Phosphoric acid salts of amino acids as a source of oligopeptides on the early Earth

. 2024 Aug 22 ; 7 (1) : 185. [epub] 20240822

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39174757

Grantová podpora
22-25057S Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
CZ.02.1.01/0.0/0.0/18_046/0015974 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)

Odkazy

PubMed 39174757
PubMed Central PMC11341901
DOI 10.1038/s42004-024-01264-6
PII: 10.1038/s42004-024-01264-6
Knihovny.cz E-zdroje

Because of their unique proton-conductivity, chains of phosphoric acid molecules are excellent proton-transfer catalysts. Here we demonstrate that this property could have been exploited for the prebiotic synthesis of the first oligopeptide sequences on our planet. Our results suggest that drying highly diluted solutions containing amino acids (like glycine, histidine and arginine) and phosphates in comparable concentrations at elevated temperatures (ca. 80 °C) in an acidic environment could lead to the accumulation of amino acid:phosphoric acid crystalline salts. Subsequent heating of these materials at 100 °C for 1-3 days results in the formation of oligoglycines consisting of up to 24 monomeric units, while arginine and histidine form shorter oligomers (up to trimers) only. Overall, our results suggest that combining the catalytic effect of phosphate chains with the crystalline order present in amino acid:phosphoric acid salts represents a viable solution that could be utilized to generate the first oligopeptide sequences in a mild acidic hydrothermal field scenario. Further, we propose that crystallization could help overcoming cyclic oligomer formation that is a generally known bottleneck of prebiotic polymerization processes preventing further chain growth.

Zobrazit více v PubMed

Vilčiauskas, L., Tuckerman, M. E., Bester, G., Paddison, S. J. & Kreuer, K.-D. The mechanism of proton conduction in phosphoric acid. Nat. Chem.4, 461–466 (2012). 10.1038/nchem.1329 PubMed DOI

Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev.114, 9047–9153 (2014). 10.1021/cr5001496 PubMed DOI

Frenkel-Pinter, M., Samanta, M., Ashkenasy, G. & Leman, L. J. Prebiotic peptides: molecular hubs in the origin of life. Chem. Rev.120, 4707–4765 (2020). 10.1021/acs.chemrev.9b00664 PubMed DOI

Leman, L., Orgel, L. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science306, 283–286 (2004). 10.1126/science.1102722 PubMed DOI

Rode, B. M. & Schwendinger, M. G. Copper-catalyzed amino acid condensation in water—A simple possible way of prebiotic peptide formation. Orig. Life Evol. Biosph.20, 401–410 (1990).10.1007/BF01808134 DOI

Griffith, E. C. & Vaida, V. In situ observation of peptide bond formation at the water-air interface. Proc. Natl. Acad. Sci. USA109, 15697–15701 (2012). 10.1073/pnas.1210029109 PubMed DOI PMC

Eder, A. H. & Rode, B. M. Influence of alkali- and alkaline-earth-metal cations on the ‘salt-induced peptide formation’ reaction. J. Chem. Soc. Dalton Trans. 1125–1130 (1994).

Sauer, F. et al. From amino acid mixtures to peptides in liquid sulphur dioxide on early Earth. Nat. Comm.12, 7182 (2021).10.1038/s41467-021-27527-7 PubMed DOI PMC

Sydow, C., Sauer, F., Siegle, A. F. & Trapp, O. Iron-mediated peptide formation in water and liquid sulfur dioxide under prebiotically plausible conditions. ChemSystemsChem.5, e202200034 (2023).10.1002/syst.202200034 PubMed DOI PMC

Martra, G. et al. The formation and self-assembly of long prebiotic oligomers produced by the condensation of unactivated amino acids on oxide surfaces. Angew. Chem. Int. Ed.53, 4671–4674 (2014).10.1002/anie.201311089 PubMed DOI

Rimola, A., Fabbiani, M., Sodupe, M., Ugliengo, P. & Martra, G. How does silica catalyze the amide bond formation under dry conditions? Role of specific surface silanol pairs. ACS Catal.8, 4558–4568 (2018).10.1021/acscatal.7b03961 DOI

Sakhno, Y. et al. One step up the ladder of prebiotic complexity: formation of nonrandom linear polypeptides from binary systems of amino acids on silica. Chem. Eur. J.25, 1275–1285 (2019). 10.1002/chem.201803845 PubMed DOI

Kitadai, N. et al. Glycine polymerization on oxide minerals. Orig. Life Evol. Biosph.47, 123–143 (2017). 10.1007/s11084-016-9516-z PubMed DOI

Bujdák, J. & Rode, B. M. Activated alumina as an energy source for peptide bond formation: consequences for mineral-mediated prebiotic processes. Amino Acids21, 281–291 (2001). 10.1007/s007260170014 PubMed DOI

