Phosphatidylinositol 4-kinase IIIβ (PI4KB) forms highly flexible heterocomplexes that include ACBD3, 14-3-3, and Rab11 proteins
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30679637
PubMed Central
PMC6345845
DOI
10.1038/s41598-018-37158-6
PII: 10.1038/s41598-018-37158-6
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus MeSH
- intracelulární membrány metabolismus MeSH
- maloúhlový rozptyl MeSH
- membránové proteiny metabolismus MeSH
- multimerizace proteinu * MeSH
- proteiny 14-3-3 metabolismus MeSH
- Rab proteiny vázající GTP metabolismus MeSH
- rekombinantní proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ACBD3 protein, human MeSH Prohlížeč
- adaptorové proteiny signální transdukční MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem MeSH
- membránové proteiny MeSH
- phosphatidylinositol 4-kinase IIIbeta, human MeSH Prohlížeč
- proteiny 14-3-3 MeSH
- Rab proteiny vázající GTP MeSH
- rab11 protein MeSH Prohlížeč
- rekombinantní proteiny MeSH
Phosphatidylinositol 4-kinase IIIβ (PI4KB) is a key enzyme of the Golgi system because it produces its lipid hallmark - the phosphatidylinositol 4-phosphate (PI4P). It is recruited to Golgi by the Golgi resident ACBD3 protein, regulated by 14-3-3 proteins and it also serves as an adaptor because it recruits the small GTPase Rab11. Here, we analyzed the protein complexes formed by PI4KB in vitro using small angle x-ray scattering (SAXS) and we discovered that these protein complexes are highly flexible. The 14-3-3:PI4KB:Rab11 protein complex has 2:1:1 stoichiometry and its different conformations are rather compact, however, the ACBD3:PI4KB protein complex has both, very compact and very extended conformations. Furthermore, in vitro reconstitution revealed that the membrane is necessary for the formation of ACBD3:PI4KB:Rab11 protein complex at physiological (nanomolar) concentrations.
Zobrazit více v PubMed
Balla T. Phosphoinositides: Tiny Lipids with Giant Impact on Cell Regulation. Physiol Rev. 2013;93:1019–1137. doi: 10.1152/physrev.00028.2012. PubMed DOI PMC
Tan J, Brill JA. Cinderella story: PI4P goes from precursor to key signaling molecule. Critical reviews in biochemistry and molecular biology. 2014;49:33–58. doi: 10.3109/10409238.2013.853024. PubMed DOI
Boura E, Nencka R. Phosphatidylinositol 4-kinases: Function, structure, and inhibition. Experimental cell research. 2015;337:136–145. doi: 10.1016/j.yexcr.2015.03.028. PubMed DOI
Minogue, S. The Many Roles of Type II Phosphatidylinositol 4-Kinases in Membrane Trafficking: New Tricks for Old Dogs. Bioessays40, 10.1002/bies.201700145 (2018). PubMed
Dornan GL, McPhail JA, Burke JE. Type III phosphatidylinositol 4 kinases: structure, function, regulation, signalling and involvement in disease. Biochemical Society transactions. 2016;44:260–266. doi: 10.1042/BST20150219. PubMed DOI
Sasaki J, Ishikawa K, Arita M, Taniguchi K. ACBD3-mediated recruitment of PI4KB to picornavirus RNA replication sites. The EMBO journal. 2012;31:754–766. doi: 10.1038/emboj.2011.429. PubMed DOI PMC
Klima M, et al. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Scientific reports. 2016;6:23641. doi: 10.1038/srep23641. PubMed DOI PMC
Barylko B, et al. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase II{alpha} The Journal of biological chemistry. 2009;284:9994–10003. doi: 10.1074/jbc.M900724200. PubMed DOI PMC
Lu D, et al. Phosphatidylinositol 4-kinase IIalpha is palmitoylated by Golgi-localized palmitoyltransferases in cholesterol-dependent manner. The Journal of biological chemistry. 2012;287:21856–21865. doi: 10.1074/jbc.M112.348094. PubMed DOI PMC
Hausser A, et al. Phospho-specific binding of 14-3-3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity. Journal of cell science. 2006;119:3613–3621. doi: 10.1242/jcs.03104. PubMed DOI
