsb.2017.04.007) PubMed DOI

Fox GE. 2010. Origin and evolution of the ribosome. Cold Spring Harb. Perspect Biol. 2, a003483. (10.1101/cshperspect.a003483) PubMed DOI PMC

Belousoff MJ, et al. 2010. Ancient machinery embedded in the contemporary ribosome. Biochem. Soc. Trans. 38, 422-427. (10.1042/BST0380422) PubMed DOI

Petrov AS, et al. 2015. History of the ribosome and the origin of translation. Proc. Natl Acad. Sci. USA 112, 15 396-15 401. (10.1073/pnas.1509761112) PubMed DOI PMC

Kovacs NA, Petrov AS, Lanier KA, Williams LD. 2017. Frozen in time: the history of proteins. Mol. Biol. Evol. 34, 1252-1260. (10.1093/molbev/msx086) PubMed DOI PMC

Li P, Holliger P, Tagami S. 2021. Hydrophobic-cationic peptides enhance RNA polymerase ribozyme activity by accretion. bioRxiv. (10.1101/2021.02.22.432394) DOI

Dale T. 2006. Protein and nucleic acid together: a mechanism for the emergence of biological selection. J. Theor. Biol. 240, 337-342. (10.1016/j.jtbi.2005.09.027) PubMed DOI

Lahav N. 1993. The RNA-world and co-evolution hypotheses and the origin of life: implications, research strategies and perspectives. Orig. Life Evol. Biosph. 23, 329-344. (10.1007/BF01582084) PubMed DOI

Smock RG, Yadid I, Dym O, Clarke J, Tawfik DS. 2016. De novo evolutionary emergence of a symmetrical protein is shaped by folding constraints. Cell 164, 476-486. (10.1016/j.cell.2015.12.024) PubMed DOI PMC

Grishin NV. 2001. KH domain: one motif, two folds. Nucleic Acids Res. 29, 638-643. (10.1093/nar/29.3.638) PubMed DOI PMC

Longo LM, Despotović D, Weil-Ktorza O, Walker MJ, Jabłońska J, Fridmann-Sirkis Y, Varani G, Metanis N, Tawfik DS. 2020. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc. Natl Acad. Sci. USA 117, 15 731-15 739. (10.1073/pnas.2001989117) PubMed DOI PMC

Rebeaud ME, Mallik S, Goloubinoff P, Tawfik DS. 2021. On the evolution of chaperones and cochaperones and the expansion of proteomes across the Tree of Life. Proc. Natl Acad. Sci. USA 118, e2020885188. (10.1073/pnas.2020885118) PubMed DOI PMC

De Los Rios P, Ben-Zvi A, Slutsky O, Azem A, Goloubinoff P. 2006. Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl Acad. Sci. USA 103, 6166-6171. (10.1073/pnas.0510496103) PubMed DOI PMC

Tretyachenko V, Vymětal J, Neuwirthová T, Vondrášek J, Fujishima K, Hlouchová K. 2021. Structured proteins are abundant in unevolved sequence space. bioRxiv. (10.1101/2021.08.29.458031) PubMed DOI PMC

Akanuma S, Kigawa T, Yokoyama S. 2002. Combinatorial mutagenesis to restrict amino acid usage in an enzyme to a reduced set. Proc. Natl Acad. Sci. USA 99, 13 549-13 553. (10.1073/pnas.222243999) PubMed DOI PMC

Cleaves HJ. 2010. The origin of the biologically coded amino acids. J. Theor. Biol. 263, 490-498. (10.1016/j.jtbi.2009.12.014) PubMed DOI

Ilardo M, Meringer M, Freeland S, Rasulev B, Cleaves HJ. 2015. Extraordinarily adaptive properties of the genetically encoded amino acids. Sci. Rep. 5, 9414. (10.1038/srep09414) PubMed DOI PMC

Ilardo M, et al. 2019. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci. Rep. 9, 12468. (10.1038/s41598-019-47574-x) PubMed DOI PMC

Philip GK, Freeland SJ. 2011. Did evolution select a nonrandom ‘alphabet’ of amino acids? Astrobiology 11, 235-240. (10.1089/ast.2010.0567) PubMed DOI

