Genetic variation in an ephemeral mudflat species: The role of the soil seed bank and dispersal in river and secondary anthropogenic habitats
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
P 24558
Austrian Science Fund FWF - Austria
PubMed
32313622
PubMed Central
PMC7160169
DOI
10.1002/ece3.6109
PII: ECE36109
Knihovny.cz E-zdroje
- Klíčová slova
- Cyperus fuscus, Isoëto‐Nanojuncetea, long‐distance dispersal, microsatellites, ornithochory, selfing,
- Publikační typ
- časopisecké články MeSH
Many ephemeral mudflat species, which rely on a soil seed bank to build up the next generation, are endangered in their natural habitat due to the widespread regulation of rivers. The aim of the present study was to elucidate the role of the soil seed bank and dispersal for the maintenance of genetic diversity in populations of near-natural river habitats and anthropogenic habitats created by traditional fish farming practices using Cyperus fuscus as a model. Using microsatellite markers, we found no difference in genetic diversity levels between soil seed bank and above-ground population and only moderate differentiation between the two fractions. One possible interpretation is the difference in short-term selection during germination under specific conditions (glasshouse versus field) resulting in an ecological filtering of genotypes out of the reservoir in the soil. River populations harbored significantly more genetic diversity than populations from the anthropogenic pond types. We suggest that altered levels and patterns of dispersal together with stronger selection pressures and historical bottlenecks in anthropogenic habitats are responsible for the observed reduction in genetic diversity. Dispersal is also supposed to largely prohibit genetic structure across Europe, although there is a gradient in private allelic richness from southern Europe (high values) to northern, especially north-western, Europe (low values), which probably relates to postglacial expansion out of southern and/or eastern refugia.
Zobrazit více v PubMed
Ali, T. , Muñoz‐Fuentes, V. , Buch, A. K. , Çelik, A. , Dutbayev, A. , Gabrielyan, I. , … Thines, M. (2017). Genetic patterns reflecting Pleistocene range dynamics in the annual calcicole plant Microthlaspi erraticum across its Eurasian range. Flora, 236–237, 132–142. 10.1016/j.flora.2017.09.014 DOI
Arnold, B. , Kim, S. T. , & Bomblies, K. (2015). Single geographic origin of a widespread autotetraploid Arabidopsis arenosa lineage followed by interploidy admixture. Molecular Biology and Evolution, 32(6), 1382–1395. 10.1093/molbev/msv089 PubMed DOI
Baduel, P. , Hunter, B. , Yeola, S. , & Bomblies, K. (2018). Genetic basis and evolution of rapid cycling in railway populations of tetraploid Arabidopsis arenosa . PLoS Genetics, 14(7), e1007510 10.1371/journal.pgen.1007510 PubMed DOI PMC
Barrett, S. C. H. , & Husband, B. C. (1997). Ecology and genetics of ephemeral plant populations: Eichhornia paniculata (Pontederiaceae) in Northeast Brazil. Journal of Heredity, 88(4), 277–284. 10.1093/oxfordjournals.jhered.a023105 DOI
Bartish, I. V. , Kadereit, J. W. , & Comes, H. P. (2006). Late Quaternary history of Hippophaë rhamnoides L. (Elaeagnaceae) inferred from chalcone synthase intron (Chsi) sequences and chloroplast DNA variation. Molecular Ecology, 15(13), 4065–4083. 10.1111/j.1365-294X.2006.03079.x PubMed DOI
Baskin, C. C. , & Baskin, J. M. (2014). Seeds: Ecology, biogeography, and evolution of dormancy and germination, 2nd ed. (1600 pages). San Diego, CA: Academic Press.
Bernhardt, K. G. , Koch, M. , Kropf, M. , Ulbel, E. , & Webhofer, J. (2008). Comparison of two methods characterising the seed bank of amphibious plants in submerged sediments. Aquatic Botany, 88(2), 171–177. 10.1016/j.aquabot.2007.10.004 DOI
Bílý, M. , Mourková, J. , & Bergmann, P. (2008). Spatial distribution and habitat preferences of wintering waterfowl in Central Bohemia. Acta Zoologica Academiae Scientiarum Hungaricae, 54(Suppl. 1), 95–109.