Georgelin, T. et al. Iron(III) oxide nanoparticles as catalysts for the formation of linear glycine peptides. Eur. J. Inorg. Chem.2017, 198–211 (2017).10.1002/ejic.201601296 DOI

Rodriguez-Garcia, M. et al. Formation of oligopeptides in high yield under simple programmable conditions. Nat. Commun.6, 8385 (2015). 10.1038/ncomms9385 PubMed DOI PMC

Forsythe, J. G. et al. Ester-mediated amide bond formation driven by wet–dry cycles: a possible path to polypeptides on the prebiotic. Earth. Angew. Chem. Int. Ed.54, 9871–9875 (2015).10.1002/anie.201503792 PubMed DOI PMC

Yu, S.-S. et al. Kinetics of prebiotic depsipeptide formation from the ester–amide exchange reaction. Phys. Chem. Chem. Phys.18, 28441–28450 (2016). 10.1039/C6CP05527C PubMed DOI

Frenkel-Pinter, M. et al. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA116, 16338–16346 (2019). 10.1073/pnas.1904849116 PubMed DOI PMC

Frenkel-Pinter, M. et al. Differential oligomerization of alpha versus beta amino acids and hydroxy acids in abiotic proto-peptide synthesis reactions. Life12, 265 (2022). 10.3390/life12020265 PubMed DOI PMC

Abou Mrad, N. et al. The prebiotic C-terminal elongation of peptides can be initiated by N-carbamoyl amino acids. Chem. Eur. J.23, 7418–7421 (2017). 10.1002/chem.201700702 PubMed DOI

Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science370, 865–869 (2020). 10.1126/science.abd5680 PubMed DOI

Ward, D. J., Saccomando, D. J., Walker, G. & Mansell, S. M. Sustainable routes to alkenes: applications of homogeneous catalysis to the dehydration of alcohols to alkenes. Catal. Sci. Technol.13, 2638–2647 (2023).10.1039/D2CY01690G DOI

Fox, S. W. & Harada, K. Thermal copolymerization of amino acids in the presence of phosphoric acid. Arch. Biochem. Biophys.86, 281–285 (1960). 10.1016/0003-9861(60)90419-7 PubMed DOI

Harada, K. & Fox, S. W. The thermal condensation of glutamic acid and glycine to linear peptides. 1. J. Am. Chem. Soc.80, 2694–2697 (1958).10.1021/ja01544a027 DOI

Choughuley, A. S. U., Subbaraman, A. S., Kazi, Z. A. & Chadha, M. S. Peptide formation in the presence of simple inorganic phosphates. Biosystems5, 48–53 (1972).10.1016/0303-2647(72)90018-4 PubMed DOI

Rabinowitz, J., Flores, J., Krebsbach, R. & Rogers, G. Peptide formation in the presence of linear or cyclic polyphosphates. Nature224, 795–796 (1969). 10.1038/224795a0 PubMed DOI

Yamanaka, J., Inomata, K. & Yamagata, Y. Condensation of oligoglycines with trimeta- and tetrametaphosphate in aqueous solutions. Orig. Life Evol. Biosph.18, 165–178 (1988). 10.1007/BF01804669 PubMed DOI

Boigenzahn, H. & Yin, J. Glycine to oligoglycine via sequential trimetaphosphate activation steps in drying environments. Orig. Life Evol. Biosph.52, 249–261 (2022). 10.1007/s11084-022-09634-7 PubMed DOI

Gibard, C., Bhowmik, S., Karki, M., Kim, E. K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem.10, 212–217 (2018). 10.1038/nchem.2878 PubMed DOI PMC

Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. The cambridge structural database. Acta Crystallogr. B72, 171–179 (2016).10.1107/S2052520616003954 PubMed DOI PMC

Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. Structures of glycine monophosphate and glycine cyclo-triphosphate. Acta Cryst. C44, 99–102 (1988).10.1107/S0108270187008539 DOI

Fox, S. W. & Harada, K. Thermal copolymerization of amino acids to a product resembling protein. Science128, 1214–1214 (1958). 10.1126/science.128.3333.1214 PubMed DOI

Campbell, T. D., Febrian, R., Kleinschmidt, H. E., Smith, K. A. & Bracher, P. J. Quantitative analysis of glycine oligomerization by ion-pair chromatography. ACS Omega4, 12745–12752 (2019). 10.1021/acsomega.9b01492 PubMed DOI PMC

Natarajan, S., Muthukrishnan, C., Bahadur, S. A., Rajaram, R. K. & Rajan, S. S. Reinvestigation of the crystal structure of diglycine hydrochloride. Z. Kristallogr. Cryst. Mater.198, 265–270 (1992).10.1524/zkri.1992.198.14.265 DOI

Wong, M. L., Charnay, B. D., Gao, P., Yung, Y. L. & Russell, M. J. Nitrogen oxides in early Earth’s atmosphere as electron acceptors for life’s emergence. Astrobiology17, 975–983 (2017). 10.1089/ast.2016.1473 PubMed DOI

