The interaction of the mitochondrial protein importer TOMM34 with HSP70 is regulated by TOMM34 phosphorylation and binding to 14-3-3 adaptors

. 2020 Jul 03 ; 295 (27) : 8928-8944. [epub] 20200505

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32371396
Odkazy

PubMed 32371396
PubMed Central PMC7335785
DOI 10.1074/jbc.ra120.012624
PII: S0021-9258(17)50318-X
Knihovny.cz E-zdroje

Translocase of outer mitochondrial membrane 34 (TOMM34) orchestrates heat shock protein 70 (HSP70)/HSP90-mediated transport of mitochondrial precursor proteins. Here, using in vitro phosphorylation and refolding assays, analytical size-exclusion chromatography, and hydrogen/deuterium exchange MS, we found that TOMM34 associates with 14-3-3 proteins after its phosphorylation by protein kinase A (PKA). PKA preferentially targeted two serine residues in TOMM34: Ser93 and Ser160, located in the tetratricopeptide repeat 1 (TPR1) domain and the interdomain linker, respectively. Both of these residues were necessary for efficient 14-3-3 protein binding. We determined that phosphorylation-induced structural changes in TOMM34 are further augmented by binding to 14-3-3, leading to destabilization of TOMM34's secondary structure. We also observed that this interaction with 14-3-3 occludes the TOMM34 interaction interface with ATP-bound HSP70 dimers, which leaves them intact and thereby eliminates an inhibitory effect of TOMM34 on HSP70-mediated refolding in vitro In contrast, we noted that TOMM34 in complex with 14-3-3 could bind HSP90. Both TOMM34 and 14-3-3 participated in cytosolic precursor protein transport mediated by the coordinated activities of HSP70 and HSP90. Our results provide important insights into how PKA-mediated phosphorylation and 14-3-3 binding regulate the availability of TOMM34 for its interaction with HSP70.

Zobrazit více v PubMed

Morán Luengo T., Mayer M. P., and Rüdiger S. G. D. (2019) The Hsp70–Hsp90 chaperone cascade in protein folding. Trends Cell Biol. 29, 164–177 10.1016/j.tcb.2018.10.004 PubMed DOI

Mayer M. P. (2010) Gymnastics of molecular chaperones. Mol. Cell 39, 321–331 10.1016/j.molcel.2010.07.012 PubMed DOI

Davis A. K., Pratt W. B., Lieberman A. P., and Osawa Y. (2020) Targeting Hsp70 facilitated protein quality control for treatment of polyglutamine diseases. Cell. Mol. Life Sci. 77, 977–996 10.1007/s00018-019-03302-2 PubMed DOI PMC

Morán Luengo T., Kityk R., Mayer M. P., and Rüdiger S. G. D. (2018) Hsp90 breaks the deadlock of the HSP70 chaperone system. Mol. Cell 70, 545–552.e9 10.1016/j.molcel.2018.03.028 PubMed DOI

Bhangoo M. K., Tzankov S., Fan A. C., Dejgaard K., Thomas D. Y., and Young J. C. (2007) Multiple 40-kDa heat-shock protein chaperones function in Tom70-dependent mitochondrial import. Mol. Biol. Cell 18, 3414–3428 10.1091/mbc.e07-01-0088 PubMed DOI PMC

Brychzy A., Rein T., Winklhofer K. F., Hartl F. U., Young J. C., and Obermann W. M. (2003) Cofactor Tpr2 combines two TPR domains and a J domain to regulate the Hsp70/Hsp90 chaperone system. EMBO J. 22, 3613–3623 10.1093/emboj/cdg362 PubMed DOI PMC

Faou P., and Hoogenraad N. J. (2012) Tom34: a cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. Biochim. Biophys. Acta 1823, 348–357 10.1016/j.bbamcr.2011.12.001 PubMed DOI

Young J. C., Hoogenraad N. J., and Hartl F. U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50 10.1016/S0092-8674(02)01250-3 PubMed DOI

Wiedemann N., and Pfanner N. (2017) Mitochondrial machineries for protein import and assembly. Annu. Rev. Biochem. 86, 685–714 10.1146/annurev-biochem-060815-014352 PubMed DOI

