Early Selection of the Amino Acid Alphabet Was Adaptively Shaped by Biophysical Constraints of Foldability

. 2023 Mar 08 ; 145 (9) : 5320-5329. [epub] 20230224

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36826345

Grantová podpora
DP2 GM140926 NIGMS NIH HHS - United States

Whereas modern proteins rely on a quasi-universal repertoire of 20 canonical amino acids (AAs), numerous lines of evidence suggest that ancient proteins relied on a limited alphabet of 10 "early" AAs and that the 10 "late" AAs were products of biosynthetic pathways. However, many nonproteinogenic AAs were also prebiotically available, which begs two fundamental questions: Why do we have the current modern amino acid alphabet and would proteins be able to fold into globular structures as well if different amino acids comprised the genetic code? Here, we experimentally evaluate the solubility and secondary structure propensities of several prebiotically relevant amino acids in the context of synthetic combinatorial 25-mer peptide libraries. The most prebiotically abundant linear aliphatic and basic residues were incorporated along with or in place of other early amino acids to explore these alternative sequence spaces. The results show that foldability was likely a critical factor in the selection of the canonical alphabet. Unbranched aliphatic amino acids were purged from the proteinogenic alphabet despite their high prebiotic abundance because they generate polypeptides that are oversolubilized and have low packing efficiency. Surprisingly, we find that the inclusion of a short-chain basic amino acid also decreases polypeptides' secondary structure potential, for which we suggest a biophysical model. Our results support the view that, despite lacking basic residues, the early canonical alphabet was remarkably adaptive at supporting protein folding and explain why basic residues were only incorporated at a later stage of protein evolution.

Zobrazit více v PubMed

Milner-White E. J.; Russell M. J. Functional Capabilities of the Earliest Peptides and the Emergence of Life. Genes (Basel) 2011, 2 (4), 671–688. 10.3390/genes2040671. PubMed DOI PMC

Fried S. D.; Fujishima K.; Makarov M.; Cherepashuk I.; Hlouchova K. Peptides Before and During the Nucleotide World: An Origins Story Emphasizing Cooperation Between Proteins and Nucleic Acids. J. R. Soc. Interface 2022, 19 (187), 20210641.10.1098/rsif.2021.0641. PubMed DOI PMC

Frenkel-Pinter M.; Samanta M.; Ashkenasy G.; Leman L. J. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem. Rev. 2020, 120 (11), 4707–4765. 10.1021/acs.chemrev.9b00664. PubMed DOI

Freeland S. Undefining Life’s Biochemistry: Implications for Abiogenesis. J. R. Soc. Interface 2022, 19 (187), 20210814.10.1098/rsif.2021.0814. PubMed DOI PMC

Cleaves H. J. The Origin of the Biologically Coded Amino Acids. J. Theor. Biol. 2010, 263 (4), 490–498. 10.1016/j.jtbi.2009.12.014. PubMed DOI

Higgs P. G.; Pudritz R. E. A Thermodynamic Basis for Prebiotic Amino Acid Synthesis and the Nature of the First Genetic Code. Astrobiology 2009, 9 (5), 483–490. 10.1089/ast.2008.0280. PubMed DOI

Kitadai N.; Maruyama S. Origins of building blocks of life: A review. Geosci. Front. 2018, 9 (4), 1117–1153. 10.1016/j.gsf.2017.07.007. DOI

Weber A. L.; Miller S. L. Reasons for the Occurrence of the Twenty Coded Protein Amino Acids. J. Mol. Evol. 1981, 17 (5), 273–284. 10.1007/BF01795749. PubMed DOI

Longo L. M.; Blaber M. Protein Design at The Interface of The Pre-Biotic and Biotic Worlds. Arch. Biochem. Biophys. 2012, 526 (1), 16–21. 10.1016/j.abb.2012.06.009. PubMed DOI

Zaia D. A. M.; Zaia C. T. B. V.; De Santana H. Which Amino Acids Should Be Used in Prebiotic Chemistry Studies?. Orig. Life Evol. Biosph. 2008, 38 (6), 469–488. 10.1007/s11084-008-9150-5. PubMed DOI

Ménez B.; Pisapia C.; Andreani M.; Jamme F.; Vanbellingen Q. P.; Brunelle A.; Richard L.; Dumas P.; Réfrégiers M. Abiotic Synthesis of Amino Acids in the Recesses of the Oceanic Lithosphere. Nature 2018, 564 (7734), 59–63. 10.1038/s41586-018-0684-z. PubMed DOI

