Early Selection of the Amino Acid Alphabet Was Adaptively Shaped by Biophysical Constraints of Foldability
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
DP2 GM140926
NIGMS NIH HHS - United States
PubMed
36826345
PubMed Central
PMC10017022
DOI
10.1021/jacs.2c12987
Knihovny.cz E-zdroje
- MeSH
- aminokyseliny * chemie MeSH
- peptidová knihovna MeSH
- peptidy genetika MeSH
- proteiny * chemie MeSH
- sbalování proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- aminokyseliny * MeSH
- peptidová knihovna MeSH
- peptidy MeSH
- proteiny * MeSH
Whereas modern proteins rely on a quasi-universal repertoire of 20 canonical amino acids (AAs), numerous lines of evidence suggest that ancient proteins relied on a limited alphabet of 10 "early" AAs and that the 10 "late" AAs were products of biosynthetic pathways. However, many nonproteinogenic AAs were also prebiotically available, which begs two fundamental questions: Why do we have the current modern amino acid alphabet and would proteins be able to fold into globular structures as well if different amino acids comprised the genetic code? Here, we experimentally evaluate the solubility and secondary structure propensities of several prebiotically relevant amino acids in the context of synthetic combinatorial 25-mer peptide libraries. The most prebiotically abundant linear aliphatic and basic residues were incorporated along with or in place of other early amino acids to explore these alternative sequence spaces. The results show that foldability was likely a critical factor in the selection of the canonical alphabet. Unbranched aliphatic amino acids were purged from the proteinogenic alphabet despite their high prebiotic abundance because they generate polypeptides that are oversolubilized and have low packing efficiency. Surprisingly, we find that the inclusion of a short-chain basic amino acid also decreases polypeptides' secondary structure potential, for which we suggest a biophysical model. Our results support the view that, despite lacking basic residues, the early canonical alphabet was remarkably adaptive at supporting protein folding and explain why basic residues were only incorporated at a later stage of protein evolution.
Department of Cell Biology Faculty of Science Charles University BIOCEV Prague 12843 Czech Republic
Department of Chemistry Johns Hopkins University Baltimore Maryland 21218 United States
Department of Physical Chemistry Faculty of Science Charles University Prague 12843 Czech Republic
Earth Life Science Institute Tokyo Institute of Technology Tokyo 1528550 Japan
Graduate School of Media and Governance Keio University Fujisawa 2520882 Japan
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec 25250 Czech Republic
T C Jenkins Department of Biophysics Johns Hopkins University Baltimore Maryland 21218 United States
Zobrazit více v PubMed
Milner-White E. J.; Russell M. J. Functional Capabilities of the Earliest Peptides and the Emergence of Life. Genes (Basel) 2011, 2 (4), 671–688. 10.3390/genes2040671. PubMed DOI PMC
Fried S. D.; Fujishima K.; Makarov M.; Cherepashuk I.; Hlouchova K. Peptides Before and During the Nucleotide World: An Origins Story Emphasizing Cooperation Between Proteins and Nucleic Acids. J. R. Soc. Interface 2022, 19 (187), 20210641.10.1098/rsif.2021.0641. PubMed DOI PMC
Frenkel-Pinter M.; Samanta M.; Ashkenasy G.; Leman L. J. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem. Rev. 2020, 120 (11), 4707–4765. 10.1021/acs.chemrev.9b00664. PubMed DOI
Freeland S. Undefining Life’s Biochemistry: Implications for Abiogenesis. J. R. Soc. Interface 2022, 19 (187), 20210814.10.1098/rsif.2021.0814. PubMed DOI PMC
Cleaves H. J. The Origin of the Biologically Coded Amino Acids. J. Theor. Biol. 2010, 263 (4), 490–498. 10.1016/j.jtbi.2009.12.014. PubMed DOI