Weber AL, Miller SL. 1981. Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 17, 273-284. (10.1007/BF01795749) PubMed DOI

Liu CC, Schultz PG. 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413-444. (10.1146/annurev.biochem.052308.105824) PubMed DOI

Passioura T, Suga H. 2014. Reprogramming the genetic code in vitro. Trends Biochem. Sci. 39, 400-408. (10.1016/j.tibs.2014.07.005) PubMed DOI

Mayer-Bacon C, Agboha N, Muscalli M, Freeland S. 2021. Evolution as a guide to designing xeno amino acid alphabets. Int. J. Mol. Sci. 22, 1-13. (10.3390/ijms22062787) PubMed DOI PMC

Burton AS, Stern JC, Elsila JE, Glavin DP, Dworkin JP. 2012. Understanding prebiotic chemistry through the analysis of extraterrestrial amino acids and nucleobases in meteorites. Chem. Soc. Rev. 41, 5459-5472. (10.1039/c2cs35109a) PubMed DOI

Glavin DP, Aubrey AD, Callahan MP, Dworkin JP, Elsila JE, Parker ET, Bada JL, Jenniskens P, Shaddad MH. 2010. Extraterrestrial amino acids in the Almahata Sitta meteorite. Meteorit. Planet Sci. 45, 1695-1709. (10.1111/j.1945-5100.2010.01094.x) DOI

Pizzarello S, Schrader DL, Monroe AA, Lauretta DS. 2012. Large enantiomeric excesses in primitive meteorites and the diverse effects of water in cosmochemical evolution. Proc. Natl Acad. Sci. USA 109, 11 949-11 954. (10.1073/pnas.1204865109) PubMed DOI PMC

Johnson AP, Cleaves HJ, Dworkin JP, Glavin DP, Lazcano A, Bada JL. 2008. The Miller volcanic spark discharge experiment. Science 322, 404. (10.1126/science.1161527) PubMed DOI

Alvarez-Carreño C, Becerra A, Lazcano A. 2013. Norvaline and norleucine may have been more abundant protein components during early stages of cell evolution. Orig. Life Evol. Biosph. 43, 363-375. (10.1007/s11084-013-9344-3) PubMed DOI

Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. 2009. Fidelity mechanisms of the aminoacyl-tRNA synthetases. Protein Eng. 155-203. (10.1007/978-3-540-70941-1_6) DOI

Bredehöft J, Thiemann W, Jessberger E, Carob G, Meierhenrich U. 2004. Identification of diamino acids in the Murichison meteorite. Proc. Natl Acad. Sci. USA 25, 9182-9186. (10.1073/pnas.0403043101) PubMed DOI PMC

Blanco C, Bayas M, Yan F, Chen IA. 2018. Analysis of evolutionarily independent protein-RNA complexes yields a criterion to evaluate the relevance of prebiotic scenarios. Curr. Biol. 28, 526-537.e5. (10.1016/j.cub.2018.01.014) PubMed DOI

Jukes TH. 1973. Arginine as an evolutionary intruder into protein synthesis. Biochem. Biophys. Res. Commun. 53, 709-714. (10.1016/0006-291X(73)90151-4) PubMed DOI

Vázquez-Salazar A, Becerra A, Lazcano A. 2018. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. PLoS ONE 13, e0196349. (10.1371/journal.pone.0196349) PubMed DOI PMC

Raggi L, Bada JL, Lazcano A. 2016. On the lack of evolutionary continuity between prebiotic peptides and extant enzymes. Phys. Chem. Chem. Phys. 18, 20 028-20 032. (10.1039/C6CP00793G) PubMed DOI

Cheng RP, Gellman SH, DeGrado WF. 2001. β-peptides: from structure to function. Chem. Rev. 101, 3219-3232. (10.1021/cr000045i) PubMed DOI

Chandru K, Guttenberg N, Giri C, Hongo Y, Butch C, Mamajanov I, Cleaves HJ. 2018. Simple prebiotic synthesis of high diversity dynamic combinatorial polyester libraries. Commun. Chem. 1, 30. (10.1038/s42004-018-0031-1) DOI