Jores T., Lawatscheck J., Beke V., Franz-Wachtel M., Yunoki K., Fitzgerald J. C., Macek B., Endo T., Kalbacher H., Buchner J., and Rapaport D. (2018) Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial β-barrel proteins. J. Cell Biol. 217, 3091–3108 10.1083/jcb.201712029 PubMed DOI PMC

Abe Y., Shodai T., Muto T., Mihara K., Torii H., Nishikawa S., Endo T., and Kohda D. (2000) Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560 10.1016/S0092-8674(00)80691-1 PubMed DOI

Jores T., Klinger A., Gross L. E., Kawano S., Flinner N., Duchardt-Ferner E., Wöhnert J., Kalbacher H., Endo T., Schleiff E., and Rapaport D. (2016) Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat. Commun. 7, 12036 10.1038/ncomms12036 PubMed DOI PMC

Moczko M., Bömer U., Kübrich M., Zufall N., Hönlinger A., and Pfanner N. (1997) The intermembrane space domain of mitochondrial Tom22 functions as a trans binding site for preproteins with N-terminal targeting sequences. Mol. Cell Biol. 17, 6574–6584 10.1128/MCB.17.11.6574 PubMed DOI PMC

Hill K., Model K., Ryan M. T., Dietmeier K., Martin F., Wagner R., and Pfanner N. (1998) Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521 10.1038/26780 PubMed DOI

Schmidt O., Harbauer A. B., Rao S., Eyrich B., Zahedi R. P., Stojanovski D., Schönfisch B., Guiard B., Sickmann A., Pfanner N., and Meisinger C. (2011) Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239 10.1016/j.cell.2010.12.015 PubMed DOI

Rao S., Schmidt O., Harbauer A. B., Schönfisch B., Guiard B., Pfanner N., and Meisinger C. (2012) Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 23, 1618–1627 10.1091/mbc.e11-11-0933 PubMed DOI PMC

Gerbeth C., Schmidt O., Rao S., Harbauer A. B., Mikropoulou D., Opalińska M., Guiard B., Pfanner N., and Meisinger C. (2013) Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. 18, 578–587 10.1016/j.cmet.2013.09.006 PubMed DOI

Dagda R. K., and Das Banerjee T. (2015) Role of protein kinase A in regulating mitochondrial function and neuronal development: implications to neurodegenerative diseases. Rev. Neurosci. 26, 359–370 10.1515/revneuro-2014-0085 PubMed DOI PMC

Scheufler C., Brinker A., Bourenkov G., Pegoraro S., Moroder L., Bartunik H., Hartl F. U., and Moarefi I. (2000) Structure of TPR domain–peptide complexes: critical elements in the assembly of the Hsp70–Hsp90 multichaperone machine. Cell 101, 199–210 10.1016/S0092-8674(00)80830-2 PubMed DOI

Brinker A., Scheufler C., Von Der Mulbe F., Fleckenstein B., Herrmann C., Jung G., Moarefi I., and Hartl F. U. (2002) Ligand discrimination by TPR domains: relevance and selectivity of EEVD-recognition in Hsp70·Hop·Hsp90 complexes. J. Biol. Chem. 277, 19265–19275 10.1074/jbc.M109002200 PubMed DOI

Durech M., Trcka F., Man P., Blackburn E. A., Hernychova L., Dvorakova P., Coufalova D., Kavan D., Vojtesek B., and Muller P. (2016) Novel entropically driven conformation-specific interactions with Tomm34 protein modulate Hsp70 protein folding and ATPase activities. Mol. Cell. Proteomics 15, 1710–1727 10.1074/mcp.M116.058131 PubMed DOI PMC

Lee C. T., Graf C., Mayer F. J., Richter S. M., and Mayer M. P. (2012) Dynamics of the regulation of Hsp90 by the co-chaperone Sti1. EMBO J. 31, 1518–1528 10.1038/emboj.2012.37 PubMed DOI PMC

Trcka F., Durech M., Man P., Hernychova L., Muller P., and Vojtesek B. (2014) The assembly and intermolecular properties of the Hsp70–Tomm34–Hsp90 molecular chaperone complex. J. Biol. Chem. 289, 9887–9901 10.1074/jbc.M113.526046 PubMed DOI PMC

