The EUTOS long-term survival (ELTS) score is superior to the Sokal score for predicting survival in chronic myeloid leukemia
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32601376
PubMed Central
PMC7387299
DOI
10.1038/s41375-020-0931-9
PII: 10.1038/s41375-020-0931-9
Knihovny.cz E-resources
- MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive drug therapy mortality MeSH
- Adult MeSH
- Protein Kinase Inhibitors therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Probability MeSH
- Prognosis MeSH
- Registries MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Protein Kinase Inhibitors MeSH
Prognostic scores support clinicians in selecting risk-adjusted treatments and in comparatively assessing different results. For patients with chronic-phase chronic myeloid leukemia (CML), four baseline prognostic scores are commonly used. Our aim was to compare the prognostic performance of the scores and to arrive at an evidence-based score recommendation. In 2949 patients not involved in any score development, higher hazard ratios and concordance indices in any comparison demonstrated the best discrimination of long-term survival with the ELTS score. In a second step, of 5154 patients analyzed to investigate risk group classification differences, 23% (n = 1197) were allocated to high-risk by the Sokal score. Of the 1197 Sokal high-risk patients, 56% were non-high-risk according to the ELTS score and had a significantly more favorable long-term survival prognosis than the 526 high-risk patients according to both scores. The Sokal score identified too many patients as high-risk and relatively few (40%) as low-risk (versus 60% with the ELTS score). Inappropriate risk classification jeopardizes optimal treatment selection. The ELTS score outperformed the Sokal score, the Euro, and the EUTOS score regarding risk group discrimination. The recent recommendation of the European LeukemiaNet for preferred use of the ELTS score was supported with significant statistical evidence.
Abteilung für Innere Medizin 4 Klinikum Wels Grieskirchen Wels Austria
Almazov Medical Reseach Centre Institute of Oncology and Hematology St Petersburg Russian Federation
Clinical Investigation Centre INSERM CIC 1402 CHU Poitiers Poitiers France
Department of Hematology Jagiellonian Unversity Medical College Kraków Poland
Department of Hematology University Medical Centre Ljubljana Slovenia
Department of Hematology VU University Medical Center Amsterdam Netherlands
Department of Molecular and Clinical Cancer Medicine University of Liverpool Liverpool UK
ELN Foundation Weinheim Germany
Hematology Department Hospital Clinic IDIBAPS Barcelona Spain
Institute of Clinical Medicine Vilnius University Vilnius Lithuania
Institution of Medical Sciences University of Uppsala Uppsala Sweden
Klinik für Innere Medizin 2 Universitätsklinikum Jena Jena Germany
Medical University of Gdansk Gdansk Poland
Romanian Academy of Medical Sciences and Medical University Bucharest Romania
See more in PubMed
Hochhaus A, Baccarani M, Silver RT, Schiffer C, Apperley JF, Cervantes F, et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia. 2020;34:966–84. doi: 10.1038/s41375-020-0776-2. PubMed DOI PMC
Pfirrmann M, Lauseker M, Hoffmann VS, Hasford J. Prognostic scores for patients with chronic myeloid leukemia under particular consideration of competing causes of death. Ann Hematol. 2015;94:S209–18. doi: 10.1007/s00277-015-2316-0. PubMed DOI
Sokal JE, Cox EB, Baccarani M, Tura S, Gomez GA, Robertson JE, et al. Prognostic discrimination in “good-risk” chronic granulocytic leukemia. Blood. 1984;63:789–99. doi: 10.1182/blood.V63.4.789.789. PubMed DOI
Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst. 1998;90:850–8. doi: 10.1093/jnci/90.11.850. PubMed DOI
Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118:686–92. doi: 10.1182/blood-2010-12-319038. PubMed DOI
Pfirrmann M, Baccarani M, Saussele S, Guilhot J, Cervantes F, Ossenkoppele G, et al. Prognosis of long-term survival considering disease-specific death in patients with chronic myeloid leukemia. Leukemia. 2016;30:48–56. doi: 10.1038/leu.2015.261. PubMed DOI
Hehlmann R, Lauseker M, Saussele S, Pfirrmann M, Krause S, Kolb HJ, et al. Assessment of imatinib as first-line treatment of chronic myeloid leukemia: 10-year survival results of the randomized CML study IV and impact of non-CML determinants. Leukemia. 2017;31:2398–406. doi: 10.1038/leu.2017.253. PubMed DOI PMC
Molica M, Colafigli G, Scalzulli E, Alunni Fegatelli D, Chiatamone Ranieri S, Rizzo L, et al. Ten-year outcome of chronic-phase chronic myeloid leukemia patients treated with imatinib in real life. Ann Hematol. 2019;98:1891–904. doi: 10.1007/s00277-019-03706-x. PubMed DOI
Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N. Engl J Med. 2017;376:917–27. doi: 10.1056/NEJMoa1609324. PubMed DOI PMC
Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30:1044–54. doi: 10.1038/leu.2016.5. PubMed DOI PMC
Brummendorf TH, Cortes JE, de Souza CA, Guilhot F, Duvillie L, Pavlov D, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015;168:69–81. doi: 10.1111/bjh.13108. PubMed DOI PMC
Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, Assouline S, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17:612–21. doi: 10.1016/S1470-2045(16)00080-2. PubMed DOI
Cortes JE, Gambacorti-Passerini C, Deininger MW, Mauro MJ, Chuah C, Kim DW, et al. Bosutinib Versus Imatinib for Newly Diagnosed Chronic Myeloid Leukemia: Results From the Randomized BFORE Trial. J Clin Oncol. 2018;36:231–7. doi: 10.1200/JCO.2017.74.7162. PubMed DOI PMC
Hoffmann VS, Baccarani M, Lindoerfer D, Castagnetti F, Turkina A, Zaritsky A, et al. The EUTOS prognostic score: review and validation in 1288 patients with CML treated frontline with imatinib. Leukemia. 2013;27:2016–22. doi: 10.1038/leu.2013.171. PubMed DOI
Hoffmann VS, Baccarani M, Hasford J, Castagnetti F, Di Raimondo F, Casado LF, et al. Treatment and outcome of 2904 CML patients from the EUTOS population-based registry. Leukemia. 2017;31:593–601. doi: 10.1038/leu.2016.246. PubMed DOI
Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122:872–84. doi: 10.1182/blood-2013-05-501569. PubMed DOI PMC
Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. New York, USA: Springer; 2000.
Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. New York, USA: Wiley; 1980.
Choudhury JB. Non-Parametric confidence interval estimation for competing risks analysis: application to contraceptive data. Stat Med. 2002;21:1129–44. doi: 10.1002/sim.1070. PubMed DOI
Fine JP, Gray RJ. A proportional hazards model for the subdistribution of a competing risk. J Am Stat Assoc. 1999;94:496–509. doi: 10.1080/01621459.1999.10474144. DOI
Wolbers M, Blanche P, Koller MT, Witteman JC, Gerds TA. Concordance for prognostic models with competing risks. Biostatistics. 2014;15:526–39. doi: 10.1093/biostatistics/kxt059. PubMed DOI PMC
Lauseker M, Zu Eulenburg C. Analysis of cause of death: competing risks or progressive illness-death model? Biom J. 2019;61:264–74. doi: 10.1002/bimj.201700238. PubMed DOI
