Advancing knowledge on the biogeography of arbuscular mycorrhizal fungi to support Sustainable Development Goal 15: Life on Land
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, přehledy
Grantová podpora
024.004.014
Schmidt Family Foundation
101076062
European Union
CZ.02.01.01/00/22_008/0004597
Ministry of Education, Youth and Sports
PubMed
40539942
PubMed Central
PMC12204646
DOI
10.1093/femsle/fnaf055
PII: 8169311
Knihovny.cz E-zdroje
- Klíčová slova
- Life on Land, Sustainable Development Goals, arbuscular mycorrhizal fungi, biodiversity, conservation, ecoregion,
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- fylogeografie MeSH
- mykorhiza * genetika klasifikace fyziologie MeSH
- Organizace spojených národů MeSH
- půdní mikrobiologie MeSH
- rostliny mikrobiologie MeSH
- symbióza MeSH
- trvale udržitelný rozvoj * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Arbuscular mycorrhizal (AM) fungi are fundamental to planetary health, enhancing plant nutrient uptake, stabilizing soils, and supporting biodiversity. Due to their prevalence and ecological importance, AM fungi are critical to achieving the environmental targets within the United Nations (UN) Sustainability Development Goals (SDGs) framework, including SDG 15: Life on Land. Despite these fungi engaging in the most widespread and ancient plant-microbe symbiosis, many fundamental aspects of the biogeography of AM fungi remain poorly resolved. This limits our ability to understand and document these fungal species' contributions to preserving terrestrial life on Earth. Using the largest global dataset of AM fungal eDNA sequences, we highlight that > 70% of ecoregions have no available data generated from soil using AM fungal specific metabarcoding. Drawing attention to these severe data gaps can optimize future sampling efforts in key habitats. Filling these gaps and developing a more complete picture on the biogeographic distributions of AM fungal species will help to clarify their contributions to environmental targets.
Department of Biology Sri Aurobindo College University of Delhi Delhi 110017 India
Faculty of Science Charles University Prague Albertov 6 Prague 128 00 Czechia
Institute of Microbiology of the Czech Academy of Sciences Vídeňská 1083 Prague 142 20 Czechia
Zobrazit více v PubMed
Akinsemolu AA. The role of microorganisms in achieving the sustainable development goals. J Clean Prod. 2018;182:139–55. 10.1016/j.jclepro.2018.02.081. DOI
Albaqami FS, Sohaibani SA, Kasi M. Arbuscular mycorrhizal fungi diversity in two different regions in Saudi Arabia. Int J Curr Microbiol App Sci. 2018;7:2492–510.
Allen MF. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J. 2007;6:291–7. 10.2136/vzj2006.0068. DOI
Ananthakrishnan G, Ravikumar R, Girija S et al. Selection of efficient arbuscular mycorrhizal fungi in the rhizosphere of cashew and their application in the cashew nursery. Sci Hortic. 2004;100:369–75. 10.1016/j.scienta.2003.07.008. DOI
Andrino A, Guggenberger G, Sauheitl L et al. Carbon investment into mobilization of mineral and organic phosphorus by arbuscular mycorrhiza. Biol Fertil Soils. 2021;57:47–64. 10.1007/s00374-020-01505-5. DOI
Antonelli A, Teisher JK, Smith RJ et al. The 2030 declaration on scientific plant and fungal collecting societal impact statement. Plants People Planet. 2025;7:11–22. 10.1002/ppp3.10569. DOI
Arora NK, Mishra I. Life on Land: progress, outcomes and future directions to achieve the targets of SDG 15. Environ Sustain. 2024;7:369–75.
Bardgett RD, Bullock JM, Lavorel S et al. Combatting global grassland degradation. Nat Rev Earth Environ. 2021;2:720–35.