Patel B. H.; Percivalle C.; Ritson D. J.; Duffy C. D.; Sutherland J. D. Common Origins of RNA, Protein and Lipid Precursors in a Cyanosulfidic Protometabolism. Nat. Chem. 2015, 7 (4), 301–307. 10.1038/nchem.2202. PubMed DOI PMC

Trifonov E. N. Consensus Temporal Order of Amino Acids and Evolution of The Triplet Code. Gene. 2000, 261 (1), 139–151. 10.1016/S0378-1119(00)00476-5. PubMed DOI

Newton M. S.; Morrone D. J.; Lee K. H.; Seelig B. Genetic Code Evolution Investigated through the Synthesis and Characterisation of Proteins from Reduced-Alphabet Libraries. ChemBioChem. 2019, 20 (6), 846–856. 10.1002/cbic.201800668. PubMed DOI

Solis A. D. Reduced Alphabet of Prebiotic Amino Acids Optimally Encodes the Conformational Space of Diverse Extant Protein Folds. BMC Evol. Biol. 2019, 19 (1), 158.10.1186/s12862-019-1464-6. PubMed DOI PMC

Tretyachenko V.; Vymětal J.; Bednárová L.; Kopecký V.; Hofbauerová K.; Jindrová H.; Hubálek M.; Souček R.; Konvalinka J.; Vondrášek J.; Hlouchová K. Random Protein Sequences Can Form Defined Secondary Structures and Are Well-Tolerated In Vivo. Sci. Rep. 2017, 7 (1), 15449.10.1038/s41598-017-15635-8. PubMed DOI PMC

Freeland S.Terrestrial” Amino Acids and Their Evolution. Amino Acids, Peptides and Proteins in Organic Chemistry: Origins and Synthesis of Amino Acids, 1st ed.; Wiley-VCH Verlag GmbH & Co. KgaA, 2010; Vol. 1, pp 43–75.

Vázquez-Salazar A.; Lazcano A. Early Life: Embracing the RNA World. Curr. Biol. 2018, 28 (5), R220–R222. 10.1016/j.cub.2018.01.055. PubMed DOI

Raggi L.; Bada J. L.; Lazcano A. On the Lack of Evolutionary Continuity between Prebiotic Peptides and Extant Enzymes. Phys. Chem. Chem. Phys. 2016, 18 (30), 20028–20032. 10.1039/C6CP00793G. PubMed DOI

Meierhenrich U. J.; Munoz Caro G. M.; Bredehoft J. H.; Jessberger E. K.; Thiemann W. H.-P. Identification of Diamino Acids in the Murichison Meteorite. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (25), 9182–9186. 10.1073/pnas.0403043101. PubMed DOI PMC

Wolman Y.; Haverland W. J.; Miller S. L. Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids. Proc. Natl. Acad. Sci. U. S. A. 1972, 69 (4), 809–811. 10.1073/pnas.69.4.809. PubMed DOI PMC

Alvarez-Carreño C.; Becerra A.; Lazcano A. Norvaline and Norleucine May Have Been More Abundant Protein Components during Early Stages of Cell Evolution. Orig. Life Evol. Biosph. 2013, 43 (4–5), 363–375. 10.1007/s11084-013-9344-3. PubMed DOI

Apostol I.; Levine J.; Lippincott J.; Leach J.; Hess E.; Glascock C. B.; Weickert M. J.; Blackmore R. Incorporation of Norvaline at Leucine Positions in Recombinant Human Hemoglobin Expressed in Escherichia Coli. J. Biol. Chem. 1997, 272 (46), 28980–28988. 10.1074/jbc.272.46.28980. PubMed DOI

Martin W.; Russell M. J. On the Origin of Biochemistry at an Alkaline Hydrothermal Vent. Philos. Trans. R. Soc. London B. Biol. Sci. 2007, 362 (1486), 1887–1925. 10.1098/rstb.2006.1881. PubMed DOI PMC

Grotzinger J. P.; Kasting J. F. New Constraints on Precambrian Ocean Composition. J. Geol. 1993, 101 (2), 235–243. 10.1086/648218. PubMed DOI

Tanaka J.; Doi N.; Takashima H.; Yanagawa H. Comparative Characterization of Random-Sequence Proteins Consisting of 5, 12, and 20 Kinds of Amino Acids. Protein Sci. 2010, 19 (4), 786–795. 10.1002/pro.358. PubMed DOI PMC

Tretyachenko V.; Vymětal J.; Neuwirthová T.; Vondrášek J.; Fujishima K.; Hlouchová K. Modern and Prebiotic Amino Acids Support Distinct Structural Profiles in Proteins. Open Biol. 2022, 12 (6), 220040.10.1098/rsob.220040. PubMed DOI PMC