Higgs P. G.; Pudritz R. E. A Thermodynamic Basis for Prebiotic Amino Acid Synthesis and the Nature of the First Genetic Code. Astrobiology 2009, 9 (5), 483–490. 10.1089/ast.2008.0280. PubMed DOI
Kitadai N.; Maruyama S. Origins of building blocks of life: A review. Geosci. Front. 2018, 9 (4), 1117–1153. 10.1016/j.gsf.2017.07.007. DOI
Weber A. L.; Miller S. L. Reasons for the Occurrence of the Twenty Coded Protein Amino Acids. J. Mol. Evol. 1981, 17 (5), 273–284. 10.1007/BF01795749. PubMed DOI
Longo L. M.; Blaber M. Protein Design at The Interface of The Pre-Biotic and Biotic Worlds. Arch. Biochem. Biophys. 2012, 526 (1), 16–21. 10.1016/j.abb.2012.06.009. PubMed DOI
Zaia D. A. M.; Zaia C. T. B. V.; De Santana H. Which Amino Acids Should Be Used in Prebiotic Chemistry Studies?. Orig. Life Evol. Biosph. 2008, 38 (6), 469–488. 10.1007/s11084-008-9150-5. PubMed DOI
Ménez B.; Pisapia C.; Andreani M.; Jamme F.; Vanbellingen Q. P.; Brunelle A.; Richard L.; Dumas P.; Réfrégiers M. Abiotic Synthesis of Amino Acids in the Recesses of the Oceanic Lithosphere. Nature 2018, 564 (7734), 59–63. 10.1038/s41586-018-0684-z. PubMed DOI
Patel B. H.; Percivalle C.; Ritson D. J.; Duffy C. D.; Sutherland J. D. Common Origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat. Chem. 2015, 7 (4), 301–307. 10.1038/nchem.2202. PubMed DOI PMC
Trifonov E. N. Consensus Temporal Order of Amino Acids and Evolution of The Triplet Code. Gene. 2000, 261 (1), 139–151. 10.1016/S0378-1119(00)00476-5. PubMed DOI
Newton M. S.; Morrone D. J.; Lee K. H.; Seelig B. Genetic Code Evolution Investigated through the Synthesis and Characterisation of Proteins from Reduced-Alphabet Libraries. ChemBioChem. 2019, 20 (6), 846–856. 10.1002/cbic.201800668. PubMed DOI
Solis A. D. Reduced Alphabet of Prebiotic Amino Acids Optimally Encodes the Conformational Space of Diverse Extant Protein Folds. BMC Evol. Biol. 2019, 19 (1), 158.10.1186/s12862-019-1464-6. PubMed DOI PMC
Tretyachenko V.; Vymětal J.; Bednárová L.; Kopecký V.; Hofbauerová K.; Jindrová H.; Hubálek M.; Souček R.; Konvalinka J.; Vondrášek J.; Hlouchová K. Random Protein Sequences Can Form Defined Secondary Structures and Are Well-Tolerated In Vivo. Sci. Rep. 2017, 7 (1), 15449.10.1038/s41598-017-15635-8. PubMed DOI PMC
Freeland S.Terrestrial” Amino Acids and Their Evolution. Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acids, 1st ed.; Wiley-VCH Verlag GmbH & Co. KgaA, 2010; Vol. 1, pp 43–75.
Vázquez-Salazar A.; Lazcano A. Early Life: Embracing the RNA World. Curr. Biol. 2018, 28 (5), R220–R222. 10.1016/j.cub.2018.01.055. PubMed DOI
Raggi L.; Bada J. L.; Lazcano A. On the Lack of Evolutionary Continuity between Prebiotic Peptides and Extant Enzymes. Phys. Chem. Chem. Phys. 2016, 18 (30), 20028–20032. 10.1039/C6CP00793G. PubMed DOI
Meierhenrich U. J.; Munoz Caro G. M.; Bredehoft J. H.; Jessberger E. K.; Thiemann W. H.-P. Identification of Diamino Acids in the Murichison Meteorite. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (25), 9182–9186. 10.1073/pnas.0403043101. PubMed DOI PMC
Wolman Y.; Haverland W. J.; Miller S. L. Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids. Proc. Natl. Acad. Sci. U. S. A. 1972, 69 (4), 809–811. 10.1073/pnas.69.4.809. PubMed DOI PMC
Alvarez-Carreño C.; Becerra A.; Lazcano A. Norvaline and Norleucine May Have Been More Abundant Protein Components during Early Stages of Cell Evolution. Orig. Life Evol. Biosph. 2013, 43 (4–5), 363–375. 10.1007/s11084-013-9344-3. PubMed DOI
Apostol I.; Levine J.; Lippincott J.; Leach J.; Hess E.; Glascock C. B.; Weickert M. J.; Blackmore R. Incorporation of Norvaline at Leucine Positions in Recombinant Human Hemoglobin Expressed in Escherichia Coli. J. Biol. Chem. 1997, 272 (46), 28980–28988. 10.1074/jbc.272.46.28980. PubMed DOI