Barrett G, Campbell CD, Fitter AH et al. The arbuscular mycorrhizal fungus DOI
Basiru S, Hijri M. Does commercial inoculation promote arbuscular mycorrhizal fungi invasion?. Microorganisms. 2022;10:404. 10.3390/microorganisms10020404. PubMed DOI PMC
Bentivenga SP, Bever JD, Morton JB. Genetic variation of morphological characters within a single isolate of the endomycorrhizal fungus PubMed DOI
Bever JD, Schultz PA, Pringle A et al. Arbuscular mycorrhizal fungi: more diverse than meets the eye, and the ecological tale of why: the high diversity of ecologically distinct species of arbuscular mycorrhizal fungi within a single community has broad implications for plant ecology. Bioscience. 2001;51:923–31. 10.1641/0006-3568(2001)051[0923:AMFMDT]2.0.CO;2. DOI
Bothe H, Turnau K, Regvar M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza. 2010;20:445–57. PubMed
Braghiere RK, Fisher JB, Allen K et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J Adv Model Earth Syst. 2022;14:e2022MS003204. 10.1029/2022MS003204. PubMed DOI PMC
Braghiere RK, Fisher JB, Fisher RA et al. Mycorrhizal distributions impact global patterns of carbon and nutrient cycling. Geophys Res Lett. 2021;48:e2021GL094514. 10.1029/2021GL094514. DOI
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–15. 10.1111/nph.14976. PubMed DOI
Bruns TD, Taylor JW. Comment on “global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science. 2016;351:826. 10.1126/science.aad4228. PubMed DOI
Burri K, Gromke C, Graf F. Mycorrhizal fungi protect the soil from wind erosion: a wind tunnel study. Land Degrad Dev. 2013;24:385–92. 10.1002/ldr.1136. DOI
Cao Y, Wu G, Yu D. Include macrofungi in biodiversity targets. Science. 2021;372:1160. 10.1126/science.abj5479. PubMed DOI
Chaudhary VB, Nokes LF, González JB et al. TraitAM, a global spore trait database for arbuscular mycorrhizal fungi. Sci Data. 2025;12:1–10. PubMed PMC
Chen S, Stark SC, Nobre AD et al. Amazon forest biogeography predicts resilience and vulnerability to drought. Nature. 2024;631:111–7. 10.1038/s41586-024-07568-w. PubMed DOI
Corradi N, Antunes PM, Magurno F. A call for reform: implementing genome-based approaches for species classification in Glomeromycotina. New Phytol. 2025;247:50–4. 10.1111/nph.70148. PubMed DOI
Crowther TW, Rappuoli R, Corinaldesi C et al. Scientists’ call to action: microbes, planetary health, and the Sustainable Development Goals. Cell. 2024;187:5195–216. 10.1016/j.cell.2024.07.051. PubMed DOI
CUI M, NOBEL PS. Nutrient status, water uptake and gas exchange for three desert succulents infected with mycorrhizal fungi. New Phytol. 1992;122:643–9. 10.1111/j.1469-8137.1992.tb00092.x. DOI
Darbyshire I, Anderson S, Asatryan A et al. Important plant areas: revised selection criteria for a global approach to plant conservation. Biodivers Conserv. 2017;26:1767–800. 10.1007/s10531-017-1336-6. DOI
Davison J, Moora M, Öpik M et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science. 2015;349:970–3. 10.1126/science.aab1161. PubMed DOI
Delavaux CS, Sturmer SL, Wagner MR et al. Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytol. 2021;229:3048–52. 10.1111/nph.17080. PubMed DOI
Delavaux CS, Weigelt P, Dawson W et al. Mycorrhizal fungi influence global plant biogeography. Nat Ecol Evol. 2019;3:424–9. PubMed
Dinerstein E, Olson D, Joshi A et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience. 2017;67:534–45. 10.1093/biosci/bix014. PubMed DOI PMC
Etesami H, Jeong BR, Glick BR. Contribution of arbuscular mycorrhizal fungi, phosphate–solubilizing bacteria, and silicon to P uptake by plant. Front Plant Sci. 2021;12:699618. 10.3389/fpls.2021.699618. PubMed DOI PMC
Field KJ, Pressel S, Duckett JG et al. Symbiotic options for the conquest of land. Trends Ecol Evol. 2015;30:477–86. 10.1016/j.tree.2015.05.007. PubMed DOI