de Graaf P, et al. Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Molecular biology of the cell. 2004;15:2038–2047. doi: 10.1091/mbc.E03-12-0862. PubMed DOI PMC
Zhao X, et al. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. The Journal of biological chemistry. 2001;276:40183–40189. doi: 10.1074/jbc.M104048200. PubMed DOI
Blomen VA, et al. Gene essentiality and synthetic lethality in haploid human cells. Science. 2015;350:1092–1096. doi: 10.1126/science.aac7557. PubMed DOI
Arita M, et al. Phosphatidylinositol 4-kinase III beta is a target of enviroxime-like compounds for antipoliovirus activity. Journal of virology. 2011;85:2364–2372. doi: 10.1128/JVI.02249-10. PubMed DOI PMC
Borawski J, et al. Class III phosphatidylinositol 4-kinase alpha and beta are novel host factor regulators of hepatitis C virus replication. Journal of virology. 2009;83:10058–10074. doi: 10.1128/JVI.02418-08. PubMed DOI PMC
van der Schaar HM, et al. A novel, broad-spectrum inhibitor of enterovirus replication that targets host cell factor phosphatidylinositol 4-kinase IIIbeta. Antimicrobial agents and chemotherapy. 2013;57:4971–4981. doi: 10.1128/AAC.01175-13. PubMed DOI PMC
Burke JE, et al. Structures of PI4KIIIbeta complexes show simultaneous recruitment of Rab11 and its effectors. Science. 2014;344:1035–1038. doi: 10.1126/science.1253397. PubMed DOI PMC
Baumlova A, et al. The crystal structure of the phosphatidylinositol 4-kinase IIalpha. EMBO reports. 2014;15:1085–1092. doi: 10.15252/embr.201438841. PubMed DOI PMC
Klima M, et al. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIbeta and the crystal structure of phosphatidylinositol 4-kinase IIalpha containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design. Acta crystallographica. Section D, Biological crystallography. 2015;71:1555–1563. doi: 10.1107/S1399004715009505. PubMed DOI
Mejdrova I, et al. Highly Selective Phosphatidylinositol 4-Kinase IIIbeta Inhibitors and Structural Insight into Their Mode of Action. Journal of medicinal chemistry. 2015;58:3767–3793. doi: 10.1021/acs.jmedchem.5b00499. PubMed DOI
Rutaganira FU, et al. Design and Structural Characterization of Potent and Selective Inhibitors of Phosphatidylinositol 4 Kinase IIIbeta. Journal of medicinal chemistry. 2016;59:1830–1839. doi: 10.1021/acs.jmedchem.5b01311. PubMed DOI PMC
Mejdrova I, et al. Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIbeta (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. Journal of medicinal chemistry. 2017;60:100–118. doi: 10.1021/acs.jmedchem.6b01465. PubMed DOI
Humpolickova J, Mejdrova I, Matousova M, Nencka R, Boura E. Fluorescent Inhibitors as Tools To Characterize Enzymes: Case Study of the Lipid Kinase Phosphatidylinositol 4-Kinase IIIbeta (PI4KB) Journal of medicinal chemistry. 2017;60:119–127. doi: 10.1021/acs.jmedchem.6b01466. PubMed DOI
Obsilova V, Silhan J, Boura E, Teisinger J, Obsil T. 14-3-3 proteins: a family of versatile molecular regulators. Physiological research / Academia Scientiarum Bohemoslovaca. 2008;57(Suppl 3):S11–21. PubMed
Rezabkova L, et al. 14-3-3 protein interacts with and affects the structure of RGS domain of regulator of G protein signaling 3 (RGS3) Journal of structural biology. 2010;170:451–461. doi: 10.1016/j.jsb.2010.03.009. PubMed DOI
Obsilova V, et al. 14-3-3 Protein interacts with nuclear localization sequence of forkhead transcription factor FoxO4. Biochemistry. 2005;44:11608–11617. doi: 10.1021/bi050618r. PubMed DOI
Boura E, Rezabkova L, Brynda J, Obsilova V, Obsil T. Structure of the human FOXO4-DBD-DNA complex at 1.9 A resolution reveals new details of FOXO binding to the DNA. Acta crystallographica. Section D, Biological crystallography. 2010;66:1351–1357. doi: 10.1107/S0907444910042228. PubMed DOI