Damer, B. & Deamer, D. The hot spring hypothesis for an origin of life. Astrobiology20, 429–452 (2020). 10.1089/ast.2019.2045 PubMed DOI PMC

Kovács, J., Könyves, I. & Pusztai, A. Preparation of polyasparaginic acid (polyaspartic acid) by the thermal autocondensation of asparaginic acid. Experientia9, 459–460 (1953). 10.1007/BF02165821 PubMed DOI

Wang, Y., Hou, Y., Ruan, G., Pan, M. & Liu, T. Study on the polymerization of aspartic acid catalyzed by phosphoric acid. J. Macromol. Sci. A40, 293–307 (2003).10.1081/MA-120018116 DOI

Pasek, M. A. Rethinking early Earth phosphorus geochemistry. Proc. Natl. Acad. Sci. USA105, 853–858 (2008). 10.1073/pnas.0708205105 PubMed DOI PMC

Pasek, M. A., Harnmeijer, J. P., Buick, R., Gull, M. & Atlas, Z. Evidence for reactive reduced phosphorus species in the early Archean ocean. Proc. Natl. Acad. Sci. USA110, 10089–10094 (2013). 10.1073/pnas.1303904110 PubMed DOI PMC

Averbuch-Pouchot, M.-T. Structures of glycinium phosphite and glycylglycinium phosphite. Acta Crystallogr. C49, 815–818 (1993).10.1107/S0108270192010771 DOI

Martínez-Bachs, B. & Rimola, A. Prebiotic peptide bond formation through amino acid phosphorylation. insights from quantum chemical simulations. Life9, 75 (2019). 10.3390/life9030075 PubMed DOI PMC

Li, Y.-M., Yin, Y.-W. & Zhao, Y.-F. Phosphoryl group participation leads to peptide formation from N-phosphorylamino acids. Int. J. Pept. Protein Res.39, 375–381 (1992). 10.1111/j.1399-3011.1992.tb01597.x PubMed DOI

Zeng, J.-N., Xue, C.-B., Chen, Q.-W. & Zhao, Y.-F. A new peptide coupling reagent—Dialkyl phosphite. Bioorg. Chem.17, 434–442 (1989).10.1016/0045-2068(89)90044-8 DOI

Pasek, M. A., Dworkin, J. P. & Lauretta, D. S. A radical pathway for organic phosphorylation during schreibersite corrosion with implications for the origin of life. Geochim. Cosmochim. Acta71, 1721–1736 (2007).10.1016/j.gca.2006.12.018 DOI

Gull, M. et al. Nucleoside phosphorylation by the mineral schreibersite. Sci. Rep.5, 17198 (2015). 10.1038/srep17198 PubMed DOI PMC

Wunnava, S. et al. Acid-catalyzed RNA-oligomerization from 3’,5’-cGMP. Chem. Eur. J.27, 17581–17585 (2021). 10.1002/chem.202103672 PubMed DOI PMC

Makarov, M. et al. Early selection of the amino acid alphabet was adaptively shaped by biophysical constraints of foldability. J. Am. Chem. Soc.145, 5320–5329 (2023). 10.1021/jacs.2c12987 PubMed DOI PMC

Averbuch-Pouchot, M. T., Durif, A. & Guitel, J. C. Structure of L-histidinium dihydrogenmonophosphate monohydrate. Acta Crystallogr. C44, 890–892 (1988).10.1107/S0108270188000927 DOI

Monaco, S. B. et al. Synthesis and characterization of chemical analogs of L-arginine phosphate. J. Cryst. Growth85, 252–255 (1987).10.1016/0022-0248(87)90231-4 DOI

Degen, T., Sadki, M., Bron, E., König, U. & Nénert, G. The HighScore suite. Powder Diffr.29, S13–S18 (2014).10.1017/S0885715614000840 DOI

Espinosa, E. et al. Electron density study of a new non-linear optical material: L-arginine phosphate monohydrate (LAP). Comparison between X-X and X-(X + N) refinements. Acta Crystallogr. B52, 519–534 (1996).10.1107/S0108768195015205 DOI

Ahmed, A. B. et al. Crystal structure, vibrational spectra and theoretical studies of L-histidinium dihydrogen phosphate-phosphoric acid. J. Mol. Struct.920, 1–7 (2009).10.1016/j.molstruc.2008.09.029 DOI

Barrett, W. T. & Wallace, W. E. Studies of NaCl-KCl solid solutions. I. Heats of formation, lattice spacings, densities, Schottky defects and mutual solubilities. J. Am. Chem. Soc.76, 366–369 (1954).10.1021/ja01631a014 DOI

Cherouana, A., Benali-Cherif, N., Bendjeddou, L. & Merazig, H. Diglycinium sulfate. Acta Crystallogr. E58, o1351–o1353 (2002).10.1107/S1600536802019785 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...