George NP, Ray JG. The inevitability of arbuscular mycorrhiza for sustainability in organic agriculture—a critical review. Front Sustain Food Syst. 2023;7:1124688. 10.3389/fsufs.2023.1124688. DOI
Gonçalves SC, Haelewaters D, Furci G et al. Include all fungi in biodiversity goals. Science. 2021;373:403. 10.1126/science.abk1312. PubMed DOI
Gorelick N, Hancher M, Dixon M et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ. 2017;202:18–27. 10.1016/j.rse.2017.06.031. DOI
Gormsen D, Olsson PA, Hedlund K. The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol. 2004;27:211–20. 10.1016/j.apsoil.2004.06.001. DOI
Gougherty AV, Clipp HL. Testing the reliability of an AI-based large language model to extract ecological information from the scientific literature. npj Biodiver. 2024;3:1–5. PubMed PMC
Gray CL, Hill SLL, Newbold T et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat Commun. 2016;7:1–7. PubMed PMC
Guerra CA, Heintz-Buschart A, Sikorski J et al. Blind spots in global soil biodiversity and ecosystem function research. Nat Commun. 2020;11:1–13. PubMed PMC
Gupta MM, Gupta A, Kumar P et al. Urbanization and biodiversity of arbuscular mycorrhizal fungi: the case study of Delhi, India. Rev Biol Trop. 2018;66:1547–58. 10.15517/rbt.v66i4.33216. DOI
Hansen MC, Potapov PV, Moore R et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–3. 10.1126/science.1244693. PubMed DOI
Hart MM, Antunes PM, Chaudhary VB et al. Fungal inoculants in the field: is the reward greater than the risk?. Funct Ecol. 2018;32:126–35. 10.1111/1365-2435.12976. DOI
Hawkins HJ, Cargill RIM, Van Nuland ME et al. Mycorrhizal mycelium as a global carbon pool. Curr Biol. 2023;33:R560–73. 10.1016/j.cub.2023.02.027. PubMed DOI
Hoeksema JD, Chaudhary VB, Gehring CA et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol Lett. 2010;13:394–407. 10.1111/j.1461-0248.2009.01430.x. PubMed DOI
Hoogen Jvd, Robmann N, Routh D et al. A geospatial mapping pipeline for ecologists. bioRxiv. 2021. 10.1101/2021.07.07.451145 DOI
Hortal J, Lobo JM. An ED-based protocol for optimal sampling of biodiversity. Biodivers Conserv. 2005;14:2913–47. 10.1007/s10531-004-0224-z. DOI
Hughes AC, Orr MC, Ma K et al. Sampling biases shape our view of the natural world. Ecography. 2021;44:1259–69. 10.1111/ecog.05926. DOI
Hyde KD, Noorabadi MT, Thiyagaraja V et al. The 2024 outline of fungi and fungus-like taxa. Mycosphere. 2024;15:5146–6239. 10.5943/mycosphere/15/1/25. DOI
IUCN Standards and Petitions Committee . Guidelines for Using the IUCN Red List Categories and Criteria. Gland, 2025a.
IUCN . The IUCN Red List of Threatened Species. Version 2024-2. Gland, 2025b. https://www.iucnredlist.org/(10 February 2025, date last accessed).
Janos DP. Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology. 1980;61:151–62. 10.2307/1937165. DOI
Kakouridis A, Hagen JA, Kan MP et al. Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytol. 2022;236:210–21. 10.1111/nph.18281. PubMed DOI PMC
Kays R, Crofoot MC, Jetz W et al. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348:aaa2478. PubMed
Kokkoris V, Lekberg Y, Antunes PM et al. Codependency between plant and arbuscular mycorrhizal fungal communities: what is the evidence?. New Phytol. 2020;228:828–38. 10.1111/nph.16676. PubMed DOI
Kolaříková Z, Slavíková R, Krüger C et al. PacBio sequencing of glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi. New Phytol. 2021;231:490–9. 10.1111/nph.17372. PubMed DOI
Konno K, Akasaka M, Koshida C et al. Ignoring non-English-language studies may bias ecological meta-analyses. Ecol Evol. 2020;10:6373–84. 10.1002/ece3.6368. PubMed DOI PMC