Böckelmann, J. , Tremetsberger, K. , Šumberová, K. , Grausgruber, H. , & Bernhardt, K. G. (2017). Fitness and growth of the ephemeral mudflat species Cyperus fuscus in river and anthropogenic habitats in response to fluctuating water‐levels. Flora, 234, 135–149. 10.1016/j.flora.2017.07.012 PubMed DOI PMC
Böckelmann, J. , Wieser, D. , Tremetsberger, K. , Šumberová, K. , & Bernhardt, K. G. (2015). Isolation of nuclear microsatellite markers for Cyperus fuscus (Cyperaceae). Applications in Plant Sciences, 3(11), 1500071 10.3732/apps.1500071 PubMed DOI PMC
Bornand, C. , Gygax, A. , Juillerat, P. , Jutzi, M. , Möhl, A. , Rometsch, S. , … Eggenberg, S. (2016). Rote Liste Gefässpflanzen. Gefährdete Arten der Schweiz. Bundesamt für Umwelt, Bern und Info Flora, Genf. Umwelt‐Vollzug Nr. 1621. 178 pages.
Bossdorf, O. , Richards, C. L. , & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 11(2), 106–115. 10.1111/j.1461-0248.2007.01130.x PubMed DOI
Broggi, M. F. , Waldburger, E. , & Staub, R. (2006). Rote Liste der gefährdeten und seltenen Gefässpflanzen des Fürstentums Liechtenstein. Naturkundliche Forschung im Fürstentum Liechtenstein, Band 24. Amtlicher Lehrmittelverlag, Vaduz.
Bryson, C. T. , & Carter, R. (2010). Spread, growth parameters, and reproductive potential for brown flatsedge (Cyperus fuscus). Invasive Plant Science and Management, 3(3), 240–245. 10.1614/IPSM-D-09-00037.1 DOI
Burkart, M. (2001). River corridor plants (Stromtalpflanzen) in Central European lowland: A review of a poorly understood plant distribution pattern. Global Ecology and Biogeography, 10(5), 449–468. 10.1046/j.1466-822x.2001.00270.x DOI
Cheffings, C. M. , & Farrell, L. (eds.). (2005). The Vascular Plant Red Data List for Great Britain. Species Status, 7, 1–116. Joint Nature Conservation Committee, Peterborough, UK.
Comes, H. P. , & Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3(11), 432–438. 10.1016/S1360-1385(98)01327-2 DOI
Deil, U. (2005). A review on habitats, plant traits and vegetation of ephemeral wetlands – a global perspective. Phytocoenologia, 35(2–3), 533–706. 10.1127/0340-269X/2005/0035-0533 DOI
East, E. M. (1940). The distribution of self‐sterility in the flowering plants. Proceedings of the American Philosophical Society, 82(4), 449–518.
European Environment Agency (2017). Biogeographical regions in Europe. European Environment Agency (EEA). Copenhagen, Denmark: https://www.eea.europa.eu/data-and-maps/figures/biogeographical-regions-in-europe-2
Excoffier, L. , & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. 10.1111/j.1755-0998.2010.02847.x PubMed DOI
Falahati‐Anbaran, M. , Lundemo, S. , & Stenøien, H. K. (2014). Seed dispersal in time can counteract the effect of gene flow between natural populations of Arabidopsis thaliana . New Phytologist, 202(3), 1043–1054. 10.1111/nph.12702 PubMed DOI
Figuerola, J. , & Green, A. J. (2002). Dispersal of aquatic organisms by waterbirds: A review of past research and priorities for future studies. Freshwater Biology, 47(3), 483–494. 10.1046/j.1365-2427.2002.00829.x DOI
Francová, K. , Šumberová, K. , Janauer, G. A. , & Adámek, Z. (2019). Effects of fish farming on macrophytes in temperate carp ponds. Aquaculture International, 27(2), 413–436. 10.1007/s10499-018-0331-6 DOI
Freckleton, R. P. , & Watkinson, A. R. (2002). Large‐scale spatial dynamics of plants: Metapopulations, regional ensembles and patchy populations. Journal of Ecology, 90(3), 419–434. 10.1046/j.1365-2745.2002.00692.x DOI
Grass, A. , Tremetsberger, K. , Hössinger, R. , & Bernhardt, K. G. (2014). Change of species and habitat diversity in the Pannonian region of eastern Lower Austria over 170 years: Using herbarium records as a witness. Natural Resources, 5(11), 583–596. 10.4236/nr.2014.511051 DOI
Grulich, V. (2012). Red List of vascular plants of the Czech Republic. Preslia, 84(3), 631–645.
Hanski, I. , & Gilpin, M. E. (eds.) (1997). Metapopulation biology: Ecology, genetics, and evolution. San Diego, CA: Academic Press.
Hein, T. , Schwarz, U. , Habersack, H. , Nichersu, I. , Preiner, S. , Willby, N. , & Weigelhofer, G. (2016). Current status and restoration options for floodplains along the Danube River. Science of the Total Environment, 543, 778–790. PubMed
Hejný, S. (1960). Ökologische Charakteristik der Wasser‐ und Sumpfpflanzen in den slowakischen Tiefebenen (Donau‐ und Theissgebiet) (487 pages). Bratislava, Slovakia: Verlag der Slowakischen Akademie der Wissenschaften.
Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58(3), 247–276. 10.1111/j.1095-8312.1996.tb01434.x DOI
Hodel, R. G. J. , Segovia‐Salcedo, M. C. , Landis, J. B. , Crowl, A. A. , Sun, M. , Liu, X. , … Soltis, P. S. (2016). The report of my death was an exaggeration: A review for researchers using microsatellites in the 21st century. Applications in Plant Sciences, 4, 1600025 10.3732/apps.1600025 PubMed DOI PMC
Hohensee, C. D. , & Frey, W. (2001). Experiments on epizoochorous dispersal by mallards (Anas platyrhinchos). Botanisches Jahrbuch für Systematik, 123(2), 209–216.
Honnay, O. , Bossuyt, B. , Jacquemyn, H. , Shimono, A. , & Uchiyama, K. (2008). Can a seed bank maintain the genetic variation in the above ground plant population? Oikos, 117(1), 1–5. 10.1111/j.2007.0030-1299.16188.x DOI
Honnay, O. , Jacquemyn, H. , van Looy, K. , Vandepitte, K. , & Breyne, P. (2009). Temporal and spatial genetic variation in a metapopulation of the annual Erysimum cheiranthoides on stony river banks. Journal of Ecology, 97(1), 131–141. 10.1111/j.1365-2745.2008.01452.x DOI
Husband, B. C. , & Barrett, S. C. H. (1998). Spatial and temporal variation in population size of Eichhornia paniculata in ephemeral habitats: Implications for metapopulation dynamics. Journal of Ecology, 86(6), 1021–1031. 10.1046/j.1365-2745.1998.00324.x DOI
Huson, D. H. , & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267. 10.1093/molbev/msj030 PubMed DOI
Kalinowski, S. T. (2005). HP‐RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Molecular Ecology Notes, 5(1), 187–189. 10.1111/j.1471-8286.2004.00845.x DOI
Kamdem, C. , Tene Fossog, B. , Simard, F. , Etouna, J. , Ndo, C. , Kengne, P. , … Costantini, C. (2012). Anthropogenic habitat disturbance and ecological divergence between incipient species of the malaria mosquito Anopheles gambiae . PLoS ONE, 7(6), e39453 10.1371/journal.pone.0039453 PubMed DOI PMC
Kameníková, M. , & Rajchard, J. (2013). Seasonal occurrence and abundance of waterbirds in sandpits and fishponds. European Journal of Environmental Sciences, 3(1), 48–53. 10.14712/23361964.2015.23 DOI
Kaplan, Z. , Danihelka, J. , Štěpánková, J. , Ekrt, L. , Chrtek, J. Jr, Zázvorka, J. , … Brůna, J. (2016) Distributions of vascular plants in the Czech Republic. Part 2. Preslia, 88(2), 229–322.
Kleyheeg, E. , van Leeuwen, C. H. A. , Morison, M. A. , Nolet, B. A. , & Soons, M. B. (2015). Bird‐mediated seed dispersal: Reduced digestive efficiency in active birds modulates the dispersal capacity of plant seeds. Oikos, 124(7), 899–907. 10.1111/oik.01894 DOI
Koornneef, M. , Alonso‐Blanco, C. , & Vreugdenhil, D. (2004). Naturally occurring genetic variation in Arabidopsis thaliana . Annual Review of Plant Biology, 55, 141–172. 10.1146/annurev.arplant.55.031903.141605 PubMed DOI
Květ, J. , Jeník, J. , & Soukupová, L. (eds.) (2002). Freshwater wetlands and their sustainable future: A case study of the Třeboň Basin Biosphere Reserve, Czech Republic (495 pages). Paris, France: UNESCO.
Leck, M. A. (1989). Wetland seed banks In Leck M. A., Parker V. T., & Simpson R. L. (Eds.), Ecology of soil seed banks (pp. 283–305). San Diego, CA: Academic Press.
Leck, M. A. , & Brock, M. A. (2000). Ecological and evolutionary trends in wetlands: Evidence from seeds and seed banks in New South Wales, Australia and New Jersey, USA. Plant Species Biology, 15(2), 97–112. 10.1046/j.1442-1984.2000.00031.x DOI
Levin, D. A. (1990). The seed bank as a source of genetic novelty in plants. American Naturalist, 135(4), 563–572. 10.1086/285062 DOI
Lischer, H. E. L. , & Excoffier, L. (2012). PGDSpider: An automated data conversion tool for connecting population genetics and genomics programs. Bioinformatics, 28(2), 298–299. 10.1093/bioinformatics/btr642 PubMed DOI
Lundemo, S. , Falahati‐Anbaran, M. , & Stenøien, H. K. (2009). Seed banks cause elevated generation times and effective population sizes of Arabidopsis thaliana in northern Europe. Molecular Ecology, 18(13), 2798–2811. 10.1111/j.1365-294X.2009.04236.x PubMed DOI
Mandák, B. , Bímová, K. , & Plačková, I. (2006). Genetic structure of experimental populations and reproductive fitness in a heterocarpic plant Atriplex tatarica (Chenopodiaceae). American Journal of Botany, 93(11), 1640–1649. 10.3732/ajb.93.11.1640 PubMed DOI
Mandák, B. , Zákravský, P. , Mahelka, V. , & Plačková, I. (2012). Can soil seed banks serve as genetic memory? A study of three species with contrasting life history strategies. PLoS ONE, 7(11), e49471 10.1371/journal.pone.0049471 PubMed DOI PMC
McCauley, D. E. (2014). What is the influence of the seed bank on the persistence and genetic structure of plant populations that experience a high level of disturbance? New Phytologist, 202(3), 734–735. 10.1111/nph.12732 PubMed DOI
Médail, F. , & Diadema, K. (2009). Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography, 36(7), 1333–1345. 10.1111/j.1365-2699.2008.02051.x DOI
Mørk, O. , Kragh, T. , Kristensen, E. , & Sand‐Jensen, K. (2018). Adaptation and growth performance of four endangered amphibious freshwater species. Aquatic Botany, 150, 16–22. 10.1016/j.aquabot.2018.06.004 DOI
Müller‐Schneider, P. (1986). Verbreitungsbiologie der Blütenpflanzen Graubündens. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel, in Zürich, 85. Heft. 263 pages.
Niklfeld, H. (1964). Zur xerothermen Vegetation im Osten Niederösterreichs. Verhandlungen der Zoologisch‐Botanischen Gesellschaft in Wien, 103, 152–181.
Niklfeld, H. , & Schratt‐Ehrendorfer, L. (1999) Rote Liste gefährdeter Farn‐ und Blütenpflanzen (Pteridophyta und Spermatophyta) Österreichs. 2. Fassung. In: Niklfeld H (ed.) Rote Listen gefährdeter Pflanzen Österreichs, 2. Auflage, pp. 33–152. Grüne Reihe des Bundesministeriums für Umwelt, Jugend und Familie, Band 10. Austria Medienservice, Graz.
Nilsson, C. , Brown, R. L. , Jansson, R. , & Merritt, D. M. (2010). The role of hydrochory in structuring riparian and wetland vegetation. Biological Reviews, 85(4), 837–858. 10.1111/j.1469-185X.2010.00129.x PubMed DOI
Nordborg, M. , Hu, T. T. , Ishino, Y. , Jhaveri, J. , Toomajian, C. , Zheng, H. , … Bergelson, J. (2005). The pattern of polymorphism in Arabidopsis thaliana . PLoS Biology, 3(7), 1289–1299. 10.1371/journal.pbio.0030196 PubMed DOI PMC
Nunney, L. (2002). The effective size of annual plant populations: The interaction of a seed bank with fluctuating population size in maintaining genetic variation. The American Naturalist, 160(2), 195–204. 10.1086/341017 PubMed DOI
Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , … Szoecs, E. (2018). vegan: Community Ecology Package. R package version 2.5‐2. https://CRAN.R-project.org/package=vegan
Peakall, R. , & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537–2539. 10.1093/bioinformatics/bts460 PubMed DOI PMC
Price, J. N. , Wright, B. R. , Gross, C. L. , & Whalley, W. R. D. B. (2010). Comparison of seedling emergence and seed extraction techniques for estimating the composition of soil seed banks. Methods in Ecology and Evolution, 1(2), 151–157. 10.1111/j.2041-210X.2010.00011.x DOI
R Core Team (2018) R: A language and environment for statistical computing. Version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rambaut, A. , Drummond, A. J. , Xie, D. , Baele, G. , & Suchard, M. A. (2018). Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67(5), 901–904. 10.1093/sysbio/syy032 PubMed DOI PMC
Richert, E. , Achtziger, R. , Dajdok, Z. , Günther, A. , Heilmeier, H. , Hübner, A. , … Šumberová, K. (2016). Rare wetland grass Coleanthus subtilis in Central and Western Europe – current distribution, habitat types, and threats. Acta Societatis Botanicorum Poloniae, 85(3), 3511 10.5586/asbp.3511 DOI
Roze, D. (2016). Background selection in partially selfing populations. Genetics, 203(2), 937–957. 10.1534/genetics.116.187955 PubMed DOI PMC
Soons, M. B. , van der Vlugt, C. , van Lith, B. , Heil, G. W. , & Klaassen, M. (2008). Small seed size increases the potential for dispersal of wetland plants by ducks. Journal of Ecology, 96(4), 619–627. 10.1111/j.1365-2745.2008.01372.x DOI
Šumberová, K. (2003). Veränderungen in der Teichwirtschaft und ihr Einfluss auf die Vegetation in der Tschechischen Republik. Mitteilungen des Badischen Landesvereins für Naturkunde und Naturschutz e.V., 18(2), 7–24.
Šumberová, K. , & Ducháček, M. (2017). Analysis of plant soil seed banks and seed dispersal vectors: Its potential and limits for forensic investigations. Forensic Science International, 270, 121–128. 10.1016/j.forsciint.2016.11.030 PubMed DOI
Šumberová, K. , Ducháček, M. , & Lososová, Z. (2012). Life‐history traits controlling the survival of Tillaea aquatica: A threatened wetland plant species in intensively managed fishpond landscapes of the Czech Republic. Hydrobiologia, 689(1), 91–110. 10.1007/s10750-011-0857-3 DOI
Šumberová, K. , Lososová, Z. , Ducháček, M. , Horáková, V. , & Fabšičová, M. (2012). Distribution, habitat ecology, soil seed bank and seed dispersal of threatened Lindernia procumbens and alien Lindernia dubia (Antirrhinaceae) in the Czech Republic. Phyton, 52(1), 39–72.