Trcka F., Durech M., Vankova P., Chmelik J., Martinkova V., Hausner J., Kadek A., Marcoux J., Klumpler T., Vojtesek B., Muller P., and Man P. (2019) Human stress-inducible Hsp70 has a high propensity to form ATP-dependent antiparallel dimers that are differentially regulated by cochaperone binding. Mol. Cell. Proteomics 18, 320–337 10.1074/mcp.RA118.001044 PubMed DOI PMC

Park J. H., Jang H. R., Lee I. Y., Oh H. K., Choi E. J., Rhim H., and Kang S. (2017) Amyotrophic lateral sclerosis-related mutant superoxide dismutase 1 aggregates inhibit 14-3-3–mediated cell survival by sequestration into the JUNQ compartment. Hum. Mol. Genet. 26, 3615–3629 10.1093/hmg/ddx250 PubMed DOI

Hachiya N., Alam R., Sakasegawa Y., Sakaguchi M., Mihara K., and Omura T. (1993) A mitochondrial import factor purified from rat liver cytosol is an ATP-dependent conformational modulator for precursor proteins. EMBO J. 12, 1579–1586 10.1002/j.1460-2075.1993.tb05802.x PubMed DOI PMC

Hachiya N., Komiya T., Alam R., Iwahashi J., Sakaguchi M., Omura T., and Mihara K. (1994) MSF, a novel cytoplasmic chaperone which functions in precursor targeting to mitochondria. EMBO J. 13, 5146–5154 10.1002/j.1460-2075.1994.tb06844.x PubMed DOI PMC

Hachiya N., Mihara K., Suda K., Horst M., Schatz G., and Lithgow T. (1995) Reconstitution of the initial steps of mitochondrial protein import. Nature 376, 705–709 10.1038/376705a0 PubMed DOI

Komiya T., Hachiya N., Sakaguchi M., Omura T., and Mihara K. (1994) Recognition of mitochondria-targeting signals by a cytosolic import stimulation factor, MSF. J. Biol. Chem. 269, 30893–30897 PubMed

Komiya T., and Mihara K. (1996) Protein import into mammalian mitochondria: characterization of the intermediates along the import pathway of the precursor into the matrix. J. Biol. Chem. 271, 22105–22110 10.1074/jbc.271.36.22105 PubMed DOI

Komiya T., Sakaguchi M., and Mihara K. (1996) Cytoplasmic chaperones determine the targeting pathway of precursor proteins to mitochondria. EMBO J. 15, 399–407 10.1002/j.1460-2075.1996.tb00370.x PubMed DOI PMC

Gardino A. K., Smerdon S. J., and Yaffe M. B. (2006) Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3–ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Semin. Cancer Biol. 16, 173–182 10.1016/j.semcancer.2006.03.007 PubMed DOI

Yaffe M. B., Rittinger K., Volinia S., Caron P. R., Aitken A., Leffers H., Gamblin S. J., Smerdon S. J., and Cantley L. C. (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91, 961–971 10.1016/S0092-8674(00)80487-0 PubMed DOI

Alblova M., Smidova A., Docekal V., Vesely J., Herman P., Obsilova V., and Obsil T. (2017) Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proc. Natl. Acad. Sci. U.S.A. 114, E9811–E9820 10.1073/pnas.1714491114 PubMed DOI PMC

Ottmann C., Marco S., Jaspert N., Marcon C., Schauer N., Weyand M., Vandermeeren C., Duby G., Boutry M., Wittinghofer A., Rigaud J. L., and Oecking C. (2007) Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol. Cell 25, 427–440 10.1016/j.molcel.2006.12.017 PubMed DOI

Bustos D. M., and Iglesias A. A. (2006) Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Proteins 63, 35–42 10.1002/prot.20888 PubMed DOI

Silhan J., Vacha P., Strnadova P., Vecer J., Herman P., Sulc M., Teisinger J., Obsilova V., and Obsil T. (2009) 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J. Biol. Chem. 284, 19349–19360 10.1074/jbc.M109.002725 PubMed DOI PMC

Rezabkova L., Man P., Novak P., Herman P., Vecer J., Obsilova V., and Obsil T. (2011) Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J. Biol. Chem. 286, 43527–43536 10.1074/jbc.M111.273573 PubMed DOI PMC

Blom N., Gammeltoft S., and Brunak S. (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351–1362 10.1006/jmbi.1999.3310 PubMed DOI

