Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29087344
PubMed Central
PMC5699087
DOI
10.1073/pnas.1714491114
PII: 1714491114
Knihovny.cz E-zdroje
- Klíčová slova
- 14-3-3 protein, allostery, crystal structure, enzyme, trehalase,
- MeSH
- arylalkylamin-N-acetyltransferasa metabolismus MeSH
- chemické databáze * MeSH
- fosforylace MeSH
- glukosa metabolismus MeSH
- katalytická doména MeSH
- konformace proteinů MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- proteinové domény MeSH
- proteiny 14-3-3 genetika metabolismus MeSH
- proteiny tepelného šoku chemie metabolismus MeSH
- Saccharomyces cerevisiae - proteiny chemie metabolismus MeSH
- Saccharomyces cerevisiae enzymologie genetika metabolismus MeSH
- trehalasa chemie metabolismus MeSH
- trehalosa metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- arylalkylamin-N-acetyltransferasa MeSH
- glukosa MeSH
- NTH1 protein, S cerevisiae MeSH Prohlížeč
- proteiny 14-3-3 MeSH
- proteiny tepelného šoku MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- trehalasa MeSH
- trehalosa MeSH
The 14-3-3 proteins, a family of highly conserved scaffolding proteins ubiquitously expressed in all eukaryotic cells, interact with and regulate the function of several hundreds of partner proteins. Yeast neutral trehalases (Nth), enzymes responsible for the hydrolysis of trehalose to glucose, compared with trehalases from other organisms, possess distinct structure and regulation involving phosphorylation at multiple sites followed by binding to the 14-3-3 protein. Here we report the crystal structures of yeast Nth1 and its complex with Bmh1 (yeast 14-3-3 isoform), which, together with mutational and fluorescence studies, indicate that the binding of Nth1 by 14-3-3 triggers Nth1's activity by enabling the proper 3D configuration of Nth1's catalytic and calcium-binding domains relative to each other, thus stabilizing the flexible part of the active site required for catalysis. The presented structure of the Bmh1:Nth1 complex highlights the ability of 14-3-3 to modulate the structure of a multidomain binding partner and to function as an allosteric effector. Furthermore, comparison of the Bmh1:Nth1 complex structure with those of 14-3-3:serotonin N-acetyltransferase and 14-3-3:heat shock protein beta-6 complexes revealed similarities in the 3D structures of bound partner proteins, suggesting the highly conserved nature of 14-3-3 affects the structures of many client proteins.
Zobrazit více v PubMed
Wang W, Shakes DC. Molecular evolution of the 14-3-3 protein family. J Mol Evol. 1996;43:384–398. PubMed
Muslin AJ, Tanner JW, Allen PM, Shaw AS. Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell. 1996;84:889–897. PubMed
Freed E, Symons M, Macdonald SG, McCormick F, Ruggieri R. Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. Science. 1994;265:1713–1716. PubMed
Ganguly S, et al. Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis. Proc Natl Acad Sci USA. 2001;98:8083–8088. PubMed PMC
Ichimura T, Isobe T, Okuyama T, Yamauchi T, Fujisawa H. Brain 14-3-3 protein is an activator protein that activates tryptophan 5-monooxygenase and tyrosine 3-monooxygenase in the presence of Ca2+, calmodulin-dependent protein kinase II. FEBS Lett. 1987;219:79–82. PubMed
Banik U, Wang GA, Wagner PD, Kaufman S. Interaction of phosphorylated tryptophan hydroxylase with 14-3-3 proteins. J Biol Chem. 1997;272:26219–26225. PubMed
Zhang L, Chen J, Fu H. Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins. Proc Natl Acad Sci USA. 1999;96:8511–8515. PubMed PMC
Kumagai A, Dunphy WG. Binding of 14-3-3 proteins and nuclear export control the intracellular localization of the mitotic inducer Cdc25. Genes Dev. 1999;13:1067–1072. PubMed PMC
Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. A role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. PubMed
Ottmann C, et al. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Mol Cell. 2007;25:427–440. PubMed
Yip-Schneider MT, et al. Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J. 2000;351:151–159. PubMed PMC
Peng CY, et al. Mitotic and G2 checkpoint control: Regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science. 1997;277:1501–1505. PubMed
Taoka K, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476:332–335. PubMed
Crowe JH, Crowe LM, Chapman D. Preservation of membranes in anhydrobiotic organisms: The role of trehalose. Science. 1984;223:701–703. PubMed
Avonce N, Leyman B, Thevelein J, Iturriaga G. Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans. 2005;33:276–279. PubMed
Wilson WA, et al. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev. 2010;34:952–985. PubMed PMC
Uno I, Matsumoto K, Adachi K, Ishikawa T. Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem. 1983;258:10867–10872. PubMed
Kopp M, Müller H, Holzer H. Molecular analysis of the neutral trehalase gene from Saccharomyces cerevisiae. J Biol Chem. 1993;268:4766–4774. PubMed
Franco A, et al. A role for calcium in the regulation of neutral trehalase activity in the fission yeast Schizosaccharomyces pombe. Biochem J. 2003;376:209–217. PubMed PMC
Wera S, De Schrijver E, Geyskens I, Nwaka S, Thevelein JM. Opposite roles of trehalase activity in heat-shock recovery and heat-shock survival in Saccharomyces cerevisiae. Biochem J. 1999;343:621–626. PubMed PMC
