PacBio sequencing of Glomeromycota rDNA: a novel amplicon covering all widely used ribosomal barcoding regions and its applicability in taxonomy and ecology of arbuscular mycorrhizal fungi
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33780549
DOI
10.1111/nph.17372
Knihovny.cz E-resources
- Keywords
- Archaeosporales, Glomeromycota, PacBio, long-read metabarcoding, mycorrhizal fungi distribution, third-generation sequencing,
- MeSH
- DNA, Fungal genetics MeSH
- Phylogeny MeSH
- Glomeromycota * genetics MeSH
- Fungi genetics MeSH
- Mycorrhizae * genetics MeSH
- DNA, Ribosomal genetics MeSH
- Sequence Analysis, DNA MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Fungal MeSH
- DNA, Ribosomal MeSH
There is no consensus barcoding region for determination of arbuscular mycorrhizal fungal (AMF) taxa. To overcome this obstacle, we have developed an approach to sequence an AMF marker within the ribosome-encoding operon (rDNA) that covers all three widely applied variable molecular markers. Using a nested PCR approach specific to AMF, we amplified a part (c. 2.5 kb) of the rDNA spanning the majority of the small subunit rRNA (SSU) gene, the complete internal transcribed spacer (ITS) region and a part of the large subunit (LSU) rRNA gene. The PCR products were sequenced on the PacBio platform utilizing Single Molecule Real Time (SMRT) sequencing. Employing this method for selected environmental DNA samples, we were able to describe complex AMF communities consisting of various glomeromycotan lineages. We demonstrate the applicability of this new 2.5 kb approach to provide robust phylogenetic assignment of AMF lineages without known sequences from pure cultures and to consolidate information about AMF taxon distributions coming from three widely used barcoding regions into one integrative dataset.
Faculty of Science Charles University Prague Prague CZ 128 44 Czech Republic
Institute of Botany of the Czech Academy of Sciences Průhonice CZ 252 43 Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague CZ 142 20 Czech Republic
See more in PubMed
Baar J, Paradi I, Lucassen ECHET, Hudson-Edwards KA, Redecker D, Roelofs JGM, Smolders AJP. 2011. Molecular analysis of AMF diversity in aquatic macrophytes: a comparison of oligotrophic and ultra-oligotrophic lakes. Aquatic Botany 94: 53-61.
Baldrian P, Větrovský T, Lepinay C, Kohout P. 2021. High-throughput sequencing view on the magnitude of global fungal diversity. Fungal Diversity. doi: 10.1007/s13225-021-00472-y.
Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, De Wit P, Sanchez-Garcia M, Ebersberger I, de Sousa F et al. 2013. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods in Ecology and Evolution 4: 914-919.
Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG. 2011. The dawn of symbiosis between plants and fungi. Biology Letters 7: 574-577.
Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E. 2005. Defining operational taxonomic units using DNA barcode data. Philosophical Transactions of the Royal Society B: Biological Sciences 360: 1935-1943.
Castaño C, Berlin A, Durling MB, Ihrmark K, Lindahl BD, Stenlid J, Clemmensen KE, Olson A. 2020. Optimized metabarcoding with Pacific biosciences enables semi-quantitative analysis of fungal communities. New Phytologist 228: 1149-1158.
Cheng Y, Ishimoto K, Kuriyama Y, Osaki M, Ezawa T. 2013. Ninety-year-, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities. Plant and Soil 365: 397-407.
Davison J, Moora M, Opik M, Adholeya A, Ainsaar L, Ba A, Burla S, Diedhiou Ag, Hiiesalu I, Jairus T et al. 2015. FUNGAL SYMBIONTS. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 970-973.
Davison J, Moora M, Semchenko M, Adenan S, Ahmed T, Akhmetzhanova A, Alatalo J, Alquraishi S, Andriyanova E, Anslan S et al. 2021. Temperature and pH define the realized niche space of arbuscular mycorrhizal fungi. New Phytologist. doi: 10.1111/nph.17240.
Delavaux CS, Sturmer SL, Wagner MR, Schütte U, Morton JB, Bever JD. 2021. Utility of large subunit for environmental sequencing of arbuscular mycorrhizal fungi: a new reference database and pipeline. New Phytologist 229: 3048-3052.
Dirks AC, Jackson RD. 2020. Community structure of arbuscular mycorrhizal fungi in soils of switchgrass harvested for bioenergy. Applied and Environmental Microbiology 86: e00880-e920.
Doubková P, Kohout P, Sudová R. 2013. Soil nutritional status, not inoculum identity, primarily determines the effect of arbuscular mycorrhizal fungi on the growth of Knautia arvensis plants. Mycorrhiza 23: 561-572.
Garcés-Ruiz M, Senés-Guerrero C, Declerck S, Cranenbrouck S. 2017. Arbuscular mycorrhizal fungal community composition in Carludovica palmata, Costus scaber and Euterpe precatoria from weathered oil ponds in the Ecuadorian Amazon. Frontiers in Microbiology 8: 2134.
Gazol A, Zobel M, Cantero JJ, Davison J, Esler KJ, Jairus T, Öpik M, Vasar M, Moora M. 2016. Impact of alien pines on local arbuscular mycorrhizal fungal communities - evidence from two continents. FEMS Microbiology Ecology 92: fiw073.
Van Geel M, Busschaert P, Honnay O, Lievens B. 2014. Evaluation of six primer pairs targeting the nuclear rRNA operon for characterization of arbuscular mycorrhizal fungal (AMF) communities using 454 pyrosequencing. Journal of Microbiological Methods 106: 93-100.
Hammer O, Harper DAT, Ryan PD. 2001. Paleontological Statistics Software Package for education and data analsis. Palaeontologia Electronica 4: 9-18.
Hart MM, Aleklett K, Chagnon PL, Egan C, Ghignone S, Helgason T, Lekberg Y, Öpik M, Pickles BJ, Waller L. 2015. Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New Phytologist 207: 235-247.
Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT. 2019. Combining the 5.8S and ITS2 to improve classification of fungi. Methods in Ecology and Evolution 10: 1702-1711.
Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-wide web? Nature 394: 431.
Horn K, Franke T, Unterseher M, Schnittler M, Beenken L. 2013. Morphological and molecular analyses of fungal endophytes of achlorophyllous gametophytes of Diphasiastrum alpinum (Lycopodiaceae). American Journal of Botany 100: 2158-2174.
Ihrmark K, Bödeker ITM, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandström-Durling M, Clemmensen KE et al. 2012. New primers to amplify the fungal ITS2 region - evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiology Ecology 82: 666-677.
Kawahara A, Ezawa T. 2013. Characterization of arbuscular mycorrhizal fungal communities with respect to zonal vegetation in a coastal dune ecosystem. Oecologia 173: 533-543.
Kivlin SN, Hawkes CV, Treseder KK. 2011. Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biology & Biochemistry 43: 2294-2303.
Kivlin SN, Muscarella R, Hawkes CV, Treseder KK. 2017. The predictive power of ecological niche modeling for global arbuscular mycorrhizal fungal biogeography. In: Tedersoo L, ed. Biogeography of mycorrhizal symbiosis. Ecological studies (Analysis and Synthesis), vol. 230. Cham, Switzerland: Springer, 143-158.
Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sýkorová Z. 2014. Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: Is there a universal solution? Soil Biology & Biochemistry 68: 482-493.
Kohout P, Sýkorová Z, Čtvrtlíková M, Rydlová J, Suda J, Vohník M, Sudová R. 2012. Surprising spectra of root-associated fungi in submerged aquatic plants. FEMS Microbiology Ecology 80: 216-235.
Kolařík M, Vohník M. 2018. When the ribosomal DNA does not tell the truth: the case of the taxonomic position of Kurtia argillacea, an ericoid mycorrhizal fungus residing among Hymenochaetales. Fungal Biology 122: 1-18.
Koorem K, Tulva I, Davison J, Jairus T, Öpik M, Vasar M, Zobel M, Moora M. 2017. Arbuscular mycorrhizal fungal communities in forest plant roots are simultaneously shaped by host characteristics and canopy-mediated light availability. Plant and Soil 410: 259-271.
Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A. 2012. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytologist 193: 970-984.
Krüger M, Stockinger H, Krüger C, Schüßler A. 2009. DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytologist 183: 212-223.
Lankau RA, Nodurft RN. 2013. An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor. Molecular Ecology 22: 5472-5485.
Lee J, Lee S, Young JPW. 2008. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiology Ecology 65: 339-349.
Li XL, Gai JP, Cai XB, Li XL, Christie P, Zhang FS, Zhang JL. 2014. Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24: 95-107.
Lücking R, Hawksworth DL. 2018. Formal description of sequence-based voucherless Fungi: promises and pitfalls, and how to resolve them. IMA Fungus 9: 143-166.
Melo CD, Luna S, Krüger C, Walker C, Mendonca D, Fonseca HMAC, Jaizme-Vega M, Machado AC. 2018. Communities of arbuscular mycorrhizal fungi under Picconia azorica in native forests of Azores. Symbiosis 74: 43-54.
Mueller RC, Balasch MM, Kuske CR. 2014. Contrasting soil fungal community responses to experimental nitrogen addition using the large subunit rRNA taxonomic marker and cellobiohydrolase I functional marker. Molecular Ecology 23: 4406-4417.
Nilsson RH, Larsson K-H, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Research 47: D259-D264.
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P et al. 2019. vegan: Community Ecology Package. R package v.2.5-6. [WWW document] URL https://CRAN.R-project.org/package=vegan.
Öpik M, Davison J. 2016. Uniting species- and community-oriented approaches to understand arbuscular mycorrhizal fungal diversity. Fungal Ecology 24: 106-113.
Öpik M, Davison J, Moora M, Zobel M. 2014. DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany-Botanique 92: 135-147.
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M. 2010. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188: 223-241.
Öpik M, Zobel M, Cantero JJ, Davison J, Facelli JM, Hiiesalu I, Jairus T, Kalwij JM, Koorem K, Leal ME et al. 2013. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 23: 411-430.
Põlme S, Öpik M, Moora M, Zobel M, Kohout P, Oja J, Kõljalg U, Tedersoo L. 2016. Arbuscular mycorrhizal fungi associating with roots of Alnus and Rubus in Europe and the Middle East. Fungal Ecology 24: 27-34.
R Core Development Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/.
Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23: 515-531.
Rognes T, Flouri T, Nichols B, Quince C, Mahe F. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.
Romiguier J, Roux C. 2017. Analytical biases associated with GC-content in molecular evolution. Frontiers in Genetics 8: 16.
Sayers EW, Cavanaugh M, Clark K, Ostell J, Pruitt KD, Karsch-Mizrachi I. 2020. GenBank. Nucleic Acids Research 48: D84-D86.
Schlaeppi K, Bender SF, Mascher F, Russo G, Patrignani A, Camenzind T, Hempel S, Rillig MC, van der Heijden MGA. 2016. High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytologist 212: 780-791.
Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA 109: 6241-6246.
Schüßler A, Walker C. 2010. The Glomeromycota: a species list with new families and new genera. Gloucester, UK: Published in libraries at Royal Botanic Garden Edinburgh, Kew, Botanische Staatssammlung Munich, and Oregon State University [WWW document] URL https://www.amf-phylogeny.com.
Simon L, Lalonde M, Bruns TD. 1992. Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Applied and Environmental Microbiology 58: 291-295.
Sudová R, Kohout P, Rydlová J, Čtvrtlíková M, Suda J, Voříšková J, Kolaříková Z. 2020. Diverse fungal communities associated with the roots of isoetid plants are structured by host plant identity. Fungal Ecology 45: e100914.
Tedersoo L, Anslan S, Bahram M, Kõljalg U, Abarenkov K. 2020. Identifying the ‘unidentified’ fungi: a global-scale long-read third-generation sequencing approach. Fungal Diversity 103: 273-293.
Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY. 2017. Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 5: e42.
Tedersoo L, Tooming-Klunderud A, Anslan S. 2018. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. New Phytologist 217: 1370-1385.
Van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V. 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molecular Ecology 7: 879-887.
Větrovský T, Baldrian P, Morais D, Berger B. 2018. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34: 2292-2294.
Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, Brabcová V, Choi J, Meszárošová L, Human ZR et al. 2019. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nature Communications 10: 5142.
Větrovský T, Morais D, Kohout P, Lepinay C, Algora C, Awokunle Hollá S, Bahnmann BD, Bílohnědá K, Brabcová V, D’Alò F et al. 2020. GlobalFungi, a global database of fungal occurrences from high-throughput-sequencing metabarcoding studies. Scientific Data 7: 228.
Wang YT, Li YW, Bao XZ, Bjorn LO, Li SS, Olsson PA. 2016. Response differences of arbuscular mycorrhizal fungi communities in the roots of an aquatic and a semiaquatic species to various flooding regimes. Plant and Soil 403: 361-373.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: White TJ, ed. PCR protocols, a guide to methods and applications. New York, NY, USA: Academic Press, 315-322.
Xia XH. 2017. DAMBE6: New tools for microbial genomics, phylogenetics, and molecular evolution. Journal of Heredity 108: 431-437.
Žifčáková L, Větrovský T, Howe A, Baldrian P. 2016. Microbial activity in forest soil reflects the changes in ecosystem properties between summer and winter. Environmental Microbiology 18: 288-301.