• This record comes from PubMed

Structures of Dynamic Protein Complexes: Hybrid Techniques to Study MAP Kinase Complexes and the ESCRT System

Language English Country United States Media print

Document type Journal Article, Research Support, Non-U.S. Gov't, Research Support, N.I.H., Extramural

Grant support
R01 GM098482 NIGMS NIH HHS - United States
R01 GM100910 NIGMS NIH HHS - United States

The integration of complementary molecular methods (including X-ray crystallography, NMR spectroscopy, small angle X-ray/neutron scattering, and computational techniques) is frequently required to obtain a comprehensive understanding of dynamic macromolecular complexes. In particular, these techniques are critical for studying intrinsically disordered protein regions (IDRs) or intrinsically disordered proteins (IDPs) that are part of large protein:protein complexes. Here, we explain how to prepare IDP samples suitable for study using NMR spectroscopy, and describe a novel SAXS modeling method (ensemble refinement of SAXS; EROS) that integrates the results from complementary methods, including crystal structures and NMR chemical shift perturbations, among others, to accurately model SAXS data and describe ensemble structures of dynamic macromolecular complexes.

See more in PubMed

Blanchet CE, Svergun DI. Small-angle X-ray scattering on biological macromolecules and nanocomposites in solution. Annu Rev Phys Chem. 2013;64:37–54. doi: 10.1146/annurev-physchem-040412-110132. PubMed DOI

Graewert MA, Svergun DI. Impact and progress in small and wide angle X-ray scattering (SAXS and WAXS) Curr Opin Struct Biol. 2013;23(5):748–754. doi: 10.1016/j.sbi.2013.06.007. PubMed DOI

Bernado P, Perez Y, Svergun DI, Pons M. Structural characterization of the active and inactive states of Src kinase in solution by small-angle X-ray scattering. J Mol Biol. 2008;376(2):492–505. doi: 10.1016/j.jmb.2007.11.066. PubMed DOI

Pelikan M, Hura GL, Hammel M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys. 2009;28(2):174–189. PubMed PMC

Alber F, Forster F, Korkin D, Topf M, Sali A. Integrating diverse data for structure determination of macromolecular assemblies. Annu Rev Biochem. 2008;77:443–477. doi: 10.1146/annurev.biochem.77.060407.135530. PubMed DOI

Rozycki B, Kim YC, Hummer G. SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure. 2011;19(1):109–116. doi: 10.1016/j.str.2010.10.006. PubMed DOI PMC

Yang S, Blachowicz L, Makowski L, Roux B. Multidomain assembled states of Hck tyrosine kinase in solution. Proc Natl Acad Sci U S A. 2010;107(36):15757–15762. doi: 10.1073/pnas.1004569107. PubMed DOI PMC

Peti W, Page R. NMR Spectroscopy to Study MAP Kinase Binding to MAP Kinase Phosphatases. Methods Mol Biol. 2016;1447:181–196. doi: 10.1007/978-1-4939-3746-2_11. PubMed DOI

Wright PE, Dyson HJ. Intrinsically disordered proteins in cellular signalling and regulation. Nat Rev Mol Cell Biol. 2015;16(1):18–29. doi: 10.1038/nrm3920. PubMed DOI PMC

Peti W, Page R. Strategies to maximize heterologous protein expression in Escherichia coli with minimal cost. Protein Expr Purif. 2007;51(1):1–10. doi: 10.1016/j.pep.2006.06.024. PubMed DOI

Svergun DI, Barberato C, Koch MHJ. CRYSOL - A program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Crystallogr. 1995;28:768–773.

Schneidman-Duhovny D, Hammel M, Sali A. FoXS: a web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010;38(Web Server issue):W540–544. doi: 10.1093/nar/gkq461. PubMed DOI PMC

Grishaev A, Guo L, Irving T, Bax A. Improved fitting of solution X-ray scattering data to macromolecular structures and structural ensembles by explicit water modeling. J Am Chem Soc. 2010;132(44):15484–15486. doi: 10.1021/ja106173n. PubMed DOI PMC

Poitevin F, Orland H, Doniach S, Koehl P, Delarue M. AquaSAXS: a web server for computation and fitting of SAXS profiles with non-uniformally hydrated atomic models. Nucleic Acids Res. 2011;39(Web Server issue):W184–189. doi: 10.1093/nar/gkr430. PubMed DOI PMC

Liu HG, Hexemer A, Zwart PH. The small angle scattering ToolBox (SASTBX): an open-source software for biomolecular small-angle scattering. J Appl Crystallogr. 2012;45:587–593.