Tian YF, Hudalla GA, Han H, Collier JH. 2013. Controllably degradable β-sheet nanofibers and gels from self-assembling depsipeptides. Biomater. Sci. 1, 1037-1045. (10.1039/c3bm60161g) PubMed DOI PMC

Fahnestock S, Rich A. 1971. Ribosome-catalyzed polyester formation. Science 173, 340-343. (10.1126/science.173.3994.340) PubMed DOI

Ohta A, Murakami H, Hiroaki S. 2008. Polymerization of α-hydroxy acids by ribosomes. ChemBioChem 9, 2773-2778. (10.1002/cbic.200800439) PubMed DOI

Trifonov EN. 2004. The triplet code from first principles. J. Biomol. Struct. Dyn. 22, 1-11. (10.1080/07391102.2004.10506975) PubMed DOI

Moosmann B, Schindeldecker M, Hajieva P. 2020. Cysteine, glutathione and a new genetic code: biochemical adaptations of the primordial cells that spread into open water and survived biospheric oxygenation. Biol. Chem. 401, 213-231. (10.1515/hsz-2019-0232) PubMed DOI

Tze-Fei Wong J. 2005. Coevolution theory of the genetic code at age thirty. Bioessays 27, 416-425. (10.1002/bies.20208) PubMed DOI

Fujishima K, Wang KM, Palmer JA, Abe N, Nakahigashi K, Endy D, Rothschild LJ. 2018. Reconstruction of cysteine biosynthesis using engineered cysteine-free enzymes. Sci. Rep. 8, 1776. (10.1038/s41598-018-19920-y) PubMed DOI PMC

Eck RV, Dayhoff MO. 1966. Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152, 363-366. (10.1126/science.152.3720.363) PubMed DOI

Holliday GL, Fischer JD, Mitchell JBO, Thornton JM. 2011. Characterizing the complexity of enzymes on the basis of their mechanisms and structures with a bio-computational analysis. FEBS J. 278, 3835-3845. (10.1111/j.1742-4658.2011.08190.x) PubMed DOI PMC

Shen C, Mills T, Oró J. 1990. Prebiotic synthesis of histidyl-histidine. J. Mol. Evol. 31, 175-179. (10.1007/BF02109493) PubMed DOI

White SH. 1994. The evolution of proteins from random amino acid sequences: II. Evidence from the statistical distributions of the lengths of modern protein sequences. J. Mol. Evol. 38, 383-394. (10.1007/BF00163155) PubMed DOI

Woese C. 1998. The universal ancestor. Proc. Natl Acad. Sci. USA 95, 6854-6859. (10.1073/pnas.95.12.6854) PubMed DOI PMC

Tong CL, Lee KH, Seelig B. 2021. De novo proteins from random sequences through in vitro evolution. Curr. Opin. Struct. Biol. 68, 129-134. (10.1016/j.sbi.2020.12.014) PubMed DOI PMC

Tretyachenko V, et al. 2017. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. Sci. Rep. 7, 15449. (10.1038/s41598-017-15635-8) PubMed DOI PMC

De Lucrezia D, Franchi M, Chiarabelli C, Gallori E, Luisi PL. 2006. Investigation of de novo totally random biosequences. Part IV. Folding properties of de novo, totally random RNAs. Chem. Biodivers. 3, 869-877. (10.1002/cbdv.200690090) PubMed DOI

Davidson AR, Sauer RT. 1994. Folded proteins occur frequently in libraries of random amino acid sequences. Proc. Natl Acad. Sci. USA 91, 2146-2150. (10.1073/pnas.91.6.2146) PubMed DOI PMC

LaBean TH, Butt TR, Kauffman SA, Schultes EA. 2011. Protein folding absent selection. Genes (Basel) 2, 608-626. (10.3390/genes2030608) PubMed DOI PMC

Keefe AD, Szostak JW. 2001. Functional proteins from a random-sequence library. Nature 410, 715-718. (10.1038/35070613) PubMed DOI PMC

Chao FA, et al. 2013. Structure and dynamics of a primordial catalytic fold generated by in vitro evolution. Nat. Chem. Biol. 9, 81-83. (10.1038/nchembio.1138) PubMed DOI PMC