Hornbeck P. V., Zhang B., Murray B., Kornhauser J. M., Latham V., and Skrzypek E. (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43, D512–D520 10.1093/nar/gku1267 PubMed DOI PMC

Hennrich M. L., Marino F., Groenewold V., Kops G. J., Mohammed S., and Heck A. J. (2013) Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1. J. Proteome Res. 12, 2214–2224 10.1021/pr400074f PubMed DOI

Madeira F., Tinti M., Murugesan G., Berrett E., Stafford M., Toth R., Cole C., MacKintosh C., and Barton G. J. (2015) 14-3-3-Pred: improved methods to predict 14-3-3-binding phosphopeptides. Bioinformatics 31, 2276–2283 10.1093/bioinformatics/btv133 PubMed DOI PMC

Ishida T., and Kinoshita K. (2007) PrDOS: prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res 35, W460–W464 10.1093/nar/gkm363 PubMed DOI PMC

Uhart M., and Bustos D. M. (2014) Protein intrinsic disorder and network connectivity: the case of 14-3-3 proteins. Front. Genet. 5, 10 10.3389/fgene.2014.00010 PubMed DOI PMC

Kinoshita E., Kinoshita-Kikuta E., Takiyama K., and Koike T. (2006) Phosphate-binding tag, a new tool to visualize phosphorylated proteins. Mol. Cell. Proteomics 5, 749–757 10.1074/mcp.T500024-MCP200 PubMed DOI

Sluchanko N. N., and Gusev N. B. (2012) Oligomeric structure of 14-3-3 protein: what do we know about monomers?. FEBS Lett. 586, 4249–4256 10.1016/j.febslet.2012.10.048 PubMed DOI

Oganesyan I., Lento C., and Wilson D. J. (2018) Contemporary hydrogen deuterium exchange mass spectrometry. Methods 144, 27–42 10.1016/j.ymeth.2018.04.023 PubMed DOI

Yang X., Lee W. H., Sobott F., Papagrigoriou E., Robinson C. V., Grossmann J. G., Sundström M., Doyle D. A., and Elkins J. M. (2006) Structural basis for protein–protein interactions in the 14-3-3 protein family. Proc. Natl. Acad. Sci. U.S.A. 103, 17237–17242 10.1073/pnas.0605779103 PubMed DOI PMC

Kacirova M., Kosek D., Kadek A., Man P., Vecer J., Herman P., Obsilova V., and Obsil T. (2015) Structural characterization of phosducin and its complex with the 14-3-3 protein. J. Biol. Chem. 290, 16246–16260 10.1074/jbc.M115.636563 PubMed DOI PMC

Xu Y., Ren J., He X., Chen H., Wei T., and Feng W. (2019) YWHA/14-3-3 proteins recognize phosphorylated TFEB by a noncanonical mode for controlling TFEB cytoplasmic localization. Autophagy 15, 1017–1030 10.1080/15548627.2019.1569928 PubMed DOI PMC

Macakova E., Kopecka M., Kukacka Z., Veisova D., Novak P., Man P., Obsil T., and Obsilova V. (2013) Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim. Biophys. Acta 1830, 4491–4499 10.1016/j.bbagen.2013.05.025 PubMed DOI

Muller P., Coates P. J., Nenutil R., Trcka F., Hrstka R., Chovanec J., Brychtova V., and Vojtesek B. (2019) Tomm34 is commonly expressed in epithelial ovarian cancer and associates with tumour type and high FIGO stage. J. Ovarian Res. 12, 30 10.1186/s13048-019-0498-0 PubMed DOI PMC

Baillie G., MacKenzie S. J., and Houslay M. D. (2001) Phorbol 12-myristate 13-acetate triggers the protein kinase A–mediated phosphorylation and activation of the PDE4D5 cAMP phosphodiesterase in human aortic smooth muscle cells through a route involving extracellular signal regulated kinase (ERK). Mol. Pharmacol. 60, 1100–1111 10.1124/mol.60.5.1100 PubMed DOI

Wu J., Li J., Huang K. P., and Huang F. L. (2002) Attenuation of protein kinase C and cAMP-dependent protein kinase signal transduction in the neurogranin knockout mouse. J. Biol. Chem. 277, 19498–19505 10.1074/jbc.M109082200 PubMed DOI