Obsil T, Ghirlando R, Klein DC, Ganguly S, Dyda F. Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation. Cell. 2001;105:257–267. doi: 10.1016/S0092-8674(01)00316-6. PubMed DOI
Taoka K, et al. 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature. 2011;476:332–335. doi: 10.1038/nature10272. PubMed DOI
Sluchanko NN, et al. Structural Basis for the Interaction of a Human Small Heat Shock Protein with the 14-3-3 Universal Signaling Regulator. Structure. 2017;25:305–316. doi: 10.1016/j.str.2016.12.005. PubMed DOI PMC
Alblova M, et al. Molecular basis of the 14-3-3 protein-dependent activation of yeast neutral trehalase Nth1. Proceedings of the National Academy of Sciences of the United States of America. 2017;114:E9811–E9820. doi: 10.1073/pnas.1714491114. PubMed DOI PMC
Chalupska D, et al. Structural analysis of phosphatidylinositol 4-kinase IIIbeta (PI4KB) - 14-3-3 protein complex reveals internal flexibility and explains 14-3-3 mediated protection from degradation in vitro. Journal of structural biology. 2017;200:36–44. doi: 10.1016/j.jsb.2017.08.006. PubMed DOI
McPhail JA, Ottosen EH, Jenkins ML, Burke JE. The Molecular Basis of Aichi Virus 3A Protein Activation of Phosphatidylinositol 4 Kinase IIIbeta, PI4KB, through ACBD3. Structure. 2017;25:121–131. doi: 10.1016/j.str.2016.11.016. PubMed DOI
Fan J, Liu J, Culty M, Papadopoulos V. Acyl-coenzyme A binding domain containing 3 (ACBD3; PAP7; GCP60): an emerging signaling molecule. Progress in lipid research. 2010;49:218–234. doi: 10.1016/j.plipres.2009.12.003. PubMed DOI PMC
Sohda M, et al. Identification and characterization of a novel Golgi protein, GCP60, that interacts with the integral membrane protein giantin. The Journal of biological chemistry. 2001;276:45298–45306. doi: 10.1074/jbc.M108961200. PubMed DOI
Klima M, et al. Kobuviral Non-structural 3A Proteins Act as Molecular Harnesses to Hijack the Host ACBD3 Protein. Structure. 2017;25:219–230. doi: 10.1016/j.str.2016.11.021. PubMed DOI
Altan-Bonnet N, Balla T. Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends in biochemical sciences. 2012;37:293–302. doi: 10.1016/j.tibs.2012.03.004. PubMed DOI PMC
Ishikawa-Sasaki K, Sasaki J, Taniguchi K. A complex comprising phosphatidylinositol 4-kinase IIIbeta, ACBD3, and Aichi virus proteins enhances phosphatidylinositol 4-phosphate synthesis and is critical for formation of the viral replication complex. Journal of virology. 2014;88:6586–6598. doi: 10.1128/JVI.00208-14. PubMed DOI PMC
Altan-Bonnet N. Lipid Tales of Viral Replication and Transmission. Trends in cell biology. 2017;27:201–213. doi: 10.1016/j.tcb.2016.09.011. PubMed DOI PMC
Pylypenko O, Hammich H, Yu IM, Houdusse A. Rab GTPases and their interacting protein partners: Structural insights into Rab functional diversity. Small GTPases. 2018;9:22–48. doi: 10.1080/21541248.2017.1336191. PubMed DOI PMC
Zhen Y, Stenmark H. Cellular functions of Rab GTPases at a glance. Journal of cell science. 2015;128:3171–3176. doi: 10.1242/jcs.166074. PubMed DOI
Rozycki B, Boura E. Large, dynamic, multi-protein complexes: a challenge for structural biology. Journal of physics. Condensed matter: an Institute of Physics journal. 2014;26:463103. doi: 10.1088/0953-8984/26/46/463103. PubMed DOI
Fowler, M. L. et al. Using hydrogen deuterium exchange mass spectrometry to engineer optimized constructs for crystallization of protein complexes: Case study of PI4KIIIbeta with Rab11. Protein science: a publication of the Protein Society, 10.1002/pro.2879 (2016). PubMed PMC
Rostislavleva K, et al. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science. 2015;350:aac7365. doi: 10.1126/science.aac7365. PubMed DOI PMC