Panni S, Landgraf C, Volkmer-Engert R, Cesareni G, Castagnoli L. Role of 14-3-3 proteins in the regulation of neutral trehalase in the yeast Saccharomyces cerevisiae. FEMS Yeast Res. 2008;8:53–63. PubMed
Schepers W, Van Zeebroeck G, Pinkse M, Verhaert P, Thevelein JM. In vivo phosphorylation of Ser21 and Ser83 during nutrient-induced activation of the yeast protein kinase A (PKA) target trehalase. J Biol Chem. 2012;287:44130–44142. PubMed PMC
Veisova D, et al. Role of individual phosphorylation sites for the 14-3-3-protein-dependent activation of yeast neutral trehalase Nth1. Biochem J. 2012;443:663–670. PubMed
Yang X, et al. Structural basis for protein-protein interactions in the 14-3-3 protein family. Proc Natl Acad Sci USA. 2006;103:17237–17242. PubMed PMC
Rittinger K, et al. Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding. Mol Cell. 1999;4:153–166. PubMed
Johnson C, et al. Bioinformatic and experimental survey of 14-3-3-binding sites. Biochem J. 2010;427:69–78. PubMed PMC
Sluchanko NN, et al. Structural basis for the interaction of a human small heat shock protein with the 14-3-3 universal signaling regulator. Structure. 2017;25:305–316. PubMed PMC
Molzan M, et al. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Mol Cell Biol. 2010;30:4698–4711. PubMed PMC
Eisenreichova A, Klima M, Boura E. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation. Acta Crystallogr F Struct Biol Commun. 2016;72:799–803. PubMed PMC
Gibson RP, et al. Molecular basis for trehalase inhibition revealed by the structure of trehalase in complex with potent inhibitors. Angew Chem Int Ed Engl. 2007;46:4115–4119. PubMed
Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd Ed. Springer; New York: 2006. p. 954.
Valeur B. Molecular Fluorescence: Principles and Applications. Wiley-VCH; New York: 2001. p. 402.
Förster Th. Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys. 1948;437:55–75.
Silhan J, et al. 14-3-3 protein masks the DNA binding interface of forkhead transcription factor FOXO4. J Biol Chem. 2009;284:19349–19360. PubMed PMC
Rezabkova L, et al. Structural basis for the 14-3-3 protein-dependent inhibition of the regulator of G protein signaling 3 (RGS3) function. J Biol Chem. 2011;286:43527–43536. PubMed PMC
Davison AC, Hinkley DV. Bootstrap Methods and Their Application. Cambridge Univ Press; Cambridge, UK: 1997.
Macakova E, et al. Structural basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Biochim Biophys Acta. 2013;1830:4491–4499. PubMed
Kopecka M, et al. Role of the EF-hand-like motif in the 14-3-3 protein-mediated activation of yeast neutral trehalase Nth1. J Biol Chem. 2014;289:13948–13961. PubMed PMC
Volkov VV, Svergun DI. Uniqueness of ab initio shape determination in small-angle scattering. J Appl Crystallogr. 2003;36:860–864. PubMed PMC
van Heusden GP. 14-3-3 proteins: Regulators of numerous eukaryotic proteins. IUBMB Life. 2005;57:623–629. PubMed
Obsil T, Obsilova V. Structural basis of 14-3-3 protein functions. Semin Cell Dev Biol. 2011;22:663–672. PubMed
Veisova D, et al. The C-terminal segment of yeast BMH proteins exhibits different structure compared to other 14-3-3 protein isoforms. Biochemistry. 2010;49:3853–3861. PubMed
Kabsch W. XDS. Acta Crystallogr D Biol Crystallogr. 2010;66:125–132. PubMed PMC
Sparta KM, Krug M, Heinemann U, Mueller U, Weiss MS. XDSAPP2.0. J Appl Crystallogr. 2016;49:1085–1092.
Vagin A, Teplyakov A. MOLREP: An automated program for molecular replacement. J Appl Crystallogr. 1997;30:1022–1025.
Adams PD, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr. 2010;66:213–221. PubMed PMC
Chen VB, et al. MolProbity: All-atom structure validation for macromolecular crystallography. Acta Crystallogr D Biol Crystallogr. 2010;66:12–21. PubMed PMC
Murshudov GN, Vagin AA, Dodson EJ. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 1997;53:240–255. PubMed
Pernambuco MB, et al. Glucose-triggered signalling in Saccharomyces cerevisiae: Different requirements for sugar phosphorylation between cells grown on glucose and those grown on non-fermentable carbon sources. Microbiology. 1996;142:1775–1782. PubMed
Jerabek-Willemsen M, et al. MicroScale thermophoresis: Interaction analysis and beyond. J Mol Struct. 2014;1077:101–113.
Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2007;2:2212–2221. PubMed
Efron B, Tibshirani RJ. An Introduction to the Bootstrap. Chapman and Hall; New York: 1993.
Look for the Scaffold: Multifaceted Regulation of Enzyme Activity by 14-3-3 Proteins
The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways
Molecular basis and dual ligand regulation of tetrameric estrogen receptor α/14-3-3ζ protein complex
Structural insights into the functional roles of 14-3-3 proteins
Structural basis for SARS-CoV-2 nucleocapsid (N) protein recognition by 14-3-3 proteins
A Structural Study of the Cytoplasmic Chaperone Effect of 14-3-3 Proteins on Ataxin-1
14-3-3-protein regulates Nedd4-2 by modulating interactions between HECT and WW domains
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases
Interaction of an IκBα Peptide with 14-3-3
Set-up and screening of a fragment library targeting the 14-3-3 protein interface
PDB
5N6N, 5JTA, 5M4A, 5NIS