The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32371396
PubMed Central
PMC7335785
DOI
10.1074/jbc.ra120.012624
PII: S0021-9258(17)50318-X
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 protein, 70-kDa heat shock protein (Hsp70), HSP70, Hsp70, Tomm34, dimerization, hydrogen-deuterium exchange, molecular chaperone, phosphorylation, protein folding, protein import, protein kinase A (PKA), protein-nucleic acid interaction, protein–protein interaction, translocase of outer mitochondrial membrane 34 (TOMM34),
- MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- fosforylace fyziologie MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- mitochondriální importní komplex MeSH
- mitochondriální membrány metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- molekulární chaperony metabolismus MeSH
- proteinkinasy závislé na cyklickém AMP metabolismus MeSH
- proteiny 14-3-3 metabolismus MeSH
- proteiny tepelného šoku HSP70 metabolismus MeSH
- proteiny tepelného šoku HSP72 metabolismus MeSH
- proteiny tepelného šoku HSP90 metabolismus MeSH
- signální transdukce MeSH
- transkripční faktory genetika metabolismus MeSH
- transportní proteiny mitochondriální membrány genetika metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- BCL2-associated athanogene 1 protein MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- mitochondriální importní komplex MeSH
- mitochondriální proteiny MeSH
- molekulární chaperony MeSH
- proteinkinasy závislé na cyklickém AMP MeSH
- proteiny 14-3-3 MeSH
- proteiny tepelného šoku HSP70 MeSH
- proteiny tepelného šoku HSP72 MeSH
- proteiny tepelného šoku HSP90 MeSH
- TOMM34 protein, human MeSH Prohlížeč
- transkripční faktory MeSH
- transportní proteiny mitochondriální membrány MeSH
Translocase of outer mitochondrial membrane 34 (TOMM34) orchestrates heat shock protein 70 (HSP70)/HSP90-mediated transport of mitochondrial precursor proteins. Here, using in vitro phosphorylation and refolding assays, analytical size-exclusion chromatography, and hydrogen/deuterium exchange MS, we found that TOMM34 associates with 14-3-3 proteins after its phosphorylation by protein kinase A (PKA). PKA preferentially targeted two serine residues in TOMM34: Ser93 and Ser160, located in the tetratricopeptide repeat 1 (TPR1) domain and the interdomain linker, respectively. Both of these residues were necessary for efficient 14-3-3 protein binding. We determined that phosphorylation-induced structural changes in TOMM34 are further augmented by binding to 14-3-3, leading to destabilization of TOMM34's secondary structure. We also observed that this interaction with 14-3-3 occludes the TOMM34 interaction interface with ATP-bound HSP70 dimers, which leaves them intact and thereby eliminates an inhibitory effect of TOMM34 on HSP70-mediated refolding in vitro In contrast, we noted that TOMM34 in complex with 14-3-3 could bind HSP90. Both TOMM34 and 14-3-3 participated in cytosolic precursor protein transport mediated by the coordinated activities of HSP70 and HSP90. Our results provide important insights into how PKA-mediated phosphorylation and 14-3-3 binding regulate the availability of TOMM34 for its interaction with HSP70.
BioCeV Institute of Microbiology of the Czech Academy of Sciences Vestec Czech Republic
Regional Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
Zobrazit více v PubMed
Morán Luengo T., Mayer M. P., and Rüdiger S. G. D. (2019) The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 29, 164–177 10.1016/j.tcb.2018.10.004 PubMed DOI
Mayer M. P. (2010) Gymnastics of molecular chaperones. Mol. Cell 39, 321–331 10.1016/j.molcel.2010.07.012 PubMed DOI
Davis A. K., Pratt W. B., Lieberman A. P., and Osawa Y. (2020) Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cell. Mol. Life Sci. 77, 977–996 10.1007/s00018-019-03302-2 PubMed DOI PMC
Morán Luengo T., Kityk R., Mayer M. P., and Rüdiger S. G. D. (2018) Hsp90 breaks the deadlock of the HSP70 chaperone system. Mol. Cell 70, 545–552.e9 10.1016/j.molcel.2018.03.028 PubMed DOI
