• This record comes from PubMed

Sequence Versus Composition: What Prescribes IDP Biophysical Properties?

. 2019 Jul 03 ; 21 (7) : . [epub] 20190703

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
17-10438Y Grantová Agentura České Republiky
CESNET LM2015042 National Grid
LM2015047 ELIXIR CZ
CZ.02.1.01/0.0/0.0/16_019/0000729 Ministerstvo Školství, Mládeže a Tělovýchovy

Intrinsically disordered proteins (IDPs) represent a distinct class of proteins and are distinguished from globular proteins by conformational plasticity, high evolvability and a broad functional repertoire. Some of their properties are reminiscent of early proteins, but their abundance in eukaryotes, functional properties and compositional bias suggest that IDPs appeared at later evolutionary stages. The spectrum of IDP properties and their determinants are still not well defined. This study compares rudimentary physicochemical properties of IDPs and globular proteins using bioinformatic analysis on the level of their native sequences and random sequence permutations, addressing the contributions of composition versus sequence as determinants of the properties. IDPs have, on average, lower predicted secondary structure contents and aggregation propensities and biased amino acid compositions. However, our study shows that IDPs exhibit a broad range of these properties. Induced fold IDPs exhibit very similar compositions and secondary structure/aggregation propensities to globular proteins, and can be distinguished from unfoldable IDPs based on analysis of these sequence properties. While amino acid composition seems to be a major determinant of aggregation and secondary structure propensities, sequence randomization does not result in dramatic changes to these properties, but for both IDPs and globular proteins seems to fine-tune the tradeoff between folding and aggregation.

See more in PubMed

Babu M.M. The contribution of intrinsically disordered regions to protein function, cellular complexity, and human disease. Biochem. Soc. Trans. 2016;44:1185–1200. doi: 10.1042/BST20160172. PubMed DOI PMC

Van Der Lee R., Buljan M., Lang B., Weatheritt R.J., Daughdrill G.W., Dunker A.K., Fuxreiter M., Gough J., Gsponer J., Jones D.T., et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 2014;114:6589–6631. doi: 10.1021/cr400525m. PubMed DOI PMC

Theillet F.X., Kalmar L., Tompa P., Han K.H., Selenko P., Dunker A.K., Daughdrill G.W., Uversky V.N. The alphabet of intrinsic disorder: I. Act like a Pro: On the abundance and roles of proline residues in intrinsically disordered proteins. Intrinsically Disord. Proteins. 2013;1:e24360. doi: 10.4161/idp.24360. PubMed DOI PMC

Romero P., Obradovic Z., Li X., Garner E.C., Brown C.J., Dunker A.K. Sequence complexity of disordered protein. Proteins Struct. Funct. Bioinform. 2001;42:38–48. doi: 10.1002/1097-0134(20010101)42:1<38::AID-PROT50>3.0.CO;2-3. PubMed DOI

Uversky V.N. Paradoxes and wonders of intrinsic disorder: Complexity of simplicity. Intrinsically Disord. Proteins. 2016;4:e1135015. doi: 10.1080/21690707.2015.1135015. PubMed DOI PMC

Piovesan D., Tabaro F., Mičetić I., Necci M., Quaglia F., Oldfield C.J., Aspromonte M.C., Davey N.E., Davidović R., Dosztányi Z., et al. DisProt 7.0: a major update of the database of disordered proteins. Nucleic Acids Res. 2016;45:D219–D227. doi: 10.1093/nar/gkw1056. PubMed DOI PMC

Heffernan R., Dehzangi A., Lyons J., Paliwal K., Sharma A., Wang J., Sattar A., Zhou Y., Yang Y. Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins. Bioinformatics. 2015;32:843–849. doi: 10.1093/bioinformatics/btv665. PubMed DOI

Jones D.T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 1999;292:195–202. doi: 10.1006/jmbi.1999.3091. PubMed DOI

Frishman D., Argos P. Seventy-five percent accuracy in protein secondary structure prediction. Proteins Struct. Funct. Bioinform. 1997;27:329–335. doi: 10.1002/(SICI)1097-0134(199703)27:3<329::AID-PROT1>3.0.CO;2-8. PubMed DOI

Cuff J.A., Barton G.J. Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins Struct. Funct. Bioinform. 1999;34:508–519. doi: 10.1002/(SICI)1097-0134(19990301)34:4<508::AID-PROT10>3.0.CO;2-4. PubMed DOI

Levine J.M., Pascarella S., Argos P., Garnier J. Quantification of secondary structure prediction improvement using multiple alignments. Prot. Eng. 1993;6:849–854. doi: 10.1093/protein/6.8.849. PubMed DOI

Garnier J. GOR secondary structure prediction method version IV. Meth. Enzym. 1998;266:540–553. PubMed

Fang Y., Gao S., Tai D., Middaugh C.R., Fang J. Identification of properties important to protein aggregation using feature selection. Bmc Bioinform. 2013;14:314. doi: 10.1186/1471-2105-14-314. PubMed DOI PMC

Necci M., Piovesan D., Dosztányi Z., Tosatto S.C. MobiDB-lite: fast and highly specific consensus prediction of intrinsic disorder in proteins. Bioinformatics. 2017;33:1402–1404. doi: 10.1093/bioinformatics/btx015. PubMed DOI

Hunter J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.

Naranjo Y., Pons M., Konrat R. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins. Mol. Biosyst. 2012;8:411–416. doi: 10.1039/C1MB05367A. PubMed DOI

Linding R., Schymkowitz J., Rousseau F., Diella F., Serrano L. A comparative study of the relationship between protein structure and β-aggregation in globular and intrinsically disordered proteins. J. Mol. Biol. 2004;342:345–353. doi: 10.1016/j.jmb.2004.06.088. PubMed DOI

Uversky V.N. The alphabet of intrinsic disorder: II. Various roles of glutamic acid in ordered and intrinsically disordered proteins. Intrinsically Disord. Proteins. 2013;1:e24684. doi: 10.4161/idp.24684. PubMed DOI PMC

Vucetic S., Brown C.J., Dunker A.K., Obradovic Z. Flavors of protein disorder. Proteins Struct. Funct. Bioinform. 2003;52:573–584. doi: 10.1002/prot.10437. PubMed DOI

Mao A.H., Lyle N., Pappu R.V. Describing sequence–ensemble relationships for intrinsically disordered proteins. Biochem. J. 2013;449:307–318. doi: 10.1042/BJ20121346. PubMed DOI PMC

Das R.K., Ruff K.M., Pappu R.V. Relating sequence encoded information to form and function of intrinsically disordered proteins. Curr. Opin. Struct. Biol. 2015;32:102–112. doi: 10.1016/j.sbi.2015.03.008. PubMed DOI PMC

Bastolla U., Moya A., Viguera E., van Ham R.C. Genomic determinants of protein folding thermodynamics in prokaryotic organisms. J. Mol. Biol. 2004;343:1451–1466. doi: 10.1016/j.jmb.2004.08.086. PubMed DOI

Monsellier E., Ramazzotti M., De Laureto P.P., Tartaglia G.G., Taddei N., Fontana A., Vendruscolo M., Chiti F. The distribution of residues in a polypeptide sequence is a determinant of aggregation optimized by evolution. Biophys. J. 2007;93:4382–4391. doi: 10.1529/biophysj.107.111336. PubMed DOI PMC

English L.R., Tischer A., Demeler A.K., Demeler B., Whitten S.T. Sequence Reversal Prevents Chain Collapse and Yields Heat-Sensitive Intrinsic Disorder. Biophys. J. 2018;115:328–340. doi: 10.1016/j.bpj.2018.06.006. PubMed DOI PMC

Tretyachenko V., Vymětal J., Bednárová L., Kopecký V., Hofbauerová K., Jindrová H., Hubálek M., Souček R., Konvalinka J., Vondrášek J., et al. Random protein sequences can form defined secondary structures and are well-tolerated in vivo. Sci. Rep. 2017;7:15449. doi: 10.1038/s41598-017-15635-8. PubMed DOI PMC

Ángyán A.F., Perczel A., Gáspári Z. Estimating intrinsic structural preferences of de novo emerging random-sequence proteins: Is aggregation the main bottleneck? Febs Lett. 2012;586:2468–2472. doi: 10.1016/j.febslet.2012.06.007. PubMed DOI

Moesa H.A., Wakabayashi S., Nakai K., Patil A. Chemical composition is maintained in poorly conserved intrinsically disordered regions and suggests a means for their classification. Mol. Biosyst. 2012;8:3262–3273. doi: 10.1039/c2mb25202c. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...