Fisher MA, McKinley KL, Bradley LH, Viola SR, Hecht MH. 2011. De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth. PLoS ONE 6, e15364. (10.1371/journal.pone.0015364) PubMed DOI PMC

Tanaka J, Doi N, Takashima H, Yanagawa H. 2010. Comparative characterization of random-sequence proteins consisting of 5, 12, and 20 kinds of amino acids. Protein Sci. 19, 786-795. (10.1002/pro.358) PubMed DOI PMC

Newton MS, Arcus VL, Gerth ML, Patrick WM. 2018. Enzyme evolution: innovation is easy, optimization is complicated. Curr. Opin Struct. Biol. 48, 110-116. (10.1016/j.sbi.2017.11.007) PubMed DOI

Solis AD. 2019. Reduced alphabet of prebiotic amino acids optimally encodes the conformational space of diverse extant protein folds. BMC Evol. Biol. 19, 1-19. (10.1186/s12862-019-1464-6) PubMed DOI PMC

Kozlowski LP. 2017. Proteome-pI: proteome isoelectric point database. Nucleic Acids Res. 45, D1112-D1116. (10.1093/nar/gkw978) PubMed DOI PMC

Anbar A. 2008. Elements and evolution. Science 332, 1481-1483. (10.1126/science.1163100) PubMed DOI

Hazen RM, Sverjensky DA. 2010. Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb. Perspect. Biol. 2, a002162. (10.1101/cshperspect.a002162) PubMed DOI PMC

Nitschke W, McGlynn SE, Milner-White EJ, Russell MJ. 2013. On the antiquity of metalloenzymes and their substrates in bioenergetics. Biochim. Biophys. Acta 1827, 871-881. (10.1016/j.bbabio.2013.02.008) PubMed DOI

Reinhard CT, Planavsky NJ, Robbins LJ, Partin CA, Gill BC, Lalonde SV, Bekker A, Konhauser KO, Lyons TW. 2013. Proterozoic ocean redox and biogeochemical stasis. Proc. Natl Acad. Sci. USA 110, 5357-5362. (10.1073/pnas.1208622110) PubMed DOI PMC

Garcia AK, McShea H, Kolaczkowski B, Kaçar B. 2020. Reconstructing the evolutionary history of nitrogenases: evidence for ancestral molybdenum-cofactor utilization. Geobiology 18, 394-411. (10.1111/gbi.12381) PubMed DOI PMC

Kacar B, Garcia AK, Anbar AD. 2021. Evolutionary history of bioessential elements can guide the search for life in the universe. ChemBioChem 22, 114-119. (10.1002/cbic.202000500) PubMed DOI

Jones C, Nomosatryo S, Crowe SA, Bjerrum CJ, Canfield DE. 2015. Iron oxides, divalent cations, silica, and the early earth phosphorus crisis. Geology 43, 135-138. (10.1130/G36044.1) DOI

Andreini C, Cavallaro G, Lorenzini S, Rosato A. 2013. MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 41, D459-D464. (10.1093/nar/gks1063) PubMed DOI PMC

van der Gulik P, Massar S, Gilis D, Buhrman H, Rooman M. 2009. The first peptides: the evolutionary transition between prebiotic amino acids and early proteins. J. Theor. Biol. 261, 531-539. (10.1016/j.jtbi.2009.09.004) PubMed DOI

Rozov A, Khusainov I, El Omari K, Duman R, Mykhaylyk V, Yusupov M, Westhof E, Wagner A, Yusupova G. 2019. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat. Commun. 10, 2519. (10.1038/s41467-019-10409-4) PubMed DOI PMC

Watson JD, Milner-White EJ. 2002. A novel main-chain anion-binding site in proteins: the nest. A particular combination of φ,ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J. Mol. Biol. 315, 171-182. (10.1006/jmbi.2001.5227) PubMed DOI

Bianchi A, Giorgi C, Ruzza P, Toniolo C, Milner-White EJ. 2012. A synthetic hexapeptide designed to resemble a proteinaceous p-loop nest is shown to bind inorganic phosphate. Proteins Struct. Funct. Bioinform. 80, 1418-1424. (10.1002/prot.24038) PubMed DOI