Bhangoo M. K., Tzankov S., Fan A. C., Dejgaard K., Thomas D. Y., and Young J. C. (2007) Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. Mol. Biol. Cell 18, 3414–3428 10.1091/mbc.e07-01-0088 PubMed DOI PMC
Brychzy A., Rein T., Winklhofer K. F., Hartl F. U., Young J. C., and Obermann W. M. (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3613–3623 10.1093/emboj/cdg362 PubMed DOI PMC
Faou P., and Hoogenraad N. J. (2012) Tom34: a cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. Biochim. Biophys. Acta 1823, 348–357 10.1016/j.bbamcr.2011.12.001 PubMed DOI
Young J. C., Hoogenraad N. J., and Hartl F. U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 10.1016/S0092-8674(02)01250-3 PubMed DOI
Wiedemann N., and Pfanner N. (2017) Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 10.1146/annurev-biochem-060815-014352 PubMed DOI
Jores T., Lawatscheck J., Beke V., Franz-Wachtel M., Yunoki K., Fitzgerald J. C., Macek B., Endo T., Kalbacher H., Buchner J., and Rapaport D. (2018) Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 217, 3091–3108 10.1083/jcb.201712029 PubMed DOI PMC
Abe Y., Shodai T., Muto T., Mihara K., Torii H., Nishikawa S., Endo T., and Kohda D. (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 10.1016/S0092-8674(00)80691-1 PubMed DOI
Jores T., Klinger A., Gross L. E., Kawano S., Flinner N., Duchardt-Ferner E., Wöhnert J., Kalbacher H., Endo T., Schleiff E., and Rapaport D. (2016) Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat. Commun. 7, 12036 10.1038/ncomms12036 PubMed DOI PMC
Moczko M., Bömer U., Kübrich M., Zufall N., Hönlinger A., and Pfanner N. (1997) The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell Biol. 17, 6574–6584 10.1128/MCB.17.11.6574 PubMed DOI PMC
Hill K., Model K., Ryan M. T., Dietmeier K., Martin F., Wagner R., and Pfanner N. (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 10.1038/26780 PubMed DOI
Schmidt O., Harbauer A. B., Rao S., Eyrich B., Zahedi R. P., Stojanovski D., Schönfisch B., Guiard B., Sickmann A., Pfanner N., and Meisinger C. (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239 10.1016/j.cell.2010.12.015 PubMed DOI
Rao S., Schmidt O., Harbauer A. B., Schönfisch B., Guiard B., Pfanner N., and Meisinger C. (2012) Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 23, 1618–1627 10.1091/mbc.e11-11-0933 PubMed DOI PMC
Gerbeth C., Schmidt O., Rao S., Harbauer A. B., Mikropoulou D., Opalińska M., Guiard B., Pfanner N., and Meisinger C. (2013) Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. 18, 578–587 10.1016/j.cmet.2013.09.006 PubMed DOI
Dagda R. K., and Das Banerjee T. (2015) Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev. Neurosci. 26, 359–370 10.1515/revneuro-2014-0085 PubMed DOI PMC
Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., Hartl F. U., and Moarefi I. (2000) Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101, 199–210 10.1016/S0092-8674(00)80830-2 PubMed DOI
Brinker A., Scheufler C., Von Der Mulbe F., Fleckenstein B., Herrmann C., Jung G., Moarefi I., and Hartl F. U. (2002) Ligand discrimination by TPR domains: relevance and selectivity of EEVD-recognition in Hsp70·Hop·Hsp90 complexes. J. Biol. Chem. 277, 19265–19275 10.1074/jbc.M109002200 PubMed DOI
Durech M., Trcka F., Man P., Blackburn E. A., Hernychova L., Dvorakova P., Coufalova D., Kavan D., Vojtesek B., and Muller P. (2016) Novel entropically driven conformation-specific interactions with Tomm34 protein modulate Hsp70 protein folding and ATPase activities. Mol. Cell. Proteomics 15, 1710–1727 10.1074/mcp.M116.058131 PubMed DOI PMC
Lee C. T., Graf C., Mayer F. J., Richter S. M., and Mayer M. P. (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J. 31, 1518–1528 10.1038/emboj.2012.37 PubMed DOI PMC
Trcka F., Durech M., Man P., Hernychova L., Muller P., and Vojtesek B. (2014) The assembly and intermolecular properties of the Hsp70–Tomm34–Hsp90 molecular chaperone complex. J. Biol. Chem. 289, 9887–9901 10.1074/jbc.M113.526046 PubMed DOI PMC
Trcka F., Durech M., Vankova P., Chmelik J., Martinkova V., Hausner J., Kadek A., Marcoux J., Klumpler T., Vojtesek B., Muller P., and Man P. (2019) Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteomics 18, 320–337 10.1074/mcp.RA118.001044 PubMed DOI PMC