Kikhney AG, Svergun DI. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 2015;589(19 Pt A):2570–2577. doi: 10.1016/j.febslet.2015.08.027. PubMed DOI

Petoukhov MV, Franke D, Shkumatov AV, Tria G, Kikhney AG, Gajda M, Gorba C, Mertens HD, Konarev PV, Svergun DI. New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Crystallogr. 2012;45(Pt 2):342–350. doi: 10.1107/S0021889812007662. PubMed DOI PMC

Ravikumar KM, Huang W, Yang S. Fast-SAXS-pro: a unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes. J Chem Phys. 2013;138(2):024112. doi: 10.1063/1.4774148. PubMed DOI PMC

Rambo RP, Tainer JA. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers. 2011;95(8):559–571. doi: 10.1002/bip.21638. PubMed DOI PMC

Boura E, Rozycki B, Herrick DZ, Chung HS, Vecer J, Eaton WA, Cafiso DS, Hummer G, Hurley JH. Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy. Proc Natl Acad Sci U S A. 2011;108(23):9437–9442. doi: 10.1073/pnas.1101763108. PubMed DOI PMC

Francis DM, Rozycki B, Koveal D, Hummer G, Page R, Peti W. Structural basis of p38alpha regulation by hematopoietic tyrosine phosphatase. Nat Chem Biol. 2011;7(12):916–924. doi: 10.1038/nchembio.707. PubMed DOI PMC

Svergun DI, Petoukhov MV, Koch MH. Determination of domain structure of proteins from X-ray solution scattering. Biophys J. 2001;80(6):2946–2953. doi: 10.1016/S0006-3495(01)76260-1. PubMed DOI PMC

Franke D, Svergun DI. DAMMIF, a program for rapid ab-initio shape determination in small-angle scattering. J Appl Crystallogr. 2009;42(Pt 2):342–346. doi: 10.1107/S0021889809000338. PubMed DOI PMC

Rozycki B, Boura E. Large, dynamic, multi-protein complexes: a challenge for structural biology. J Phys Condens Matter. 2014;26(46):463103. doi: 10.1088/0953-8984/26/46/463103. PubMed DOI

Boura E, Rozycki B, Chung HS, Herrick DZ, Canagarajah B, Cafiso DS, Eaton WA, Hummer G, Hurley JH. Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. Structure. 2012;20(5):874–886. doi: 10.1016/j.str.2012.03.008. PubMed DOI PMC

Francis DM, Rozycki B, Tortajada A, Hummer G, Peti W, Page R. Resting and active states of the ERK2:HePTP complex. J Am Chem Soc. 2011;133(43):17138–17141. doi: 10.1021/ja2075136. PubMed DOI PMC

Fiser A, Do RK, Sali A. Modeling of loops in protein structures. Protein Sci. 2000;9(9):1753–1773. doi: 10.1110/ps.9.9.1753. PubMed DOI PMC

Kim YC, Hummer G. Coarse-grained models for simulations of multiprotein complexes: application to ubiquitin binding. J Mol Biol. 2008;375(5):1416–1433. doi: 10.1016/j.jmb.2007.11.063. PubMed DOI PMC

Kenzaki H, Koga N, Hori N, Kanada R, Li W, Okazaki K, Yao XQ, Takada S. CafeMol: A Coarse-Grained Biomolecular Simulator for Simulating Proteins at Work. J Chem Theory Comput. 2011;7(6):1979–1989. doi: 10.1021/ct2001045. PubMed DOI

Liwo A, Baranowski M, Czaplewski C, Golas E, He Y, Jagiela D, Krupa P, Maciejczyk M, Makowski M, Mozolewska MA, Niadzvedtski A, Oldziej S, Scheraga HA, Sieradzan AK, Slusarz R, Wirecki T, Yin Y, Zaborowski B. A unified coarse-grained model of biological macromolecules based on mean-field multipole-multipole interactions. J Mol Model. 2014;20(8):2306. doi: 10.1007/s00894-014-2306-5. PubMed DOI PMC

Dannenhoffer-Lafage T, White AD, Voth GA. A Direct Method for Incorporating Experimental Data into Multiscale Coarse-Grained Models. J Chem Theory Comput. 2016;12(5):2144–2153. doi: 10.1021/acs.jctc.6b00043. PubMed DOI

Yang S, Park S, Makowski L, Roux B. A rapid coarse residue-based computational method for x-ray solution scattering characterization of protein folds and multiple conformational states of large protein complexes. Biophys J. 2009;96(11):4449–4463. doi: 10.1016/j.bpj.2009.03.036. PubMed DOI PMC

Polyhach Y, Bordignon E, Jeschke G. Rotamer libraries of spin labelled cysteines for protein studies. Phys Chem Chem Phys. 2011;13(6):2356–2366. doi: 10.1039/c0cp01865a. PubMed DOI

Best RB, Merchant KA, Gopich IV, Schuler B, Bax A, Eaton WA. Effect of flexibility and cis residues in single-molecule FRET studies of polyproline. Proc Natl Acad Sci U S A. 2007;104(48):18964–18969. doi: 10.1073/pnas.0709567104. PubMed DOI PMC

Merchant KA, Best RB, Louis JM, Gopich IV, Eaton WA. Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations. Proc Natl Acad Sci U S A. 2007;104(5):1528–1533. doi: 10.1073/pnas.0607097104. PubMed DOI PMC

Hartigan JA, Wong MA. A k-means clustering algorithm. Applied Statistics. 1979;28:100–108.

Heyer LJ, Kruglyak S, Yooseph S. Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 1999;9(11):1106–1115. PubMed PMC

Leung HT, Bignucolo O, Aregger R, Dames SA, Mazur A, Berneche S, Grzesiek S. A Rigorous and Efficient Method To Reweight Very Large Conformational Ensembles Using Average Experimental Data and To Determine Their Relative Information Content. J Chem Theory Comput. 2016;12(1):383–394. doi: 10.1021/acs.jctc.5b00759. PubMed DOI

Rozycki B, Cieplak M, Czjzek M. Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum. J Struct Biol. 2015;191(1):68–75. doi: 10.1016/j.jsb.2015.05.004. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...