de Wreede LC, Fiocco M, Putter H. The mstate package for estimation and prediction in non- and semi-parametric multi-state and competing risks models. Comput Meth Prog Bio. 2010;99:261–74. doi: 10.1016/j.cmpb.2010.01.001. PubMed DOI
Geelen IGP, Sandin F, Thielen N, Janssen J, Hoogendoorn M, Visser O, et al. Validation of the EUTOS long-term survival score in a recent independent cohort of “real world” CML patients. Leukemia. 2018;32:2299–303. doi: 10.1038/s41375-018-0136-7. PubMed DOI
Yang X, Bai Y, Shi M, Zhang W, Niu J, Wu C, et al. Validation of the EUTOS long-term survival score in Chinese chronic myeloid leukemia patients treated with imatinib: a multicenter real-world study. Cancer Manag Res. 2020;12:1293–301. doi: 10.2147/CMAR.S237467. PubMed DOI PMC
Millot F, Guilhot J, Suttorp M, Gunes AM, Sedlacek P, De Bont E, et al. Prognostic discrimination based on the EUTOS long-term survival score within the International Registry for Chronic Myeloid Leukemia in children and adolescents. Haematologica. 2017;102:1704–8. doi: 10.3324/haematol.2017.170035. PubMed DOI PMC
Sokal JE, Baccarani M, Tura S, Fiacchini M, Cervantes F, Rozman C, et al. Prognostic discrimination among younger patients with chronic granulocytic leukemia: relevance to bone marrow transplantation. Blood. 1985;66:1352–7. doi: 10.1182/blood.V66.6.1352.1352. PubMed DOI
Castagnetti F, Gugliotta G, Breccia M, Stagno F, Specchia G, Levato L, et al. The use of EUTOS long-term survival score instead of sokal score is strongly advised in elderly chronic myeloid leukemia patients. Blood. 2018;132:44. doi: 10.1182/blood-2018-99-117409. DOI
Lauseker M, Bachl K, Turkina A, Faber E, Prejzner W, Olsson-Stromberg U, et al. Prognosis of patients with chronic myeloid leukemia presenting in advanced phase is defined mainly by blast count, but also by age, chromosomal aberrations and hemoglobin. Am J Hematol. 2019;94:1236–43. doi: 10.1002/ajh.25628. PubMed DOI
Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N. Engl J Med. 2010;362:2251–9. doi: 10.1056/NEJMoa0912614. PubMed DOI
Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl J Med. 2010;362:2260–70. doi: 10.1056/NEJMoa1002315. PubMed DOI
Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34:2333–40. doi: 10.1200/JCO.2015.64.8899. PubMed DOI PMC
Baccarani M, Abruzzese E, Accurso V, Albano F, Annunziata M, Barulli S, et al. Managing chronic myeloid leukemia for treatment-free remission: a proposal from the GIMEMA CML WP. Blood Adv. 2019;3:4280–90. doi: 10.1182/bloodadvances.2019000865. PubMed DOI PMC
Radich JP, Deininger M, Abboud CN, Altman JK, Berman E, Bhatia R, et al. Chronic myeloid leukemia, version 1.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Cancer Netw. 2018;16:1108–35. doi: 10.6004/jnccn.2018.0071. PubMed DOI
Hochhaus A, Saussele S, Rosti G, Mahon F-X, Janssen JJWM, Hjorth-Hansen H, et al. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28:iv41–51. doi: 10.1093/annonc/mdx219. PubMed DOI
Claudiani S, Apperley JF. The argument for using imatinib in CML. Hematol Am Soc Hematol Educ Program. 2018;2018:161–7. doi: 10.1182/asheducation-2018.1.161. PubMed DOI PMC
Hantel A, Larson RA. Imatinib is still recommended for frontline therapy for CML. Blood Adv. 2018;2:3648–52. doi: 10.1182/bloodadvances.2018018614. PubMed DOI PMC
Mogensen UB, Ishwaran H, Gerds TA. Evaluating random forests for survival analysis using prediction error curves. J Stat Softw. 2012;50:1–23. doi: 10.18637/jss.v050.i11. PubMed DOI PMC
Allignol A, Schumacher M, Beyersmann J. Empirical transition matrix of multi-state models: The etm package. J Stat Softw. 2011;38:1–15. doi: 10.18637/jss.v038.i04. DOI