Kofinger J, Ragusa MJ, Lee IH, Hummer G, Hurley JH. Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site. Structure. 2015;23:809–818. doi: 10.1016/j.str.2015.02.012. PubMed DOI PMC
Cordeiro TN, et al. Small-angle scattering studies of intrinsically disordered proteins and their complexes. Current opinion in structural biology. 2017;42:15–23. doi: 10.1016/j.sbi.2016.10.011. PubMed DOI
Gao Y, et al. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex. The Journal of biological chemistry. 2017;292:14280–14289. doi: 10.1074/jbc.M117.797100. PubMed DOI PMC
Peti W, Page R, Boura E, Rozycki B. Structures of Dynamic Protein Complexes: Hybrid Techniques to Study MAP Kinase Complexes and the ESCRT System. Methods in molecular biology. 2018;1688:375–389. doi: 10.1007/978-1-4939-7386-6_17. PubMed DOI PMC
Yang K, et al. Sampling Enrichment toward Target Structures Using Hybrid Molecular Dynamics-Monte Carlo Simulations. PloS one. 2016;11:e0156043. doi: 10.1371/journal.pone.0156043. PubMed DOI PMC
Hercik K, et al. Adenosine triphosphate analogs can efficiently inhibit the Zika virus RNA-dependent RNA polymerase. Antiviral research. 2017;137:131–133. doi: 10.1016/j.antiviral.2016.11.020. PubMed DOI
Boura E, Hurley JH. Structural basis for membrane targeting by the MVB12-associated beta-prism domain of the human ESCRT-I MVB12 subunit. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:1901–1906. doi: 10.1073/pnas.1117597109. PubMed DOI PMC
Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophysical journal. 2000;78:1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC
Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. Journal of molecular biology. 2008;375:1416–1433. doi: 10.1016/j.jmb.2007.11.063. PubMed DOI PMC
Eisenreichova A, Klima M, Boura E. Crystal structures of a yeast 14-3-3 protein from Lachancea thermotolerans in the unliganded form and bound to a human lipid kinase PI4KB-derived peptide reveal high evolutionary conservation. Acta Crystallogr F Struct Biol Commun. 2016;72:799–803. doi: 10.1107/S2053230X16015053. PubMed DOI PMC
Rozycki B, Kim YC, Hummer G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure. 2011;19:109–116. doi: 10.1016/j.str.2010.10.006. PubMed DOI PMC
Boura E, et al. Solution Structure of the ESCRT-I and -II Supercomplex: Implications for Membrane Budding and Scission. Structure. 2012;20:874–886. doi: 10.1016/j.str.2012.03.008. PubMed DOI PMC
Suveges D, Gaspari Z, Toth G, Nyitray L. Charged single alpha-helix: a versatile protein structural motif. Proteins. 2009;74:905–916. doi: 10.1002/prot.22183. PubMed DOI
Fiser A, Sali A. ModLoop: automated modeling of loops in protein structures. Bioinformatics. 2003;19:2500–2501. doi: 10.1093/bioinformatics/btg362. PubMed DOI
Boura E, et al. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:9437–9442. doi: 10.1073/pnas.1101763108. PubMed DOI PMC
Boura E, Ivanov V, Carlson LA, Mizuuchi K, Hurley JH. Endosomal sorting complex required for transport (ESCRT) complexes induce phase-separated microdomains in supported lipid bilayers. The Journal of biological chemistry. 2012;287:28144–28151. doi: 10.1074/jbc.M112.378646. PubMed DOI PMC
Wahl M, Gregor I, Patting M, Enderlein J. Fast calculation of fluorescence correlation data with asynchronous time-correlated single-photon counting. Optics express. 2003;11:3583–3591. doi: 10.1364/OE.11.003583. PubMed DOI
Gregor I, Enderlein J. Time-resolved methods in biophysics. 3. Fluorescence lifetime correlation spectroscopy. Photochem Photobiol Sci. 2007;6:13–18. doi: 10.1039/b610310c. PubMed DOI
Crystal Structure of the ORP8 Lipid Transport ORD Domain: Model of Lipid Transport
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases