Advancing knowledge on the biogeography of arbuscular mycorrhizal fungi to support Sustainable Development Goal 15: Life on Land

. 2025 Jan 10 ; 372 () : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40539942

Grantová podpora
024.004.014 Schmidt Family Foundation
101076062 European Union
CZ.02.01.01/00/22_008/0004597 Ministry of Education, Youth and Sports

Arbuscular mycorrhizal (AM) fungi are fundamental to planetary health, enhancing plant nutrient uptake, stabilizing soils, and supporting biodiversity. Due to their prevalence and ecological importance, AM fungi are critical to achieving the environmental targets within the United Nations (UN) Sustainability Development Goals (SDGs) framework, including SDG 15: Life on Land. Despite these fungi engaging in the most widespread and ancient plant-microbe symbiosis, many fundamental aspects of the biogeography of AM fungi remain poorly resolved. This limits our ability to understand and document these fungal species' contributions to preserving terrestrial life on Earth. Using the largest global dataset of AM fungal eDNA sequences, we highlight that > 70% of ecoregions have no available data generated from soil using AM fungal specific metabarcoding. Drawing attention to these severe data gaps can optimize future sampling efforts in key habitats. Filling these gaps and developing a more complete picture on the biogeographic distributions of AM fungal species will help to clarify their contributions to environmental targets.

Zobrazit více v PubMed

Akinsemolu  AA. The role of microorganisms in achieving the sustainable development goals. J Clean Prod. 2018;182:139–55. 10.1016/j.jclepro.2018.02.081. DOI

Albaqami  FS, Sohaibani  SA, Kasi  M. Arbuscular mycorrhizal fungi diversity in two different regions in Saudi Arabia. Int J Curr Microbiol App Sci. 2018;7:2492–510.

Allen  MF. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 2007;6:291–7. 10.2136/vzj2006.0068. DOI

Ananthakrishnan  G, Ravikumar  R, Girija  S  et al.  Selection of efficient arbuscular mycorrhizal fungi in the rhizosphere of cashew and their application in the cashew nursery. Sci Hortic. 2004;100:369–75. 10.1016/j.scienta.2003.07.008. DOI

Andrino  A, Guggenberger  G, Sauheitl  L  et al.  Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biol Fertil Soils. 2021;57:47–64. 10.1007/s00374-020-01505-5. DOI

Antonelli  A, Teisher  JK, Smith  RJ  et al.  The 2030 declaration on scientific plant and fungal collecting societal impact statement. Plants People Planet. 2025;7:11–22. 10.1002/ppp3.10569. DOI

Arora  NK, Mishra  I. Life on Land: progress, outcomes and future directions to achieve the targets of SDG 15. Environ Sustain. 2024;7:369–75.

Bardgett  RD, Bullock  JM, Lavorel  S  et al.  Combatting global grassland degradation. Nat Rev Earth Environ. 2021;2:720–35.

Barrett  G, Campbell  CD, Fitter  AH  et al.  The arbuscular mycorrhizal fungus DOI

Basiru  S, Hijri  M. Does commercial inoculation promote arbuscular mycorrhizal fungi invasion?. Microorganisms. 2022;10:404. 10.3390/microorganisms10020404. PubMed DOI PMC

Bentivenga  SP, Bever  JD, Morton  JB. Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus PubMed DOI

Bever  JD, Schultz  PA, Pringle  A  et al.  Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: the high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. Bioscience. 2001;51:923–31. 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2. DOI

Bothe  H, Turnau  K, Regvar  M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza. 2010;20:445–57. PubMed

Braghiere  RK, Fisher  JB, Allen  K  et al.  Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J Adv Model Earth Syst. 2022;14:e2022MS003204. 10.1029/2022MS003204. PubMed DOI PMC

Braghiere  RK, Fisher  JB, Fisher  RA  et al.  Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophys Res Lett. 2021;48:e2021GL094514. 10.1029/2021GL094514. DOI

Brundrett  MC, Tedersoo  L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–15. 10.1111/nph.14976. PubMed DOI

Bruns  TD, Taylor  JW. Comment on “global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science. 2016;351:826. 10.1126/science.aad4228. PubMed DOI

Burri  K, Gromke  C, Graf  F. Mycorrhizal fungi protect the soil from wind erosion: a wind tunnel study. Land Degrad Dev. 2013;24:385–92. 10.1002/ldr.1136. DOI

Cao  Y, Wu  G, Yu  D. Include macrofungi in biodiversity targets. Science. 2021;372:1160. 10.1126/science.abj5479. PubMed DOI

Chaudhary  VB, Nokes  LF, González  JB  et al.  TraitAM, a global spore trait database for arbuscular mycorrhizal fungi. Sci Data. 2025;12:1–10. PubMed PMC

Chen  S, Stark  SC, Nobre  AD  et al.  Amazon forest biogeography predicts resilience and vulnerability to drought. Nature. 2024;631:111–7. 10.1038/s41586-024-07568-w. PubMed DOI

Corradi  N, Antunes  PM, Magurno  F. A call for reform: implementing genome-based approaches for species classification in Glomeromycotina. New Phytol. 2025;247:50–4. 10.1111/nph.70148. PubMed DOI

Crowther  TW, Rappuoli  R, Corinaldesi  C  et al.  Scientists’ call to action: microbes, planetary health, and the Sustainable Development Goals. Cell. 2024;187:5195–216. 10.1016/j.cell.2024.07.051. PubMed DOI

CUI  M, NOBEL  PS. Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol. 1992;122:643–9. 10.1111/j.1469-8137.1992.tb00092.x. DOI

Darbyshire  I, Anderson  S, Asatryan  A  et al.  Important plant areas: revised selection criteria for a global approach to plant conservation. Biodivers Conserv. 2017;26:1767–800. 10.1007/s10531-017-1336-6. DOI

Davison  J, Moora  M, Öpik  M  et al.  Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3. 10.1126/science.aab1161. PubMed DOI

Delavaux  CS, Sturmer  SL, Wagner  MR  et al.  Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytol. 2021;229:3048–52. 10.1111/nph.17080. PubMed DOI

Delavaux  CS, Weigelt  P, Dawson  W  et al.  Mycorrhizal fungi influence global plant biogeography. Nat Ecol Evol. 2019;3:424–9. PubMed

Dinerstein  E, Olson  D, Joshi  A  et al.  An ecoregion-based approach to protecting half the terrestrial realm. Bioscience. 2017;67:534–45. 10.1093/biosci/bix014. PubMed DOI PMC

Etesami  H, Jeong  BR, Glick  BR. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci. 2021;12:699618. 10.3389/fpls.2021.699618. PubMed DOI PMC

Field  KJ, Pressel  S, Duckett  JG  et al.  Symbiotic options for the conquest of land. Trends Ecol Evol. 2015;30:477–86. 10.1016/j.tree.2015.05.007. PubMed DOI

George  NP, Ray  JG. The inevitability of arbuscular mycorrhiza for sustainability in organic agriculture—a critical review. Front Sustain Food Syst. 2023;7:1124688. 10.3389/fsufs.2023.1124688. DOI

Gonçalves  SC, Haelewaters  D, Furci  G  et al.  Include all fungi in biodiversity goals. Science. 2021;373:403. 10.1126/science.abk1312. PubMed DOI

Gorelick  N, Hancher  M, Dixon  M  et al.  Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017;202:18–27. 10.1016/j.rse.2017.06.031. DOI

Gormsen  D, Olsson  PA, Hedlund  K. The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol. 2004;27:211–20. 10.1016/j.apsoil.2004.06.001. DOI

Gougherty  AV, Clipp  HL. Testing the reliability of an AI-based large language model to extract ecological information from the scientific literature. npj Biodiver. 2024;3:1–5. PubMed PMC

Gray  CL, Hill  SLL, Newbold  T  et al.  Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat Commun. 2016;7:1–7. PubMed PMC

Guerra  CA, Heintz-Buschart  A, Sikorski  J  et al.  Blind spots in global soil biodiversity and ecosystem function research. Nat Commun. 2020;11:1–13. PubMed PMC

Gupta  MM, Gupta  A, Kumar  P  et al.  Urbanization and biodiversity of arbuscular mycorrhizal fungi: the case study of Delhi, India. Rev Biol Trop. 2018;66:1547–58. 10.15517/rbt.v66i4.33216. DOI

Hansen  MC, Potapov  PV, Moore  R  et al.  High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–3. 10.1126/science.1244693. PubMed DOI

Hart  MM, Antunes  PM, Chaudhary  VB  et al.  Fungal inoculants in the field: is the reward greater than the risk?. Funct Ecol. 2018;32:126–35. 10.1111/1365-2435.12976. DOI

Hawkins  HJ, Cargill  RIM, Van Nuland  ME  et al.  Mycorrhizal mycelium as a global carbon pool. Curr Biol. 2023;33:R560–73. 10.1016/j.cub.2023.02.027. PubMed DOI

Hoeksema  JD, Chaudhary  VB, Gehring  CA  et al.  A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett. 2010;13:394–407. 10.1111/j.1461-0248.2009.01430.x. PubMed DOI

Hoogen  Jvd, Robmann  N, Routh  D  et al.  A geospatial mapping pipeline for ecologists. bioRxiv. 2021. 10.1101/2021.07.07.451145 DOI

Hortal  J, Lobo  JM. An ED-based protocol for optimal sampling of biodiversity. Biodivers Conserv. 2005;14:2913–47. 10.1007/s10531-004-0224-z. DOI

Hughes  AC, Orr  MC, Ma  K  et al.  Sampling biases shape our view of the natural world. Ecography. 2021;44:1259–69. 10.1111/ecog.05926. DOI

Hyde  KD, Noorabadi  MT, Thiyagaraja  V  et al.  The 2024 outline of fungi and fungus-like taxa. Mycosphere. 2024;15:5146–6239. 10.5943/mycosphere/15/1/25. DOI

IUCN Standards and Petitions Committee . Guidelines for Using the IUCN Red List Categories and Criteria. Gland, 2025a.

IUCN . The IUCN Red List of Threatened Species. Version 2024-2. Gland, 2025b. https://www.iucnredlist.org/(10 February 2025, date last accessed).

Janos  DP. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology. 1980;61:151–62. 10.2307/1937165. DOI

Kakouridis  A, Hagen  JA, Kan  MP  et al.  Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol. 2022;236:210–21. 10.1111/nph.18281. PubMed DOI PMC

Kays  R, Crofoot  MC, Jetz  W  et al.  Terrestrial animal tracking as an eye on life and planet. Science. 2015;348:aaa2478. PubMed

Kokkoris  V, Lekberg  Y, Antunes  PM  et al.  Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence?. New Phytol. 2020;228:828–38. 10.1111/nph.16676. PubMed DOI

Kolaříková  Z, Slavíková  R, Krüger  C  et al.  PacBio sequencing of glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. New Phytol. 2021;231:490–9. 10.1111/nph.17372. PubMed DOI

Konno  K, Akasaka  M, Koshida  C  et al.  Ignoring non-English-language studies may bias ecological meta-analyses. Ecol Evol. 2020;10:6373–84. 10.1002/ece3.6368. PubMed DOI PMC

Koziol  L, Bauer  JT, Duell  EB  et al.  Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J Appl Ecol. 2022a;59:1976–85. 10.1111/1365-2664.14036. DOI

Koziol  L, McKenna  TP, Bever  JD. Meta-analysis reveals globally sourced commercial mycorrhizal inoculants fall short. New Phytol. 2024;246:821–7. 10.1111/nph.20278. PubMed DOI

Koziol  L, McKenna  TP, Crews  TE  et al.  Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restor Ecol. 2023;31:e13772. 10.1111/rec.13772. DOI

Koziol  L, Schultz  PA, Parsons  S  et al.  Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere. 2022b;13:e4052. 10.1002/ecs2.4052. DOI

Kuila  D, Ghosh  S. Aspects, problems and utilization of arbuscular mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Curr Res Microb Sci. 2022;3:100107. PubMed PMC

Leake  JR, Read  DJ. Mycorrhizal symbioses and pedogenesis throughout Earth’s history. Mycorrhizal Mediat Soil Fert Struct Carbon Storage. 2017:9–33. 10.1016/B978-0-12-804312-7.00002-4. DOI

Leigh  J, Hodge  A, Fitter  AH. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 2009;181:199–207. 10.1111/j.1469-8137.2008.02630.x. PubMed DOI

Lekberg  Y, Vasar  M, Bullington  LS  et al.  More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers?. New Phytol. 2018;220:971–6. 10.1111/nph.15035. PubMed DOI

Lutz  S, Mikryukov  V, Labouyrie  M  et al.  Global richness of arbuscular mycorrhizal fungi. Fung Ecol. 2025;74:101407. 10.1016/j.funeco.2024.101407. DOI

Markovchick  LM, Carrasco-Denney  V, Sharma  J  et al.  The gap between mycorrhizal science and application: existence, origins, and relevance during the United Nation’s decade on Ecosystem restoration. Restor Ecol. 2023;31:e13866. 10.1111/rec.13866. DOI

Marschner  H, Dell  B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 1994;159:89–102. 10.1007/BF00000098. DOI

Martius  LR, Fielding  D, Brown  P  et al.  Nucleation in temperate woodland regeneration: dual mycorrhizal Salix facilitate ectomycorrhizal tree establishment. Oikos. 2024;2025:e10974.

Maxwell  SL, Cazalis  V, Dudley  N  et al.  Area-based conservation in the twenty-first century. Nature. 2020;586:217–27. 10.1038/s41586-020-2773-z. PubMed DOI

Meyer  H, Pebesma  E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol Evol. 2021;12:1620–33. 10.1111/2041-210X.13650. DOI

Meyer  H, Pebesma  E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat Commun. 2022;13:1–4. PubMed PMC

Meyer  RS, Ramos  MM, Lin  M  et al.  The CALe DNA program: citizen scientists and researchers inventory California’s biodiversity. Calif Agric. 2021;75:20–32. 10.3733/ca.2021a0001. DOI

Mikryukov  V, Dulya  O, Zizka  A  et al.  Connecting the multiple dimensions of global soil fungal diversity. Sci Adv. 2023;9. 10.1126/SCIADV.ADJ8016/SUPPL_FILE/SCIADV.ADJ8016_TABLES_S1_TO_S13.ZIP. PubMed PMC

Milà  C, Mateu  J, Pebesma  E  et al.  Nearest neighbour distance matching leave-one-out cross-validation for map validation. Methods Ecol Evol. 2022;13:1304–16. 10.1111/2041-210X.13851. DOI

Miller  RM, Jastrow  JD, Reinhardt  DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia. 1995;103:17–23. 10.1007/BF00328420. PubMed DOI

Morrison  J, Loucks  C, Long  B  et al.  Landscape-scale spatial planning at WWF: a variety of approaches. Oryx. 2009;43:499–507. 10.1017/S0030605309990354. DOI

Moura  JB, Souza  RF, Vieira-Júnior  WG  et al.  Effects of a megafire on the arbuscular mycorrhizal fungal community and parameters in the Brazilian Cerrado ecosystem. For Syst. 2022;31:e001. 10.5424/fs/2022311-18557. DOI

Mueller  GM, Cunha  KM, May  TW  et al.  What do the first 597 global fungal red list assessments tell us about the threat status of fungi?. Diversity. 2022;14:736.

Nature Microbiology Editorial Team . Use microbes to tackle food insecurity. Nat Microbiol. 2025;10:1–1. 10.1038/s41564-024-01916-2. PubMed DOI

Naughton-Treves  L, Holland  MB, Brandon  K. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu Rev Environ Resour. 2005;30:219–52. 10.1146/annurev.energy.30.050504.164507. DOI

Niezgoda  P, Błaszkowski  J, Błaszkowski  T  et al.  Three new species of arbuscular mycorrhizal fungi (Glomeromycota) and PubMed DOI PMC

Niskanen  T, Lücking  R, Dahlberg  A  et al.  Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu Rev Environ Resour. 2023;48:149–76. 10.1146/annurev-environ-112621-090937. DOI

Oliveira  U, Paglia  AP, Brescovit  AD  et al.  The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers Distrib. 2016;22:1232–44. 10.1111/ddi.12489. DOI

Olson  DM, Dinerstein  E, Wikramanayake  ED  et al.  Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience. 2001;51:933–8. 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI

Ouahmane  L, Hafidi  M, Thioulouse  J  et al.  Improvement of PubMed DOI

Pendrill  F, Gardner  TA, Meyfroidt  P  et al.  Disentangling the numbers behind agriculture-driven tropical deforestation. Science. 2022;377. 10.1126/SCIENCE.ABM9267/SUPPL_FILE/SCIENCE.ABM9267_SM.PDF. PubMed DOI

Perring  MP, Standish  RJ, Price  JN  et al.  Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere. 2015;6:1–25. 10.1890/ES15-00121.1. DOI

Ploton  P, Mortier  F, Réjou-Méchain  M  et al.  Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat Commun. 2020;11:1–11. PubMed PMC

Pringle  A, Bever  JD. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot. 2002;89:1439–46. 10.3732/ajb.89.9.1439. PubMed DOI

Reddy  S, Dávalos  LM. Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr. 2003;30:1719–27. 10.1046/j.1365-2699.2003.00946.x. DOI

Redecker  D, Kodner  R, Graham  LE. Glomalean fungi from the ordovician. Science. 2000;289:1920–1. 10.1126/science.289.5486.1920. PubMed DOI

Rega-Brodsky  CC, Aronson  MFJ, Piana  MR  et al.  Urban biodiversity: state of the science and future directions. Urban Ecosyst. 2022;25:1083–96. 10.1007/s11252-022-01207-w. DOI

RESOLVE . RESOLVE Ecoregions. 2025. https://developers.google.com/earth-engine/datasets/catalog/RESOLVE_ECOREGIONS_2017  (12 February 2025, date last accessed).

Rúa  MA, Antoninka  A, Antunes  PM  et al.  Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol. 2016;16:1–15. 10.1186/s12862-016-0698-9. PubMed DOI PMC

Schüßler  A, Walker  C. Glomeromycota Phylogeny. 2024.

See  CR, Keller  AB, Hobbie  SE  et al.  Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob Chang Biol. 2022;28:2527–40. 10.1111/gcb.16073. PubMed DOI

Shen  K, He  Y, Xia  T  et al.  Arbuscular mycorrhizal fungi promote superior root trait combinations conducive to soil nutrient acquisition by natives relative to invaders. Rhizosphere. 2023;28:100804. 10.1016/j.rhisph.2023.100804. DOI

Siddiky  MRK, Schaller  J, Caruso  T  et al.  Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol Biochem. 2012;47:93–9. 10.1016/j.soilbio.2011.12.022. DOI

Silva-Flores  P, Argüelles-Moyao  A, Aguilar-Paredes  A  et al.  Mycorrhizal science outreach: scope of action and available resources in the face of global change. Plants People Planet. 2021;3:506–22. 10.1002/ppp3.10213. DOI

Smith  JR, Letten  AD, Ke  PJ  et al.  A global test of ecoregions. Nat Ecol Evol. 2018;2:1889–96. PubMed

Smith  SE, Read  D. Mycorrhizal Symbiosis. 3rd edn.  New York, NY: Springer Nature, 2008, 1–787.

Soudzilovskaia  NA, van Bodegom  PM, Terrer  C  et al.  Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun. 2019;10:1–10. PubMed PMC

Steidinger  BS, Crowther  TW, Liang  J  et al.  Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019;569:404–8. 10.1038/s41586-019-1128-0. PubMed DOI

Stewart  JD, Kiers  ET, Anthony  MA  et al.  Supporting urban greenspace with microbial symbiosis. Plants People Planet. 2024;6:3–17.

Stewart  JD, Kremer  P, Shakya  KM  et al.  Outdoor atmospheric microbial diversity is associated with urban landscape structure and differs from indoor-transit systems as revealed by mobile monitoring and three-dimensional spatial analysis. Front Ecol Evol. 2021;9:9. 10.3389/fevo.2021.620461. DOI

Stockinger  H, Krüger  M, Schüßler  A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytol. 2010;187:461–74. 10.1111/j.1469-8137.2010.03262.x. PubMed DOI

Stürmer  SL, Bever  JD, Morton  JB. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza. 2018;28:587–603. 10.1007/s00572-018-0864-6. PubMed DOI

Stürmer  SL, Bever  JD, Schultz  PA  et al.  Celebrating INVAM: 35 years of the largest living culture collection of arbuscular mycorrhizal fungi. Mycorrhiza. 2021;31:117–26. 10.1007/s00572-020-01008-z. PubMed DOI

Tedersoo  L, Bahram  M, Põlme  S  et al.  Global diversity and geography of soil fungi. Science. 2014;346:1256688. 10.1126/science.1256688. PubMed DOI

Tedersoo  L, Bahram  M, Põlme  S  et al.  Response to comment on “global diversity and geography of soil fungi”. Science. 2015;349:936. 10.1126/science.aaa5594. PubMed DOI

Tedersoo  L, Magurno  F, Alkahtani  S  et al.  Phylogenetic classification of arbuscular mycorrhizal fungi: new species and higher-ranking taxa in glomeromycota and mucoromycota (class Endogonomycetes). MycoKeys. 2024;107:273–325. 10.3897/mycokeys.107.125549. PubMed DOI PMC

Tedersoo  L, Mikryukov  V, Anslan  S  et al.  The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 2021;111:573–88. 10.1007/s13225-021-00493-7. DOI

Tedersoo  L, Tooming-Klunderud  A, Anslan  S. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol. 2018;217:1370–85. 10.1111/nph.14776. PubMed DOI

Thirkell  TJ, Cameron  DD, Hodge  A. Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ. 2016;39:1683–90. 10.1111/pce.12667. PubMed DOI PMC

Timmis  K, de Vos  WM, Ramos  JL  et al.  The contribution of microbial biotechnology to sustainable development goals. Microb Biotechnol. 2017;10:984–7. 10.1111/1751-7915.12818. PubMed DOI PMC

Toussaint  A, Bueno  G, Davison  J  et al.  Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J Veg Sci. 2020;31:355–66. 10.1111/jvs.12837. DOI

Troudet  J, Grandcolas  P, Blin  A  et al.  Taxonomic bias in biodiversity data and societal preferences. Sci Rep. 2017;7:1–14. 10.1038/s41598-017-09084-6. PubMed DOI PMC

Turrini  A, Giovannetti  M. Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza. 2012;22:81–97. 10.1007/s00572-011-0419-6. PubMed DOI

United Nations . Sustainable Development Goals. New York, NY, 2025. https://sdgs.un.org/goals(28 January 2025, date last accessed).

Van Der Heijden  MGA, Bardgett  RD, Van Straalen  NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310. 10.1111/j.1461-0248.2007.01139.x. PubMed DOI

Van Der Heijden  MGA, Klironomos  JN, Ursic  M  et al.  Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72. 10.1038/23932. DOI

Van Nuland  M. Global hostpots of mycorrhizal fungal richness are poorly protected. Nature. In Press. 2025, 35.

Verbeek  CT, Gomes  SIF, Merckx  VSTF. Arbuscular mycorrhiza in the urban jungle: glomeromycotina communities of the dominant city tree across Amsterdam. Plants People Planet. 2025. 10.1002/ppp3.10634. DOI

Větrovský  T, Kolaříková  Z, Lepinay  C  et al.  GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. 2023;240:2151–63. 10.1111/nph.19283. PubMed DOI

Wagg  C, Bender  SF, Widmer  F  et al.  Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70. 10.1073/pnas.1320054111. PubMed DOI PMC

Wagg  C, Jansa  J, Schmid  B  et al.  Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett. 2011;14:1001–9. 10.1111/j.1461-0248.2011.01666.x. PubMed DOI

Wall  CB, Egan  CP, Swift  SIO  et al.  Three decades post-reforestation has not led to the reassembly of arbuscular mycorrhizal fungal communities associated with remnant primary forests. Mol Ecol. 2020;29:4234–47. 10.1111/mec.15624. PubMed DOI

Wilson  GWT, Rice  CW, Rillig  MC  et al.  Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett. 2009;12:452–61. 10.1111/j.1461-0248.2009.01303.x. PubMed DOI

World Wide Fund for Nature Living Planet Report . World Wide Fund for Nature Living Planet Report. 2024. https://livingplanet.panda.org/thank_you_for_downloading_the_living_planet_report_your_support_matters/(13 February 2025, date last accessed).

Zhou  Y, Smith  SJ, Zhao  K  et al.  A global map of urban extent from nightlights. Environ Res Lett. 2015;10:054011. 10.1088/1748-9326/10/5/054011. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...