Tai T. C., and Wong D. L. (2003) Protein kinase A and protein kinase C signaling pathway interaction in phenylethanolamine N-methyltransferase gene regulation. J. Neurochem. 85, 816–829 10.1046/j.1471-4159.2003.01728.x PubMed DOI

Søberg K., Moen L. V., Skålhegg B. S., and Laerdahl J. K. (2017) Evolution of the cAMP-dependent protein kinase (PKA) catalytic subunit isoforms. PLoS One 12, e0181091 10.1371/journal.pone.0181091 PubMed DOI PMC

Limbutara K., Kelleher A., Yang C. R., Raghuram V., and Knepper M. A. (2019) Phosphorylation changes in response to kinase inhibitor H89 in PKA-null cells. Sci. Rep. 9, 2814 10.1038/s41598-019-39116-2 PubMed DOI PMC

García-Bermúdez J., Sánchez-Aragó M., Soldevilla B., Del Arco A., Nuevo-Tapioles C., and Cuezva J. M. (2015) PKA phosphorylates the ATPase inhibitory factor 1 and inactivates its capacity to bind and inhibit the mitochondrial H+-ATP synthase. Cell Rep. 12, 2143–2155 10.1016/j.celrep.2015.08.052 PubMed DOI

Kumar A., Gopalswamy M., Wolf A., Brockwell D. J., Hatzfeld M., and Balbach J. (2018) Phosphorylation-induced unfolding regulates p19(INK4d) during the human cell cycle. Proc. Natl. Acad. Sci. U.S.A. 115, 3344–3349 10.1073/pnas.1719774115 PubMed DOI PMC

Muller P., Ruckova E., Halada P., Coates P. J., Hrstka R., Lane D. P., and Vojtesek B. (2013) C-terminal phosphorylation of Hsp70 and Hsp90 regulates alternate binding to co-chaperones CHIP and HOP to determine cellular protein folding/degradation balances. Oncogene 32, 3101–3110 10.1038/onc.2012.314 PubMed DOI

Assimon V. A., Southworth D. R., and Gestwicki J. E. (2015) Specific binding of tetratricopeptide repeat proteins to heat shock protein 70 (Hsp70) and heat shock protein 90 (Hsp90) is regulated by affinity and phosphorylation. Biochemistry 54, 7120–7131 10.1021/acs.biochem.5b00801 PubMed DOI PMC

Aprile F. A., Dhulesia A., Stengel F., Roodveldt C., Benesch J. L., Tortora P., Robinson C. V., Salvatella X., Dobson C. M., and Cremades N. (2013) Hsp70 oligomerization is mediated by an interaction between the interdomain linker and the substrate-binding domain. PLoS One 8, e67961 10.1371/journal.pone.0067961 PubMed DOI PMC

Muslin A. J., Tanner J. W., Allen P. M., and Shaw A. S. (1996) Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 84, 889–897 10.1016/S0092-8674(00)81067-3 PubMed DOI

Oldfield C. J., Meng J., Yang J. Y., Yang M. Q., Uversky V. N., and Dunker A. K. (2008) Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9, S1 10.1186/1471-2164-9-S1-S1 PubMed DOI PMC

Johnson C., Crowther S., Stafford M. J., Campbell D. G., Toth R., and MacKintosh C. (2010) Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem. J. 427, 69–78 10.1042/BJ20091834 PubMed DOI PMC

Yaffe M. B. (2002) How do 14-3-3 proteins work?: Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett. 513, 53–57 10.1016/S0014-5793(01)03288-4 PubMed DOI

Masone D., Uhart M., and Bustos D. M. (2017) On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study. Sci. Rep. 7, 46114 10.1038/srep46114 PubMed DOI PMC

Molzan M., and Ottmann C. (2012) Synergistic binding of the phosphorylated S233- and S259-binding sites of C-RAF to one 14-3-3ζ dimer. J. Mol. Biol. 423, 486–495 10.1016/j.jmb.2012.08.009 PubMed DOI

Obsil T., Ghirlando R., Anderson D. E., Hickman A. B., and Dyda F. (2003) Two 14-3-3 binding motifs are required for stable association of Forkhead transcription factor FOXO4 with 14-3-3 proteins and inhibition of DNA binding. Biochemistry 42, 15264–15272 10.1021/bi0352724 PubMed DOI