Martin W.; Russell M. J. On the Origin of Biochemistry at an Alkaline Hydrothermal Vent. Philos. Trans. R. Soc. London B. Biol. Sci. 2007, 362 (1486), 1887–1925. 10.1098/rstb.2006.1881. PubMed DOI PMC
Grotzinger J. P.; Kasting J. F. New Constraints on Precambrian Ocean Composition. J. Geol. 1993, 101 (2), 235–243. 10.1086/648218. PubMed DOI
Tanaka J.; Doi N.; Takashima H.; Yanagawa H. Comparative Characterization of Random-Sequence Proteins Consisting of 5, 12, and 20 Kinds of Amino Acids. Protein Sci. 2010, 19 (4), 786–795. 10.1002/pro.358. PubMed DOI PMC
Tretyachenko V.; Vymětal J.; Neuwirthová T.; Vondrášek J.; Fujishima K.; Hlouchová K. Modern and Prebiotic Amino Acids Support Distinct Structural Profiles in Proteins. Open Biol. 2022, 12 (6), 220040.10.1098/rsob.220040. PubMed DOI PMC
Kozlowski L. P. Proteome-pI: Proteome Isoelectric Point Database. Nucleic Acids Res. 2017, 45 (D1), D1112–D1116. 10.1093/nar/gkw978. PubMed DOI PMC
Wang Y.; Van Oosterwijk N.; Ali A. M.; Adawy A.; Anindya A. L.; Dömling A. S. S.; Groves M. R. A Systematic Protein Refolding Screen Method using the DGR Approach Reveals that Time and Secondary TSA are Essential Variables. Sci. Rep. 2017, 7 (1), 9355.10.1038/s41598-017-09687-z. PubMed DOI PMC
Reynolds J. A.; Gilbert D. B.; Tanford C. Empirical Correlation Between Hydrophobic Free Energy and Aqueous Cavity Surface Area. Proc. Natl. Acad. Sci. U. S. A. 1974, 71 (8), 2925–2927. 10.1073/pnas.71.8.2925. PubMed DOI PMC
Vymětal J.; Vondrášek J.; Hlouchová K. Sequence Versus Composition: What Prescribes IDP Biophysical Properties?. Entropy (Basel) 2019, 21 (7), 654.10.3390/e21070654. PubMed DOI PMC
Kelly S. M.; Jess T. J.; Price N. C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta 2005, 1751 (2), 119–139. 10.1016/j.bbapap.2005.06.005. PubMed DOI
Buck M. Trifluoroethanol and Colleagues: Cosolvents Come of Age. Recent Studies with Peptides and Proteins. Q. Rev. Biophys. 1998, 31 (3), 297–355. 10.1017/S003358359800345X. PubMed DOI
Starzyk A.; Barber-Armstrong W.; Sridharan M.; Decatur S. M. Spectroscopic Evidence for Backbone Desolvation of Helical Peptides by 2,2,2-Trifluoroethanol: An Isotope-Edited FTIR Study. Biochemistry 2005, 44 (1), 369–376. 10.1021/bi0481444. PubMed DOI
Singh S.; Singh H.; Tuknait A.; Chaudhary K.; Singh B.; Kumaran S.; Raghava G. P. PEPstrMOD: Structure Prediction of Peptides Containing Natural, Non-Natural and Modified Residues. Biol. Direct. 2015, 10 (1), 73.10.1186/s13062-015-0103-4. PubMed DOI PMC
Tanford C. The Hydrophobic Effect and The Organization of Living Matter. Science 1978, 200 (4345), 1012–1018. 10.1126/science.653353. PubMed DOI
Dill K. A. Dominant Forces in Protein Folding. Biochemistry 1990, 29 (31), 7133–7155. 10.1021/bi00483a001. PubMed DOI
Soman K. V.; Karimi A.; Case D. A. Unfolding of an Alpha-helix in Water. Biopolymers 1991, 31, 1351–1361. 10.1002/bip.360311202. PubMed DOI
Klotz I. M.; Franzen J. S. Hydrogen Bonds between Model Peptide Groups in Solution. J. Am. Chem. Soc. 1962, 84 (18), 3461–3466. 10.1021/ja00877a009. DOI
Koh J. T.; Cornish V. W.; Schultz P. G. An Experimental Approach to Evaluating The Role of Backbone Interactions in Proteins using Unnatural Amino Acid Mutagenesis. Biochemistry 1997, 36 (38), 11314–11322. 10.1021/bi9707685. PubMed DOI
Baldwin R. L. In Search of The Energetic Role of Peptide Hydrogen Bonds. J. Biol. Chem. 2003, 278 (20), 17581–17588. 10.1074/jbc.X200009200. PubMed DOI
Longo L. M.; Despotović D.; Weil-Ktorza O.; Walker M. J.; Jabłońska J.; Fridmann-Sirkis Y.; Varani G.; Metanis N.; Tawfik D. S. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (27), 15731–15739. 10.1073/pnas.2001989117. PubMed DOI PMC