Koziol L, Bauer JT, Duell EB et al. Manipulating plant microbiomes in the field: native mycorrhizae advance plant succession and improve native plant restoration. J Appl Ecol. 2022a;59:1976–85. 10.1111/1365-2664.14036. DOI
Koziol L, McKenna TP, Bever JD. Meta-analysis reveals globally sourced commercial mycorrhizal inoculants fall short. New Phytol. 2024;246:821–7. 10.1111/nph.20278. PubMed DOI
Koziol L, McKenna TP, Crews TE et al. Native arbuscular mycorrhizal fungi promote native grassland diversity and suppress weeds 4 years following inoculation. Restor Ecol. 2023;31:e13772. 10.1111/rec.13772. DOI
Koziol L, Schultz PA, Parsons S et al. Native mycorrhizal fungi improve milkweed growth, latex, and establishment while some commercial fungi may inhibit them. Ecosphere. 2022b;13:e4052. 10.1002/ecs2.4052. DOI
Kuila D, Ghosh S. Aspects, problems and utilization of arbuscular mycorrhizal (AM) application as bio-fertilizer in sustainable agriculture. Curr Res Microb Sci. 2022;3:100107. PubMed PMC
Leake JR, Read DJ. Mycorrhizal symbioses and pedogenesis throughout Earth’s history. Mycorrhizal Mediat Soil Fert Struct Carbon Storage. 2017:9–33. 10.1016/B978-0-12-804312-7.00002-4. DOI
Leigh J, Hodge A, Fitter AH. Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 2009;181:199–207. 10.1111/j.1469-8137.2008.02630.x. PubMed DOI
Lekberg Y, Vasar M, Bullington LS et al. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers?. New Phytol. 2018;220:971–6. 10.1111/nph.15035. PubMed DOI
Lutz S, Mikryukov V, Labouyrie M et al. Global richness of arbuscular mycorrhizal fungi. Fung Ecol. 2025;74:101407. 10.1016/j.funeco.2024.101407. DOI
Markovchick LM, Carrasco-Denney V, Sharma J et al. The gap between mycorrhizal science and application: existence, origins, and relevance during the United Nation’s decade on Ecosystem restoration. Restor Ecol. 2023;31:e13866. 10.1111/rec.13866. DOI
Marschner H, Dell B. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 1994;159:89–102. 10.1007/BF00000098. DOI
Martius LR, Fielding D, Brown P et al. Nucleation in temperate woodland regeneration: dual mycorrhizal Salix facilitate ectomycorrhizal tree establishment. Oikos. 2024;2025:e10974.
Maxwell SL, Cazalis V, Dudley N et al. Area-based conservation in the twenty-first century. Nature. 2020;586:217–27. 10.1038/s41586-020-2773-z. PubMed DOI
Meyer H, Pebesma E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol Evol. 2021;12:1620–33. 10.1111/2041-210X.13650. DOI
Meyer H, Pebesma E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat Commun. 2022;13:1–4. PubMed PMC
Meyer RS, Ramos MM, Lin M et al. The CALe DNA program: citizen scientists and researchers inventory California’s biodiversity. Calif Agric. 2021;75:20–32. 10.3733/ca.2021a0001. DOI
Mikryukov V, Dulya O, Zizka A et al. Connecting the multiple dimensions of global soil fungal diversity. Sci Adv. 2023;9. 10.1126/SCIADV.ADJ8016/SUPPL_FILE/SCIADV.ADJ8016_TABLES_S1_TO_S13.ZIP. PubMed PMC
Milà C, Mateu J, Pebesma E et al. Nearest neighbour distance matching leave-one-out cross-validation for map validation. Methods Ecol Evol. 2022;13:1304–16. 10.1111/2041-210X.13851. DOI
Miller RM, Jastrow JD, Reinhardt DR. External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia. 1995;103:17–23. 10.1007/BF00328420. PubMed DOI
Morrison J, Loucks C, Long B et al. Landscape-scale spatial planning at WWF: a variety of approaches. Oryx. 2009;43:499–507. 10.1017/S0030605309990354. DOI
Moura JB, Souza RF, Vieira-Júnior WG et al. Effects of a megafire on the arbuscular mycorrhizal fungal community and parameters in the Brazilian Cerrado ecosystem. For Syst. 2022;31:e001. 10.5424/fs/2022311-18557. DOI
Mueller GM, Cunha KM, May TW et al. What do the first 597 global fungal red list assessments tell us about the threat status of fungi?. Diversity. 2022;14:736.
Nature Microbiology Editorial Team . Use microbes to tackle food insecurity. Nat Microbiol. 2025;10:1–1. 10.1038/s41564-024-01916-2. PubMed DOI
Naughton-Treves L, Holland MB, Brandon K. The role of protected areas in conserving biodiversity and sustaining local livelihoods. Annu Rev Environ Resour. 2005;30:219–52. 10.1146/annurev.energy.30.050504.164507. DOI
Niezgoda P, Błaszkowski J, Błaszkowski T et al. Three new species of arbuscular mycorrhizal fungi (Glomeromycota) and PubMed DOI PMC
Niskanen T, Lücking R, Dahlberg A et al. Pushing the frontiers of biodiversity research: unveiling the global diversity, distribution, and conservation of fungi. Annu Rev Environ Resour. 2023;48:149–76. 10.1146/annurev-environ-112621-090937. DOI
Oliveira U, Paglia AP, Brescovit AD et al. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Divers Distrib. 2016;22:1232–44. 10.1111/ddi.12489. DOI
Olson DM, Dinerstein E, Wikramanayake ED et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience. 2001;51:933–8. 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Ouahmane L, Hafidi M, Thioulouse J et al. Improvement of PubMed DOI
Pendrill F, Gardner TA, Meyfroidt P et al. Disentangling the numbers behind agriculture-driven tropical deforestation. Science. 2022;377. 10.1126/SCIENCE.ABM9267/SUPPL_FILE/SCIENCE.ABM9267_SM.PDF. PubMed DOI
Perring MP, Standish RJ, Price JN et al. Advances in restoration ecology: rising to the challenges of the coming decades. Ecosphere. 2015;6:1–25. 10.1890/ES15-00121.1. DOI
Ploton P, Mortier F, Réjou-Méchain M et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat Commun. 2020;11:1–11. PubMed PMC
Pringle A, Bever JD. Divergent phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Am J Bot. 2002;89:1439–46. 10.3732/ajb.89.9.1439. PubMed DOI
Reddy S, Dávalos LM. Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr. 2003;30:1719–27. 10.1046/j.1365-2699.2003.00946.x. DOI
Redecker D, Kodner R, Graham LE. Glomalean fungi from the ordovician. Science. 2000;289:1920–1. 10.1126/science.289.5486.1920. PubMed DOI
Rega-Brodsky CC, Aronson MFJ, Piana MR et al. Urban biodiversity: state of the science and future directions. Urban Ecosyst. 2022;25:1083–96. 10.1007/s11252-022-01207-w. DOI
RESOLVE . RESOLVE Ecoregions. 2025. https://developers.google.com/earth-engine/datasets/catalog/RESOLVE_ECOREGIONS_2017 (12 February 2025, date last accessed).
Rúa MA, Antoninka A, Antunes PM et al. Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol. 2016;16:1–15. 10.1186/s12862-016-0698-9. PubMed DOI PMC
Schüßler A, Walker C. Glomeromycota Phylogeny. 2024.
See CR, Keller AB, Hobbie SE et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob Chang Biol. 2022;28:2527–40. 10.1111/gcb.16073. PubMed DOI
Shen K, He Y, Xia T et al. Arbuscular mycorrhizal fungi promote superior root trait combinations conducive to soil nutrient acquisition by natives relative to invaders. Rhizosphere. 2023;28:100804. 10.1016/j.rhisph.2023.100804. DOI
Siddiky MRK, Schaller J, Caruso T et al. Arbuscular mycorrhizal fungi and collembola non-additively increase soil aggregation. Soil Biol Biochem. 2012;47:93–9. 10.1016/j.soilbio.2011.12.022. DOI
Silva-Flores P, Argüelles-Moyao A, Aguilar-Paredes A et al. Mycorrhizal science outreach: scope of action and available resources in the face of global change. Plants People Planet. 2021;3:506–22. 10.1002/ppp3.10213. DOI
Smith JR, Letten AD, Ke PJ et al. A global test of ecoregions. Nat Ecol Evol. 2018;2:1889–96. PubMed
Smith SE, Read D. Mycorrhizal Symbiosis. 3rd edn. New York, NY: Springer Nature, 2008, 1–787.
Soudzilovskaia NA, van Bodegom PM, Terrer C et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat Commun. 2019;10:1–10. PubMed PMC
Steidinger BS, Crowther TW, Liang J et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature. 2019;569:404–8. 10.1038/s41586-019-1128-0. PubMed DOI
Stewart JD, Kiers ET, Anthony MA et al. Supporting urban greenspace with microbial symbiosis. Plants People Planet. 2024;6:3–17.
Stewart JD, Kremer P, Shakya KM et al. Outdoor atmospheric microbial diversity is associated with urban landscape structure and differs from indoor-transit systems as revealed by mobile monitoring and three-dimensional spatial analysis. Front Ecol Evol. 2021;9:9. 10.3389/fevo.2021.620461. DOI
Stockinger H, Krüger M, Schüßler A. DNA barcoding of arbuscular mycorrhizal fungi. New Phytol. 2010;187:461–74. 10.1111/j.1469-8137.2010.03262.x. PubMed DOI
Stürmer SL, Bever JD, Morton JB. Biogeography of arbuscular mycorrhizal fungi (Glomeromycota): a phylogenetic perspective on species distribution patterns. Mycorrhiza. 2018;28:587–603. 10.1007/s00572-018-0864-6. PubMed DOI
Stürmer SL, Bever JD, Schultz PA et al. Celebrating INVAM: 35 years of the largest living culture collection of arbuscular mycorrhizal fungi. Mycorrhiza. 2021;31:117–26. 10.1007/s00572-020-01008-z. PubMed DOI
Tedersoo L, Bahram M, Põlme S et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. 10.1126/science.1256688. PubMed DOI
Tedersoo L, Bahram M, Põlme S et al. Response to comment on “global diversity and geography of soil fungi”. Science. 2015;349:936. 10.1126/science.aaa5594. PubMed DOI
Tedersoo L, Magurno F, Alkahtani S et al. Phylogenetic classification of arbuscular mycorrhizal fungi: new species and higher-ranking taxa in glomeromycota and mucoromycota (class Endogonomycetes). MycoKeys. 2024;107:273–325. 10.3897/mycokeys.107.125549. PubMed DOI PMC
Tedersoo L, Mikryukov V, Anslan S et al. The Global Soil Mycobiome consortium dataset for boosting fungal diversity research. Fungal Divers. 2021;111:573–88. 10.1007/s13225-021-00493-7. DOI
Tedersoo L, Tooming-Klunderud A, Anslan S. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytol. 2018;217:1370–85. 10.1111/nph.14776. PubMed DOI
Thirkell TJ, Cameron DD, Hodge A. Resolving the ‘nitrogen paradox’ of arbuscular mycorrhizas: fertilization with organic matter brings considerable benefits for plant nutrition and growth. Plant Cell Environ. 2016;39:1683–90. 10.1111/pce.12667. PubMed DOI PMC
Timmis K, de Vos WM, Ramos JL et al. The contribution of microbial biotechnology to sustainable development goals. Microb Biotechnol. 2017;10:984–7. 10.1111/1751-7915.12818. PubMed DOI PMC
Toussaint A, Bueno G, Davison J et al. Asymmetric patterns of global diversity among plants and mycorrhizal fungi. J Veg Sci. 2020;31:355–66. 10.1111/jvs.12837. DOI
Troudet J, Grandcolas P, Blin A et al. Taxonomic bias in biodiversity data and societal preferences. Sci Rep. 2017;7:1–14. 10.1038/s41598-017-09084-6. PubMed DOI PMC
Turrini A, Giovannetti M. Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza. 2012;22:81–97. 10.1007/s00572-011-0419-6. PubMed DOI
United Nations . Sustainable Development Goals. New York, NY, 2025. https://sdgs.un.org/goals(28 January 2025, date last accessed).
Van Der Heijden MGA, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11:296–310. 10.1111/j.1461-0248.2007.01139.x. PubMed DOI
Van Der Heijden MGA, Klironomos JN, Ursic M et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998;396:69–72. 10.1038/23932. DOI
Van Nuland M. Global hostpots of mycorrhizal fungal richness are poorly protected. Nature. In Press. 2025, 35.
Verbeek CT, Gomes SIF, Merckx VSTF. Arbuscular mycorrhiza in the urban jungle: glomeromycotina communities of the dominant city tree across Amsterdam. Plants People Planet. 2025. 10.1002/ppp3.10634. DOI
Větrovský T, Kolaříková Z, Lepinay C et al. GlobalAMFungi: a global database of arbuscular mycorrhizal fungal occurrences from high-throughput sequencing metabarcoding studies. New Phytol. 2023;240:2151–63. 10.1111/nph.19283. PubMed DOI
Wagg C, Bender SF, Widmer F et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc Natl Acad Sci USA. 2014;111:5266–70. 10.1073/pnas.1320054111. PubMed DOI PMC
Wagg C, Jansa J, Schmid B et al. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol Lett. 2011;14:1001–9. 10.1111/j.1461-0248.2011.01666.x. PubMed DOI
Wall CB, Egan CP, Swift SIO et al. Three decades post-reforestation has not led to the reassembly of arbuscular mycorrhizal fungal communities associated with remnant primary forests. Mol Ecol. 2020;29:4234–47. 10.1111/mec.15624. PubMed DOI
Wilson GWT, Rice CW, Rillig MC et al. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett. 2009;12:452–61. 10.1111/j.1461-0248.2009.01303.x. PubMed DOI
World Wide Fund for Nature Living Planet Report . World Wide Fund for Nature Living Planet Report. 2024. https://livingplanet.panda.org/thank_you_for_downloading_the_living_planet_report_your_support_matters/(13 February 2025, date last accessed).
Zhou Y, Smith SJ, Zhao K et al. A global map of urban extent from nightlights. Environ Res Lett. 2015;10:054011. 10.1088/1748-9326/10/5/054011. DOI