Park J. H., Jang H. R., Lee I. Y., Oh H. K., Choi E. J., Rhim H., and Kang S. (2017) Amyotrophic lateral sclerosis-related mutant superoxide dismutase 1 aggregates inhibit 14-3-3–mediated cell survival by sequestration into the JUNQ compartment. Hum. Mol. Genet. 26, 3615–3629 10.1093/hmg/ddx250 PubMed DOI
Hachiya N., Alam R., Sakasegawa Y., Sakaguchi M., Mihara K., and Omura T. (1993) A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J. 12, 1579–1586 10.1002/j.1460-2075.1993.tb05802.x PubMed DOI PMC
Hachiya N., Komiya T., Alam R., Iwahashi J., Sakaguchi M., Omura T., and Mihara K. (1994) MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 10.1002/j.1460-2075.1994.tb06844.x PubMed DOI PMC
Hachiya N., Mihara K., Suda K., Horst M., Schatz G., and Lithgow T. (1995) Reconstitution of the initial steps of mitochondrial protein import. Nature 376, 705–709 10.1038/376705a0 PubMed DOI
Komiya T., Hachiya N., Sakaguchi M., Omura T., and Mihara K. (1994) Recognition of mitochondria-targeting signals by a cytosolic import stimulation factor, MSF. J. Biol. Chem. 269, 30893–30897 PubMed
Komiya T., and Mihara K. (1996) Protein import into mammalian mitochondria: characterization of the intermediates along the import pathway of the precursor into the matrix. J. Biol. Chem. 271, 22105–22110 10.1074/jbc.271.36.22105 PubMed DOI
Komiya T., Sakaguchi M., and Mihara K. (1996) Cytoplasmic chaperones determine the targeting pathway of precursor proteins to mitochondria. EMBO J. 15, 399–407 10.1002/j.1460-2075.1996.tb00370.x PubMed DOI PMC
Gardino A. K., Smerdon S. J., and Yaffe M. B. (2006) Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3–ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 16, 173–182 10.1016/j.semcancer.2006.03.007 PubMed DOI
Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., and Cantley L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 10.1016/S0092-8674(00)80487-0 PubMed DOI
Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V., and Obsil T. (2017) Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. U.S.A. 114, E9811–E9820 10.1073/pnas.1714491114 PubMed DOI PMC
Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., Vandermeeren C., Duby G., Boutry M., Wittinghofer A., Rigaud J. L., and Oecking C. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 10.1016/j.molcel.2006.12.017 PubMed DOI
Bustos D. M., and Iglesias A. A. (2006) Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins 63, 35–42 10.1002/prot.20888 PubMed DOI
Silhan J., Vacha P., Strnadova P., Vecer J., Herman P., Sulc M., Teisinger J., Obsilova V., and Obsil T. (2009) 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J. Biol. Chem. 284, 19349–19360 10.1074/jbc.M109.002725 PubMed DOI PMC
Rezabkova L., Man P., Novak P., Herman P., Vecer J., Obsilova V., and Obsil T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 286, 43527–43536 10.1074/jbc.M111.273573 PubMed DOI PMC
Blom N., Gammeltoft S., and Brunak S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 10.1006/jmbi.1999.3310 PubMed DOI
Hornbeck P. V., Zhang B., Murray B., Kornhauser J. M., Latham V., and Skrzypek E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520 10.1093/nar/gku1267 PubMed DOI PMC
Hennrich M. L., Marino F., Groenewold V., Kops G. J., Mohammed S., and Heck A. J. (2013) Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1. J. Proteome Res. 12, 2214–2224 10.1021/pr400074f PubMed DOI
Madeira F., Tinti M., Murugesan G., Berrett E., Stafford M., Toth R., Cole C., MacKintosh C., and Barton G. J. (2015) 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics 31, 2276–2283 10.1093/bioinformatics/btv133 PubMed DOI PMC
Ishida T., and Kinoshita K. (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460–W464 10.1093/nar/gkm363 PubMed DOI PMC
Uhart M., and Bustos D. M. (2014) Protein intrinsic disorder and network connectivity: the case of 14-3-3 proteins. Front. Genet. 5, 10 10.3389/fgene.2014.00010 PubMed DOI PMC
Kinoshita E., Kinoshita-Kikuta E., Takiyama K., and Koike T. (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757 10.1074/mcp.T500024-MCP200 PubMed DOI
Sluchanko N. N., and Gusev N. B. (2012) Oligomeric structure of 14-3-3 protein: what do we know about monomers?. FEBS Lett. 586, 4249–4256 10.1016/j.febslet.2012.10.048 PubMed DOI
Oganesyan I., Lento C., and Wilson D. J. (2018) Contemporary hydrogen deuterium exchange mass spectrometry. Methods 144, 27–42 10.1016/j.ymeth.2018.04.023 PubMed DOI
Yang X., Lee W. H., Sobott F., Papagrigoriou E., Robinson C. V., Grossmann J. G., Sundström M., Doyle D. A., and Elkins J. M. (2006) Structural basis for protein–protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. U.S.A. 103, 17237–17242 10.1073/pnas.0605779103 PubMed DOI PMC
Kacirova M., Kosek D., Kadek A., Man P., Vecer J., Herman P., Obsilova V., and Obsil T. (2015) Structural characterization of phosducin and its complex with the 14-3-3 protein. J. Biol. Chem. 290, 16246–16260 10.1074/jbc.M115.636563 PubMed DOI PMC
Xu Y., Ren J., He X., Chen H., Wei T., and Feng W. (2019) YWHA/14-3-3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization. Autophagy 15, 1017–1030 10.1080/15548627.2019.1569928 PubMed DOI PMC
Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., Obsil T., and Obsilova V. (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830, 4491–4499 10.1016/j.bbagen.2013.05.025 PubMed DOI
Muller P., Coates P. J., Nenutil R., Trcka F., Hrstka R., Chovanec J., Brychtova V., and Vojtesek B. (2019) Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage. J. Ovarian Res. 12, 30 10.1186/s13048-019-0498-0 PubMed DOI PMC
Baillie G., MacKenzie S. J., and Houslay M. D. (2001) Phorbol 12-myristate 13-acetate triggers the protein kinase A–mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). Mol. Pharmacol. 60, 1100–1111 10.1124/mol.60.5.1100 PubMed DOI
Wu J., Li J., Huang K. P., and Huang F. L. (2002) Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse. J. Biol. Chem. 277, 19498–19505 10.1074/jbc.M109082200 PubMed DOI
Tai T. C., and Wong D. L. (2003) Protein kinase A and protein kinase C signaling pathway interaction in phenylethanolamine N-methyltransferase gene regulation. J. Neurochem. 85, 816–829 10.1046/j.1471-4159.2003.01728.x PubMed DOI
Søberg K., Moen L. V., Skålhegg B. S., and Laerdahl J. K. (2017) Evolution of the cAMP-dependent protein kinase (PKA) catalytic subunit isoforms. PLoS One 12, e0181091 10.1371/journal.pone.0181091 PubMed DOI PMC
Limbutara K., Kelleher A., Yang C. R., Raghuram V., and Knepper M. A. (2019) Phosphorylation changes in response to kinase inhibitor H89 in PKA-null cells. Sci. Rep. 9, 2814 10.1038/s41598-019-39116-2 PubMed DOI PMC
García-Bermúdez J., Sánchez-Aragó M., Soldevilla B., Del Arco A., Nuevo-Tapioles C., and Cuezva J. M. (2015) PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H+-ATP synthase. Cell Rep. 12, 2143–2155 10.1016/j.celrep.2015.08.052 PubMed DOI
Kumar A., Gopalswamy M., Wolf A., Brockwell D. J., Hatzfeld M., and Balbach J. (2018) Phosphorylation-induced unfolding regulates p19(INK4d) during the human cell cycle. Proc. Natl. Acad. Sci. U.S.A. 115, 3344–3349 10.1073/pnas.1719774115 PubMed DOI PMC
Muller P., Ruckova E., Halada P., Coates P. J., Hrstka R., Lane D. P., and Vojtesek B. (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32, 3101–3110 10.1038/onc.2012.314 PubMed DOI
Assimon V. A., Southworth D. R., and Gestwicki J. E. (2015) Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54, 7120–7131 10.1021/acs.biochem.5b00801 PubMed DOI PMC
Aprile F. A., Dhulesia A., Stengel F., Roodveldt C., Benesch J. L., Tortora P., Robinson C. V., Salvatella X., Dobson C. M., and Cremades N. (2013) Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One 8, e67961 10.1371/journal.pone.0067961 PubMed DOI PMC
Muslin A. J., Tanner J. W., Allen P. M., and Shaw A. S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 10.1016/S0092-8674(00)81067-3 PubMed DOI
Oldfield C. J., Meng J., Yang J. Y., Yang M. Q., Uversky V. N., and Dunker A. K. (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9, S1 10.1186/1471-2164-9-S1-S1 PubMed DOI PMC
Johnson C., Crowther S., Stafford M. J., Campbell D. G., Toth R., and MacKintosh C. (2010) Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 427, 69–78 10.1042/BJ20091834 PubMed DOI PMC