James Milner-White E. 2019. Protein three-dimensional structures at the origin of life. Interface Focus 9, 20190057. (10.1098/rsfs.2019.0057) PubMed DOI PMC

Tajima M, Urabe I, Yutani K, Okada H. 1976. Role of calcium ions in the thermostability of thermolysin and bacillus subtilis var. amylosacchariticus neutral protease. Eur. J. Biochem. 64, 243-247. (10.1111/j.1432-1033.1976.tb10293.x) PubMed DOI

Jaiswal JK. 2001. Calcium: how and why? J. Biosci. 26, 357-363. (10.1007/BF02703745) PubMed DOI

Kazmierczak J, Kempe S, Kremer B. 2013. Calcium in the Early evolution of living systems: a biohistorical approach. Curr. Org. Chem. 17, 1738-1750. (10.2174/13852728113179990081) DOI

Bonfio C, et al. 2018. UV light-driven prebiotic synthesis of iron-sulfur clusters. Nat. Chem. 9, 1229-1234. (10.1038/nchem.2817) PubMed DOI PMC

Muchowska KB, Varma SJ, Moran J. 2020. Nonenzymatic metabolic reactions and life's origins. Chem. Rev. 120, 7708-7744. (10.1021/acs.chemrev.0c00191) PubMed DOI

Preiner M, et al. 2020. A hydrogen-dependent geochemical analogue of primordial carbon and energy metabolism. Nat. Ecol. Evol. 4, 534-542. (10.1038/s41559-020-1125-6) PubMed DOI

Muchowska KB, Varma SJ, Moran J. 2019. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 569, 104-107. (10.1038/s41586-019-1151-1) PubMed DOI PMC

Kitadai N, Nakamura R, Yamamoto M, Takai K, Yoshida N, Oono Y. 2019. Metals likely promoted protometabolism in early ocean alkaline hydrothermal systems. Sci. Adv. 5, eaav7848. (10.1126/sciadv.aav7848) PubMed DOI PMC

Kitadai N, Kameya M, Fujishima K. 2017. Origin of the reductive tricarboxylic acid (RTCA) cycle-type CO2 fixation: a perspective. Life 7, 39. (10.3390/life7040039) DOI

Ji HF, Kong DX, Shen L, Chen LL, Ma BG, Zhang HY. 2007. Distribution patterns of small-molecule ligands in the protein universe and implications for origin of life and drug discovery. Genome Biol. 8, R176. (10.1186/gb-2007-8-8-r176) PubMed DOI PMC

Denessiouk KA, Rantanen VV, Johnson MS. 2001. Adenine recognition: a motif present in ATP-, CoA-, NAD-, NADP-, and FAD-dependent proteins. Proteins Struct. Funct. Genet. 44, 282-291. (10.1002/prot.1093) PubMed DOI

Wächtershäuser G. 1990. The case for the chemoautotrophic origin of life in an iron-sulfur world. Orig. Life Evol. Biosph. 20, 173-176. (10.1007/BF01808279) DOI

White HB III. 1976. Coenzymes as fossils of an earlier metabolic state. J. Mol. Evol. 7, 101-104. (10.1007/BF01732468) PubMed DOI

Gilbert W. 1986. Origin of life: the RNA World. Nature 319, 618. (10.1038/319618a0) DOI

Kim HS, Mittenthal JE, Caetano-Anollés G. 2006. MANET: tracing evolution of protein architecture in metabolic networks. BMC Bioinf. 7, 351. (10.1186/1471-2105-7-351) PubMed DOI PMC

Wang M, Yafremava LS, Caetano-Anollés D, Mittenthal JE, Caetano-Anollés G. 2007. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res. 17, 1572-1585. (10.1101/gr.6454307) PubMed DOI PMC

Caetano-Anollés G, Wang M, Caetano-Anollés D, Mittenthal JE. 2009. The origin, evolution and structure of the protein world. Biochem. J. 417, 621-637. (10.1042/BJ20082063) PubMed DOI

Goldman AD, Samudrala R, Baross JA. 2010. The evolution and functional repertoire of translation proteins following the origin of life. Biol. Direct 5, 15. (10.1186/1745-6150-5-15) PubMed DOI PMC