Kostelecky B., Saurin A. T., Purkiss A., Parker P. J., and McDonald N. Q. (2009) Recognition of an intra-chain tandem 14-3-3 binding site within PKCε. EMBO Rep. 10, 983–989 10.1038/embor.2009.150 PubMed DOI PMC

Bhaskara R. M., de Brevern A. G., and Srinivasan N. (2013) Understanding the role of domain-domain linkers in the spatial orientation of domains in multi-domain proteins. J. Biomol. Struct. Dynamics 31, 1467–1480 10.1080/07391102.2012.743438 PubMed DOI

Ottmann C., Yasmin L., Weyand M., Veesenmeyer J. L., Diaz M. H., Palmer R. H., Francis M. S., Hauser A. R., Wittinghofer A., and Hallberg B. (2007) Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. EMBO J. 26, 902–913 10.1038/sj.emboj.7601530 PubMed DOI PMC

Ito T., Nakata M., Fukazawa J., Ishida S., and Takahashi Y. (2014) Phosphorylation-independent binding of 14-3-3 to NtCDPK1 by a new mode. Plant Signal. Behavior 9, e977721 10.4161/15592324.2014.977721 PubMed DOI PMC

Blesa J. R., Prieto-Ruiz J. A., Abraham B. A., Harrison B. L., Hegde A. A., and Hernández-Yago J., et al. (2008) NRF-1 is the major transcription factor regulating the expression of the human TOMM34 gene. Biochem. Cell Biol. 86, 46–56 10.1139/O07-151 PubMed DOI

Scarpulla R. C. (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813, 1269–1278 10.1016/j.bbamcr.2010.09.019 PubMed DOI PMC

Blesa J. R., Prieto-Ruiz J. A., Hernández J. M., and Hernández-Yago J. (2007) NRF-2 transcription factor is required for human TOMM20 gene expression. Gene 391, 198–208 10.1016/j.gene.2006.12.024 PubMed DOI

Blesa J. R., Hernández J. M., and Hernández-Yago J. (2004) NRF-2 transcription factor is essential in promoting human Tomm70 gene expression. Mitochondrion 3, 251–259 10.1016/j.mito.2004.02.001 PubMed DOI

Brix J., Rüdiger S., Bukau B., Schneider-Mergener J., and Pfanner N. (1999) Distribution of binding sequences for the mitochondrial import receptors Tom20, Tom22, and Tom70 in a presequence-carrying preprotein and a non-cleavable preprotein. J. Biol. Chem. 274, 16522–16530 10.1074/jbc.274.23.16522 PubMed DOI

Chewawiwat N., Yano M., Terada K., Hoogenraad N. J., and Mori M. (1999) Characterization of the novel mitochondrial protein import component, Tom34, in mammalian cells. J. Biochem. 125, 721–727 10.1093/oxfordjournals.jbchem.a022342 PubMed DOI

Wang L., Sunahara R. K., Krumins A., Perkins G., Crochiere M. L., Mackey M., Bell S., Ellisman M. H., and Taylor S. S. (2001) Cloning and mitochondrial localization of full-length D-AKAP2, a protein kinase A anchoring protein. Proc. Natl. Acad. Sci. U.S.A. 98, 3220–3225 10.1073/pnas.051633398 PubMed DOI PMC

Cardone L., de Cristofaro T., Affaitati A., Garbi C., Ginsberg M. D., Saviano M., Varrone S., Rubin C. S., Gottesman M. E., Avvedimento E. V., and Feliciello A. (2002) A-kinase anchor protein 84/121 are targeted to mitochondria and mitotic spindles by overlapping amino-terminal motifs. J. Mol. Biol. 320, 663–675 10.1016/S0022-2836(02)00479-5 PubMed DOI

Affaitati A., Cardone L., de Cristofaro T., Carlucci A., Ginsberg M. D., Varrone S., Gottesman M. E., Avvedimento E. V., and Feliciello A. (2003) Essential role of A-kinase anchor protein 121 for cAMP signaling to mitochondria. J. Biol. Chem. 278, 4286–4294 10.1074/jbc.M209941200 PubMed DOI

Kavan D., and Man P. (2011) MSTools: web based application for visualization and presentation of HXMS data. Int. J. Mass Spectrometry 302, 53–58 10.1016/j.ijms.2010.07.030 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...