Kozlowski L. P. Proteome-pI: Proteome Isoelectric Point Database. Nucleic Acids Res. 2017, 45 (D1), D1112–D1116. 10.1093/nar/gkw978. PubMed DOI PMC

Wang Y.; Van Oosterwijk N.; Ali A. M.; Adawy A.; Anindya A. L.; Dömling A. S. S.; Groves M. R. A Systematic Protein Refolding Screen Method using the DGR Approach Reveals that Time and Secondary TSA are Essential Variables. Sci. Rep. 2017, 7 (1), 9355.10.1038/s41598-017-09687-z. PubMed DOI PMC

Reynolds J. A.; Gilbert D. B.; Tanford C. Empirical Correlation Between Hydrophobic Free Energy and Aqueous Cavity Surface Area. Proc. Natl. Acad. Sci. U. S. A. 1974, 71 (8), 2925–2927. 10.1073/pnas.71.8.2925. PubMed DOI PMC

Vymětal J.; Vondrášek J.; Hlouchová K. Sequence Versus Composition: What Prescribes IDP Biophysical Properties?. Entropy (Basel) 2019, 21 (7), 654.10.3390/e21070654. PubMed DOI PMC

Kelly S. M.; Jess T. J.; Price N. C. How to Study Proteins by Circular Dichroism. Biochim. Biophys. Acta 2005, 1751 (2), 119–139. 10.1016/j.bbapap.2005.06.005. PubMed DOI

Buck M. Trifluoroethanol and Colleagues: Cosolvents Come of Age. Recent Studies with Peptides and Proteins. Q. Rev. Biophys. 1998, 31 (3), 297–355. 10.1017/S003358359800345X. PubMed DOI

Starzyk A.; Barber-Armstrong W.; Sridharan M.; Decatur S. M. Spectroscopic Evidence for Backbone Desolvation of Helical Peptides by 2,2,2-Trifluoroethanol: An Isotope-Edited FTIR Study. Biochemistry 2005, 44 (1), 369–376. 10.1021/bi0481444. PubMed DOI

Singh S.; Singh H.; Tuknait A.; Chaudhary K.; Singh B.; Kumaran S.; Raghava G. P. PEPstrMOD: Structure Prediction of Peptides Containing Natural, Non-Natural and Modified Residues. Biol. Direct. 2015, 10 (1), 73.10.1186/s13062-015-0103-4. PubMed DOI PMC

Tanford C. The Hydrophobic Effect and The Organization of Living Matter. Science 1978, 200 (4345), 1012–1018. 10.1126/science.653353. PubMed DOI

Dill K. A. Dominant Forces in Protein Folding. Biochemistry 1990, 29 (31), 7133–7155. 10.1021/bi00483a001. PubMed DOI

Soman K. V.; Karimi A.; Case D. A. Unfolding of an Alpha-helix in Water. Biopolymers 1991, 31, 1351–1361. 10.1002/bip.360311202. PubMed DOI

Klotz I. M.; Franzen J. S. Hydrogen Bonds between Model Peptide Groups in Solution. J. Am. Chem. Soc. 1962, 84 (18), 3461–3466. 10.1021/ja00877a009. DOI

Koh J. T.; Cornish V. W.; Schultz P. G. An Experimental Approach to Evaluating The Role of Backbone Interactions in Proteins using Unnatural Amino Acid Mutagenesis. Biochemistry 1997, 36 (38), 11314–11322. 10.1021/bi9707685. PubMed DOI

Baldwin R. L. In Search of The Energetic Role of Peptide Hydrogen Bonds. J. Biol. Chem. 2003, 278 (20), 17581–17588. 10.1074/jbc.X200009200. PubMed DOI

Longo L. M.; Despotović D.; Weil-Ktorza O.; Walker M. J.; Jabłońska J.; Fridmann-Sirkis Y.; Varani G.; Metanis N.; Tawfik D. S. Primordial emergence of a nucleic acid-binding protein via phase separation and statistical ornithine-to-arginine conversion. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (27), 15731–15739. 10.1073/pnas.2001989117. PubMed DOI PMC

Hay R. W.; Morris P. J. Proton Ionisation Constants and Kinetics of Base Hydrolysis of Some α-Amino-acid Esters in Aqueous Solution. Part III. Hydrolysis and Intramolecular Aminolysis of αω-Diamino-acid Methyl Esters. J. Chem. Soc., Perkin Trans. 2 1972, 1021–1029. 10.1039/P29720001021. DOI

McGee W. M.; McLuckey S. A. The Ornithine Effect in Peptide Cation Dissociation. J. Mass. Spectrom. 2013, 48 (7), 856–861. 10.1002/jms.3233. PubMed DOI PMC