To P, Whitehead B, Tarbox HE, Fried SD. 2021. Non-refoldability is pervasive across the E. coli proteome. J. Am. Chem. Soc. 143, 11 435-11 448. (10.1021/jacs.1c03270) PubMed DOI PMC

Kerner MJ, et al. 2005. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209-220. (10.1016/j.cell.2005.05.028) PubMed DOI

Romero Romero ML, et al. 2018. Simple yet functional phosphate-loop proteins. Proc. Natl Acad. Sci. USA 115, E11943-E11950. (10.1073/pnas.1812400115) PubMed DOI PMC

Petrov AS, et al. 2014. Evolution of the ribosome at atomic resolution. Proc. Natl Acad. Sci. USA 111, 10 251-10 256. (10.1073/pnas.1407205111) PubMed DOI PMC

Thirumalai D, Lorimer GH, Hyeon C. 2020. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones. Protein Sci. 29, 360-377. (10.1002/pro.3795) PubMed DOI PMC

Thirumalai D, Lorimer GH. 2001. Chaperonin-mediated protein folding. Annu. Rev. Biophys. Biomol. Struct. 30, 245-269. (10.1146/annurev.biophys.30.1.245) PubMed DOI

To P, Lee SO, Xia Y, Devlin T, Fleming KG, Fried SD. 2021. Systematic interrogation of protein refolding under cellular-like conditions. bioRxiv. (10.1101/2021.11.20.469408) DOI

Evans MS, Sander IM, Clark PL. 2008. Cotranslational folding promotes β-helix formation and avoids aggregation in vivo. J. Mol. Biol. 383, 683-692. (10.1016/j.jmb.2008.07.035) PubMed DOI PMC

Thanaraj TA, Argos P. 1996. Ribosome-mediated translational pause and protein domain organization. Protein Sci. 5, 1594-1612. (10.1002/pro.5560050814) PubMed DOI PMC

Liu K, Maciuba K, Kaiser CM. 2019. The ribosome cooperates with a chaperone to guide multi-domain protein folding. Mol. Cell 74, 310-319.e7. (10.1016/j.molcel.2019.01.043) PubMed DOI PMC

Ma H, Proctor DJ, Kierzek E, Kierzek R, Bevilacqua PC, Gruebele M. 2006. Exploring the energy landscape of a small RNA hairpin. J. Am. Chem. Soc. 128, 1523-1530. (10.1021/ja0553856) PubMed DOI

Ditzler MA, Rueda D, Mo J, Håkansson K, Walter NG. 2008. A rugged free energy landscape separates multiple functional RNA folds throughout denaturation. Nucleic Acids Res. 36, 7088-7099. (10.1093/nar/gkn871) PubMed DOI PMC

Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG. 1995. Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins Struct. Funct. Bioinform. 21, 167-195. (10.1002/prot.340210302) PubMed DOI

Dill KA, Chan HS. 1997. From levinthal to pathways to funnels. Nat. Struct. Biol. 4, 10-19. (10.1038/nsb0197-10) PubMed DOI

Proctor JR, Meyer IM. 2013. CoFold: an RNA secondary structure prediction method that takes co-transcriptional folding into account. Nucleic Acids Res. 41, e102. (10.1093/nar/gkt174) PubMed DOI PMC

Hua B, Panja S, Woodson S, Ha T. 2018. Mimicking co-transcriptional RNA folding using a superhelicase. Biophys. J. 114, 433a-434a. (10.1016/j.bpj.2017.11.2401) PubMed DOI PMC

Woodson SA. 2010. Taming free energy landscapes with RNA chaperones. RNA Biol. 7, 677-686. (10.4161/rna.7.6.13615) PubMed DOI PMC

Delaye L, Becerra A, Lazcano A. 2004. The nature of the last common ancestor. In The genetic code and the origin of life, pp. 34-47. Boston, MA: Springer. (10.1007/0-387-26887-1_3) DOI

Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. 2020. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138-147. (10.1038/s41559-019-1040-x) PubMed DOI PMC

Nasir A, Mughal F, Caetano-Anollés G. 2021. The tree of life describes a tripartite cellular world. Bioessays 43, 2000343. (10.1002/bies.202000343) PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...