Šumberová, K. , Lososová, Z. , Fabšičová, M. , & Horáková, V. (2006). Variability of vegetation of exposed pond bottoms in relation to management and environmental factors. Preslia, 78(2), 235–252.
Templeton, A. R. , & Levin, D. A. (1979). Evolutionary consequences of seed pools. American Naturalist, 114(2), 232–249.
Thompson, K. , Bakker, J. P. , & Bekker, R. M. (1997). The soil seed banks of North West Europe: Methodology, density and longevity. Cambridge, UK: Cambridge University Press.
Tockner, K. , & Stanford, J. A. (2002). Riverine flood plains: Present state and future trends. Environmental Conservation, 29(3), 308–330. 10.1017/S037689290200022X DOI
Viana, D. S. , Santamaría, L. , & Figuerola, J. (2016). Migratory birds as global dispersal vectors. Trends in Ecology and Evolution, 31(10), 763–775. 10.1016/j.tree.2016.07.005 PubMed DOI
von Lampe, M. (1996) Wuchsform, Wuchsrhythmus und Verbreitung der Arten der Zwergbinsengesellschaften. Dissertationes Botanicae, vol. 266. J. Cramer, Berlin.
VonBank, J. A. , DeBoer, J. A. , Casper, A. F. , & Hagy, H. M. (2018). Ichthyochory in a temperate river system by common carp (Cyprinus carpio). Journal of Freshwater Ecology, 33(1), 83–96. 10.1080/02705060.2018.1423645 DOI
Wantzen, K. M. , Rothhaupt, K.‐O. , Mörtl, M. , Cantonati, M. , G.‐Tóth, L. , & Fischer, P. (2008). Ecological effects of water‐level fluctuations in lakes: An urgent issue. Hydrobiologia, 613(1), 1–4. 10.1007/s10750-008-9466-1 DOI
Wezel, A. , Oertli, B. , Rosset, V. , Arthaud, F. , Leroy, B. , Smith, R. , … Robin, J. (2014). Biodiversity patterns of nutrient‐rich fish ponds and implications for conservation. Limnology, 15(3), 213–223. 10.1007/s10201-013-0419-7 DOI
Wilson, G. A. , & Rannala, B. (2003). Bayesian inference of recent migration rates using multilocus genotypes. Genetics, 163(3), 1177–1191. PubMed PMC
Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16(2), 97–159. PubMed PMC
Wright, S. (1943). Isolation by distance. Genetics, 28(2), 114–128. PubMed PMC
Wubs, E. R. J. , Fraaije, R. G. A. , De Groot, G. A. , Erkens, R. H. J. , Garssen, A. G. , Kleyheeg, E. , … Soons, M. B. (2016). Going against the flow: A case for upstream dispersal and detection of uncommon dispersal events. Freshwater Biology, 61(5), 580–595. 10.1111/fwb.12736 DOI
Yan, J. , Chu, H. J. , Wang, H. C. , Li, J. Q. , & Sang, T. (2009). Population genetic structure of two Medicago species shaped by distinct life form, mating system and seed dispersal. Annals of Botany, 103(6), 825–834. 10.1093/aob/mcp006 PubMed DOI PMC
Zaghloul, M. , Reisch, C. , & Poschlod, P. (2013). Soil seed bank contributes significantly to genetic variation of Hypericum sinaicum in a changing environment. Plant Systematics and Evolution, 299(10), 1819–1828. 10.1007/s00606-013-0837-3 DOI
Dryad
10.5061/dryad.05qfttdzv