Yaffe M. B. (2002) How do 14-3-3 proteins work?: Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53–57 10.1016/S0014-5793(01)03288-4 PubMed DOI
Masone D., Uhart M., and Bustos D. M. (2017) On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study. Sci. Rep. 7, 46114 10.1038/srep46114 PubMed DOI PMC
Molzan M., and Ottmann C. (2012) Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer. J. Mol. Biol. 423, 486–495 10.1016/j.jmb.2012.08.009 PubMed DOI
Obsil T., Ghirlando R., Anderson D. E., Hickman A. B., and Dyda F. (2003) Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264–15272 10.1021/bi0352724 PubMed DOI
Kostelecky B., Saurin A. T., Purkiss A., Parker P. J., and McDonald N. Q. (2009) Recognition of an intra-chain tandem 14-3-3 binding site within PKCε. EMBO Rep. 10, 983–989 10.1038/embor.2009.150 PubMed DOI PMC
Bhaskara R. M., de Brevern A. G., and Srinivasan N. (2013) Understanding the role of domain-domain linkers in the spatial orientation of domains in multi-domain proteins. J. Biomol. Struct. Dynamics 31, 1467–1480 10.1080/07391102.2012.743438 PubMed DOI
Ottmann C., Yasmin L., Weyand M., Veesenmeyer J. L., Diaz M. H., Palmer R. H., Francis M. S., Hauser A. R., Wittinghofer A., and Hallberg B. (2007) Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J. 26, 902–913 10.1038/sj.emboj.7601530 PubMed DOI PMC
Ito T., Nakata M., Fukazawa J., Ishida S., and Takahashi Y. (2014) Phosphorylation-independent binding of 14-3-3 to NtCDPK1 by a new mode. Plant Signal. Behavior 9, e977721 10.4161/15592324.2014.977721 PubMed DOI PMC
Blesa J. R., Prieto-Ruiz J. A., Abraham B. A., Harrison B. L., Hegde A. A., and Hernández-Yago J., et al. (2008) NRF-1 is the major transcription factor regulating the expression of the human TOMM34 gene. Biochem. Cell Biol. 86, 46–56 10.1139/O07-151 PubMed DOI
Scarpulla R. C. (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 10.1016/j.bbamcr.2010.09.019 PubMed DOI PMC
Blesa J. R., Prieto-Ruiz J. A., Hernández J. M., and Hernández-Yago J. (2007) NRF-2 transcription factor is required for human TOMM20 gene expression. Gene 391, 198–208 10.1016/j.gene.2006.12.024 PubMed DOI
Blesa J. R., Hernández J. M., and Hernández-Yago J. (2004) NRF-2 transcription factor is essential in promoting human Tomm70 gene expression. Mitochondrion 3, 251–259 10.1016/j.mito.2004.02.001 PubMed DOI
Brix J., Rüdiger S., Bukau B., Schneider-Mergener J., and Pfanner N. (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530 10.1074/jbc.274.23.16522 PubMed DOI
Chewawiwat N., Yano M., Terada K., Hoogenraad N. J., and Mori M. (1999) Characterization of the novel mitochondrial protein import component, Tom34, in mammalian cells. J. Biochem. 125, 721–727 10.1093/oxfordjournals.jbchem.a022342 PubMed DOI
Wang L., Sunahara R. K., Krumins A., Perkins G., Crochiere M. L., Mackey M., Bell S., Ellisman M. H., and Taylor S. S. (2001) Cloning and mitochondrial localization of full-length D-AKAP2, a protein kinase A anchoring protein. Proc. Natl. Acad. Sci. U.S.A. 98, 3220–3225 10.1073/pnas.051633398 PubMed DOI PMC
Cardone L., de Cristofaro T., Affaitati A., Garbi C., Ginsberg M. D., Saviano M., Varrone S., Rubin C. S., Gottesman M. E., Avvedimento E. V., and Feliciello A. (2002) A-kinase anchor protein 84/121 are targeted to mitochondria and mitotic spindles by overlapping amino-terminal motifs. J. Mol. Biol. 320, 663–675 10.1016/S0022-2836(02)00479-5 PubMed DOI
Affaitati A., Cardone L., de Cristofaro T., Carlucci A., Ginsberg M. D., Varrone S., Gottesman M. E., Avvedimento E. V., and Feliciello A. (2003) Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J. Biol. Chem. 278, 4286–4294 10.1074/jbc.M209941200 PubMed DOI
Kavan D., and Man P. (2011) MSTools: web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrometry 302, 53–58 10.1016/j.ijms.2010.07.030 DOI
Postproline Cleaving Enzymes also Show Specificity to Reduced Cysteine
Probing Antibody Structures by Hydrogen/Deuterium Exchange Mass Spectrometry
Hydrogen/Deuterium Exchange Mass Spectrometry of Heme-Based Oxygen Sensor Proteins