Structures of Dynamic Protein Complexes: Hybrid Techniques to Study MAP Kinase Complexes and the ESCRT System
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural
Grant support
R01 GM098482
NIGMS NIH HHS - United States
R01 GM100910
NIGMS NIH HHS - United States
PubMed
29151218
PubMed Central
PMC6078100
DOI
10.1007/978-1-4939-7386-6_17
Knihovny.cz E-resources
- Keywords
- EROS, Ensemble, Intrinsically disordered proteins (IDP), NMR spectroscopy, SAXS,
- MeSH
- Endosomal Sorting Complexes Required for Transport chemistry metabolism MeSH
- Protein Conformation MeSH
- Crystallography, X-Ray methods MeSH
- Humans MeSH
- Magnetic Resonance Spectroscopy methods MeSH
- Mitogen-Activated Protein Kinases chemistry metabolism MeSH
- Models, Molecular MeSH
- Scattering, Radiation * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- Endosomal Sorting Complexes Required for Transport MeSH
- Mitogen-Activated Protein Kinases MeSH
The integration of complementary molecular methods (including X-ray crystallography, NMR spectroscopy, small angle X-ray/neutron scattering, and computational techniques) is frequently required to obtain a comprehensive understanding of dynamic macromolecular complexes. In particular, these techniques are critical for studying intrinsically disordered protein regions (IDRs) or intrinsically disordered proteins (IDPs) that are part of large protein:protein complexes. Here, we explain how to prepare IDP samples suitable for study using NMR spectroscopy, and describe a novel SAXS modeling method (ensemble refinement of SAXS; EROS) that integrates the results from complementary methods, including crystal structures and NMR chemical shift perturbations, among others, to accurately model SAXS data and describe ensemble structures of dynamic macromolecular complexes.
Department of Chemistry and Biochemistry University of Arizona Tucson AZ 85721 USA
Institute of Physics Polish Academy of Sciences 02668 Warsaw Poland
See more in PubMed
Blanchet CE, Svergun DI. Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem. 2013;64:37–54. doi: 10.1146/annurev-physchem-040412-110132. PubMed DOI
Graewert MA, Svergun DI. Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS) Curr Opin Struct Biol. 2013;23(5):748–754. doi: 10.1016/j.sbi.2013.06.007. PubMed DOI
Bernado P, Perez Y, Svergun DI, Pons M. Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. J Mol Biol. 2008;376(2):492–505. doi: 10.1016/j.jmb.2007.11.066. PubMed DOI
Pelikan M, Hura GL, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys. 2009;28(2):174–189. PubMed PMC
Alber F, Forster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem. 2008;77:443–477. doi: 10.1146/annurev.biochem.77.060407.135530. PubMed DOI
Rozycki B, Kim YC, Hummer G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure. 2011;19(1):109–116. doi: 10.1016/j.str.2010.10.006. PubMed DOI PMC
Yang S, Blachowicz L, Makowski L, Roux B. Multidomain assembled states of Hck tyrosine kinase in solution. Proc Natl Acad Sci U S A. 2010;107(36):15757–15762. doi: 10.1073/pnas.1004569107. PubMed DOI PMC
Peti W, Page R. NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases. Methods Mol Biol. 2016;1447:181–196. doi: 10.1007/978-1-4939-3746-2_11. PubMed DOI
Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol. 2015;16(1):18–29. doi: 10.1038/nrm3920. PubMed DOI PMC
Peti W, Page R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif. 2007;51(1):1–10. doi: 10.1016/j.pep.2006.06.024. PubMed DOI
Svergun DI, Barberato C, Koch MHJ. CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr. 1995;28:768–773.
Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38(Web Server issue):W540–544. doi: 10.1093/nar/gkq461. PubMed DOI PMC
Grishaev A, Guo L, Irving T, Bax A. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J Am Chem Soc. 2010;132(44):15484–15486. doi: 10.1021/ja106173n. PubMed DOI PMC
Poitevin F, Orland H, Doniach S, Koehl P, Delarue M. AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res. 2011;39(Web Server issue):W184–189. doi: 10.1093/nar/gkr430. PubMed DOI PMC
Liu HG, Hexemer A, Zwart PH. The small angle scattering ToolBox (SASTBX): an open-source software for biomolecular small-angle scattering. J Appl Crystallogr. 2012;45:587–593.
Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015;589(19 Pt A):2570–2577. doi: 10.1016/j.febslet.2015.08.027. PubMed DOI
Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HD, Konarev PV, Svergun DI. New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr. 2012;45(Pt 2):342–350. doi: 10.1107/S0021889812007662. PubMed DOI PMC
Ravikumar KM, Huang W, Yang S. Fast-SAXS-pro: a unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes. J Chem Phys. 2013;138(2):024112. doi: 10.1063/1.4774148. PubMed DOI PMC
Rambo RP, Tainer JA. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers. 2011;95(8):559–571. doi: 10.1002/bip.21638. PubMed DOI PMC
Boura E, Rozycki B, Herrick DZ, Chung HS, Vecer J, Eaton WA, Cafiso DS, Hummer G, Hurley JH. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. Proc Natl Acad Sci U S A. 2011;108(23):9437–9442. doi: 10.1073/pnas.1101763108. PubMed DOI PMC
Francis DM, Rozycki B, Koveal D, Hummer G, Page R, Peti W. Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase. Nat Chem Biol. 2011;7(12):916–924. doi: 10.1038/nchembio.707. PubMed DOI PMC
Svergun DI, Petoukhov MV, Koch MH. Determination of domain structure of proteins from X-ray solution scattering. Biophys J. 2001;80(6):2946–2953. doi: 10.1016/S0006-3495(01)76260-1. PubMed DOI PMC
Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr. 2009;42(Pt 2):342–346. doi: 10.1107/S0021889809000338. PubMed DOI PMC
Rozycki B, Boura E. Large, dynamic, multi-protein complexes: a challenge for structural biology. J Phys Condens Matter. 2014;26(46):463103. doi: 10.1088/0953-8984/26/46/463103. PubMed DOI
Boura E, Rozycki B, Chung HS, Herrick DZ, Canagarajah B, Cafiso DS, Eaton WA, Hummer G, Hurley JH. Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. Structure. 2012;20(5):874–886. doi: 10.1016/j.str.2012.03.008. PubMed DOI PMC
Francis DM, Rozycki B, Tortajada A, Hummer G, Peti W, Page R. Resting and active states of the ERK2:HePTP complex. J Am Chem Soc. 2011;133(43):17138–17141. doi: 10.1021/ja2075136. PubMed DOI PMC
Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9(9):1753–1773. doi: 10.1110/ps.9.9.1753. PubMed DOI PMC
Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J Mol Biol. 2008;375(5):1416–1433. doi: 10.1016/j.jmb.2007.11.063. PubMed DOI PMC
Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, Yao XQ, Takada S. CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. J Chem Theory Comput. 2011;7(6):1979–1989. doi: 10.1021/ct2001045. PubMed DOI
Liwo A, Baranowski M, Czaplewski C, Golas E, He Y, Jagiela D, Krupa P, Maciejczyk M, Makowski M, Mozolewska MA, Niadzvedtski A, Oldziej S, Scheraga HA, Sieradzan AK, Slusarz R, Wirecki T, Yin Y, Zaborowski B. A unified coarse-grained model of biological macromolecules based on mean-field multipole-multipole interactions. J Mol Model. 2014;20(8):2306. doi: 10.1007/s00894-014-2306-5. PubMed DOI PMC
Dannenhoffer-Lafage T, White AD, Voth GA. A Direct Method for Incorporating Experimental Data into Multiscale Coarse-Grained Models. J Chem Theory Comput. 2016;12(5):2144–2153. doi: 10.1021/acs.jctc.6b00043. PubMed DOI
Yang S, Park S, Makowski L, Roux B. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J. 2009;96(11):4449–4463. doi: 10.1016/j.bpj.2009.03.036. PubMed DOI PMC
Polyhach Y, Bordignon E, Jeschke G. Rotamer libraries of spin labelled cysteines for protein studies. Phys Chem Chem Phys. 2011;13(6):2356–2366. doi: 10.1039/c0cp01865a. PubMed DOI
Best RB, Merchant KA, Gopich IV, Schuler B, Bax A, Eaton WA. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc Natl Acad Sci U S A. 2007;104(48):18964–18969. doi: 10.1073/pnas.0709567104. PubMed DOI PMC
Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci U S A. 2007;104(5):1528–1533. doi: 10.1073/pnas.0607097104. PubMed DOI PMC
Hartigan JA, Wong MA. A k-means clustering algorithm. Applied Statistics. 1979;28:100–108.
Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 1999;9(11):1106–1115. PubMed PMC
Leung HT, Bignucolo O, Aregger R, Dames SA, Mazur A, Berneche S, Grzesiek S. A Rigorous and Efficient Method To Reweight Very Large Conformational Ensembles Using Average Experimental Data and To Determine Their Relative Information Content. J Chem Theory Comput. 2016;12(1):383–394. doi: 10.1021/acs.jctc.5b00759. PubMed DOI
Rozycki B, Cieplak M, Czjzek M. Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum. J Struct Biol. 2015;191(1):68–75. doi: 10.1016/j.jsb.2015.05.004. PubMed DOI