Hay R. W.; Morris P. J. Proton Ionisation Constants and Kinetics of Base Hydrolysis of Some α-Amino-acid Esters in Aqueous Solution. Part III. Hydrolysis and Intramolecular Aminolysis of αω-Diamino-acid Methyl Esters. J. Chem. Soc., Perkin Trans. 2 1972, 1021–1029. 10.1039/P29720001021. DOI
McGee W. M.; McLuckey S. A. The Ornithine Effect in Peptide Cation Dissociation. J. Mass. Spectrom. 2013, 48 (7), 856–861. 10.1002/jms.3233. PubMed DOI PMC
Despotović D.; Longo L. M.; Aharon E.; Kahana A.; Scherf T.; Gruic-Sovulj I.; Tawfik D. S. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020, 59 (46), 4456–4462. 10.1021/acs.biochem.0c00800. PubMed DOI PMC
Giacobelli V. G.; Fujishima K.; Lepšík M.; Tretyachenko V.; Kadavá T.; Makarov M.; Bednárová L.; Novák P.; Hlouchová K. In Vitro Evolution Reveals Noncationic Protein-RNA Interaction Mediated by Metal Ions. Mol. Biol. Evol. 2022, 39 (3), msac032.10.1093/molbev/msac032. PubMed DOI PMC
Poduska K.; Katrukha G. S.; Silaev A. B.; Rudinger J. Amino Acids and Peptides. LII. Intramolecular Aminolysis of Amide Bonds in Derivatives of Alpha,Gamma-Diaminobutyric Acid, Alpha,Beta-Diaminoproprionic Acid, and Ornithine. Collect. Czechoslov. Chem. Commun. 1965, 30, 2410–2433. 10.1135/cccc19652410. DOI
Padmanabhan S.; York E. J.; Stewart J. M.; Baldwin R. L. Helix Propensities of Basic Amino Acids Increase with the Length of the Side-chain. J. Mol. Biol. 1996, 257, 726–734. 10.1006/jmbi.1996.0197. PubMed DOI
Mayer-Bacon C.; Agboha N.; Muscalli M.; Freeland S. Evolution as a Guide to Designing xeno Amino Acid Alphabets. Int. J. Mol. Sci. 2021, 22 (6), 2787.10.3390/ijms22062787. PubMed DOI PMC
Brown S.; Voráček V.; Freeland S.. What Would an Alien Amino Acid Alphabet Look Like and Why?. UMBC GABS Symposium 2022, 2023.10.1089/ast.2022.0107 PubMed DOI
Ilardo M.; Bose R.; Meringer M.; Rasulev B.; Grefenstette N.; Stephenson J.; Freeland S.; Gillams R. J.; Butch C. J.; Cleaves H. J. 2nd Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci. Rep. 2019, 9 (1), 12468.10.1038/s41598-019-47574-x. PubMed DOI PMC
Ilardo M.; Meringer M.; Freeland S.; Rasulev B.; Cleaves H. J. 2nd Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids. Sci. Rep. 2015, 5, 9414.10.1038/srep09414. PubMed DOI PMC
Lam K. S.; Lebl M.; Krchňák V. The “One-Bead-One-Compound” Combinatorial Library Method. Chem. Rev. 1997, 97 (2), 411–448. 10.1021/cr9600114. PubMed DOI
Ostresh J. M.; Winkle J. H.; Hamashin V. T.; Houghten R. A. Peptide Libraries: Determination of Relative Reaction Rates of Protected Amino Acids in Competitive Couplings. Biopolymers 1994, 34 (12), 1681–1689. 10.1002/bip.360341212. PubMed DOI
Rutter W.; Santi D.. Peptide Mixtures. US5420246A, 1995.
Ivanetich K. M.; Santi D. V. Preparation of Equimolar Mixtures of Peptides by Adjustment of Activated Amino Acid Concentrations. Methods Enzymol. 1996, 267, 247–260. 10.1016/S0076-6879(96)67017-7. PubMed DOI
Lebl M.; Flegelova Z.; Poncar P.; Mudra P.; Paces O.; Knor M.; Buzek M.; Smrz J.; Pokorny V.; Pesek V.. Device for Parallel Oligomer Synthesis, Method of Parallel Oligomer Synthesis and Use Thereof. WO-2019115514-A1, 2017.
King D. S.; Fields C. G.; Fields G. B. A Cleavage Method Which Minimizes Side Reactions Following Fmoc Solid Phase Peptide Synthesis. Int. J. Pept. Protein Res. 1990, 36 (3), 255–266. 10.1111/j.1399-3011.1990.tb00976.x. PubMed DOI
Udenfriend S.; Stein S.; Böhlen P.; Dairman W.; Leimgruber W.; Weigele M. Fluorescamine: a Reagent for Assay of Amino Acids, Peptides, Proteins, and Primary Amines in The Picomole Range. Science 1972, 178 (4063), 871–872. 10.1126/science.178.4063.871. PubMed DOI
Kabsch W.; Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637. 10.1002/bip.360221211. PubMed DOI
Phosphoric acid salts of amino acids as a source of oligopeptides on the early Earth
Peptides En Route from Prebiotic to Biotic Catalysis