Despotović D.; Longo L. M.; Aharon E.; Kahana A.; Scherf T.; Gruic-Sovulj I.; Tawfik D. S. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020, 59 (46), 4456–4462. 10.1021/acs.biochem.0c00800. PubMed DOI PMC

Giacobelli V. G.; Fujishima K.; Lepšík M.; Tretyachenko V.; Kadavá T.; Makarov M.; Bednárová L.; Novák P.; Hlouchová K. In Vitro Evolution Reveals Noncationic Protein-RNA Interaction Mediated by Metal Ions. Mol. Biol. Evol. 2022, 39 (3), msac032.10.1093/molbev/msac032. PubMed DOI PMC

Poduska K.; Katrukha G. S.; Silaev A. B.; Rudinger J. Amino Acids and Peptides. LII. Intramolecular Aminolysis of Amide Bonds in Derivatives of Alpha,Gamma-Diaminobutyric Acid, Alpha,Beta-Diaminoproprionic Acid, and Ornithine. Collect. Czechoslov. Chem. Commun. 1965, 30, 2410–2433. 10.1135/cccc19652410. DOI

Padmanabhan S.; York E. J.; Stewart J. M.; Baldwin R. L. Helix Propensities of Basic Amino Acids Increase with the Length of the Side-chain. J. Mol. Biol. 1996, 257, 726–734. 10.1006/jmbi.1996.0197. PubMed DOI

Mayer-Bacon C.; Agboha N.; Muscalli M.; Freeland S. Evolution as a Guide to Designing xeno Amino Acid Alphabets. Int. J. Mol. Sci. 2021, 22 (6), 2787.10.3390/ijms22062787. PubMed DOI PMC

Brown S.; Voráček V.; Freeland S.. What Would an Alien Amino Acid Alphabet Look Like and Why?. UMBC GABS Symposium 2022, 2023.10.1089/ast.2022.0107 PubMed DOI

Ilardo M.; Bose R.; Meringer M.; Rasulev B.; Grefenstette N.; Stephenson J.; Freeland S.; Gillams R. J.; Butch C. J.; Cleaves H. J. 2nd Adaptive Properties of the Genetically Encoded Amino Acid Alphabet Are Inherited from Its Subsets. Sci. Rep. 2019, 9 (1), 12468.10.1038/s41598-019-47574-x. PubMed DOI PMC

Ilardo M.; Meringer M.; Freeland S.; Rasulev B.; Cleaves H. J. 2nd Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids. Sci. Rep. 2015, 5, 9414.10.1038/srep09414. PubMed DOI PMC

Lam K. S.; Lebl M.; Krchňák V. The “One-Bead-One-Compound” Combinatorial Library Method. Chem. Rev. 1997, 97 (2), 411–448. 10.1021/cr9600114. PubMed DOI

Ostresh J. M.; Winkle J. H.; Hamashin V. T.; Houghten R. A. Peptide Libraries: Determination of Relative Reaction Rates of Protected Amino Acids in Competitive Couplings. Biopolymers 1994, 34 (12), 1681–1689. 10.1002/bip.360341212. PubMed DOI

Rutter W.; Santi D.. Peptide Mixtures. US5420246A, 1995.

Ivanetich K. M.; Santi D. V. Preparation of Equimolar Mixtures of Peptides by Adjustment of Activated Amino Acid Concentrations. Methods Enzymol. 1996, 267, 247–260. 10.1016/S0076-6879(96)67017-7. PubMed DOI

Lebl M.; Flegelova Z.; Poncar P.; Mudra P.; Paces O.; Knor M.; Buzek M.; Smrz J.; Pokorny V.; Pesek V.. Device for Parallel Oligomer Synthesis, Method of Parallel Oligomer Synthesis and Use Thereof. WO-2019115514-A1, 2017.

King D. S.; Fields C. G.; Fields G. B. A Cleavage Method Which Minimizes Side Reactions Following Fmoc Solid Phase Peptide Synthesis. Int. J. Pept. Protein Res. 1990, 36 (3), 255–266. 10.1111/j.1399-3011.1990.tb00976.x. PubMed DOI

Udenfriend S.; Stein S.; Böhlen P.; Dairman W.; Leimgruber W.; Weigele M. Fluorescamine: a Reagent for Assay of Amino Acids, Peptides, Proteins, and Primary Amines in The Picomole Range. Science 1972, 178 (4063), 871–872. 10.1126/science.178.4063.871. PubMed DOI

Kabsch W.; Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-Bonded and Geometrical Features. Biopolymers 1983, 22 (12), 2577–2637. 10.1002/bip.360221211. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...