Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
APVV-16-0207
Agentúra na Podporu Výskumu a Vývoja
PubMed
34067763
PubMed Central
PMC8929053
DOI
10.3390/cimb43010011
PII: cimb43010011
Knihovny.cz E-zdroje
- Klíčová slova
- SERM, isoflavone, phytoestrogen, regeneration, repair, scar, skin wound,
- MeSH
- fytoestrogeny farmakologie MeSH
- genistein farmakologie MeSH
- hojení ran účinky léků MeSH
- lidé MeSH
- regenerativní lékařství trendy MeSH
- selektivní modulátory estrogenních receptorů farmakologie MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- fytoestrogeny MeSH
- genistein MeSH
- selektivní modulátory estrogenních receptorů MeSH
Estrogen deprivation is one of the major factors responsible for many age-related processes including poor wound healing in postmenopausal women. However, the reported side-effects of estrogen replacement therapy (ERT) have precluded broad clinical administration. Therefore, selective estrogen receptor modulators (SERMs) have been developed to overcome the detrimental side effects of ERT on breast and/or uterine tissues. The use of natural products isolated from plants (e.g., soy) may represent a promising source of biologically active compounds (e.g., genistein) as efficient alternatives to conventional treatment. Genistein as natural SERM has the unique ability to selectively act as agonist or antagonist in a tissue-specific manner, i.e., it improves skin repair and simultaneously exerts anti-cancer and chemopreventive properties. Hence, we present here a wound healing phases-based review of the most studied naturally occurring SERM.
Department of Pharmacology Faculty of Medicine Pavol Jozef Šafárik University 040 11 Košice Slovakia
Prague Burn Center 3rd Faculty of Medicine Charles University 100 34 Prague Czech Republic
Zobrazit více v PubMed
Hall G., Phillips T.J. Estrogen and skin: The effects of estrogen, menopause, and hormone replacement therapy on the skin. J. Am. Acad. Derm. 2005;53:555–568. doi: 10.1016/j.jaad.2004.08.039. PubMed DOI
Coma M., Frohlichova L., Urban L., Zajicek R., Urban T., Szabo P., Novak S., Fetissov V., Dvorankova B., Smetana K., Jr., et al. Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation, proliferation and maturation) Int. J. Mol. Sci. 2021;22:897. doi: 10.3390/ijms22020897. PubMed DOI PMC
Pakshir P., Noskovicova N., Lodyga M., Son D.O., Schuster R., Goodwin A., Karvonen H., Hinz B. The myofibroblast at a glance. J. Cell Sci. 2020;133 doi: 10.1242/jcs.227900. PubMed DOI
Guerra A., Belinha J., Jorge R.N. Modelling skin wound healing angiogenesis: A review. J. Theor. Biol. 2018;459:1–17. doi: 10.1016/j.jtbi.2018.09.020. PubMed DOI
Muse M.E., Crane J.S. Statpearls. StatPearls Publishing; Treasure Island, FL, USA: 2021. Physiology, epithelialization. PubMed
Kovacs E.J. Aging, traumatic injury, and estrogen treatment. Exp. Gerontol. 2005;40:549–555. doi: 10.1016/j.exger.2005.04.009. PubMed DOI
Margolis D.J., Knauss J., Bilker W. Hormone replacement therapy and prevention of pressure ulcers and venous leg ulcers. Lancet. 2002;359:675–677. doi: 10.1016/S0140-6736(02)07806-6. PubMed DOI
Ashcroft G.S., Greenwell-Wild T., Horan M.A., Wahl S.M., Ferguson M.W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 1999;155:1137–1146. doi: 10.1016/S0002-9440(10)65217-0. PubMed DOI PMC
Warren M.P. A comparative review of the risks and benefits of hormone replacement therapy regimens. Am. J. Obstet. Gynecol. 2004;190:1141–1167. doi: 10.1016/j.ajog.2003.09.033. PubMed DOI
Pataky M.W., Young W.F., Nair K.S. Hormonal and metabolic changes of aging and the influence of lifestyle modifications. Mayo Clin. Proc. 2021;96:788–814. doi: 10.1016/j.mayocp.2020.07.033. PubMed DOI PMC
Kelly P.M., Keely N.O., Bright S.A., Yassin B., Ana G., Fayne D., Zisterer D.M., Meegan M.J. Novel selective estrogen receptor ligand conjugates incorporating endoxifen-combretastatin and cyclofenil-combretastatin hybrid scaffolds: Synthesis and biochemical evaluation. Molecules. 2017;22:1440. doi: 10.3390/molecules22091440. PubMed DOI PMC
Cassidy A. Potential risks and benefits of phytoestrogen-rich diets. Int. J. Vitam. Nutr. Res. 2003;73:120–126. doi: 10.1024/0300-9831.73.2.120. PubMed DOI
Affinito P., Palomba S., Sorrentino C., Di Carlo C., Bifulco G., Arienzo M.P., Nappi C. Effects of postmenopausal hypoestrogenism on skin collagen. Maturitas. 1999;33:239–247. doi: 10.1016/S0378-5122(99)00077-8. PubMed DOI
Brincat M., Moniz C.J., Studd J.W., Darby A., Magos A., Emburey G., Versi E. Long-term effects of the menopause and sex hormones on skin thickness. Br. J. Obstet. Gynaecol. 1985;92:256–259. doi: 10.1111/j.1471-0528.1985.tb01091.x. PubMed DOI
Calleja-Agius J., Brincat M. The effect of menopause on the skin and other connective tissues. Gynecol. Endocrinol. 2012;28:273–277. doi: 10.3109/09513590.2011.613970. PubMed DOI
Brincat M.P., Baron Y.M., Galea R. Estrogens and the skin. Climacteric. 2005;8:110–123. doi: 10.1080/13697130500118100. PubMed DOI
Ososki A.L., Kennelly E.J. Phytoestrogens: A review of the present state of research. Phytother Res. 2003;17:845–869. doi: 10.1002/ptr.1364. PubMed DOI
Brzezinski A., Debi A. Phytoestrogens: The “natural” selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol. 1999;85:47–51. doi: 10.1016/S0301-2115(98)00281-4. PubMed DOI
Chadha R., Bhalla Y., Jain A., Chadha K., Karan M. Dietary soy isoflavone: A mechanistic insight. Nat. Prod. Commun. 2017;12:627–634. doi: 10.1177/1934578X1701200439. PubMed DOI
Fukutake M., Takahashi M., Ishida K., Kawamura H., Sugimura T., Wakabayashi K. Quantification of genistein and genistin in soybeans and soybean products. Food Chem. Toxicol. 1996;34:457–461. doi: 10.1016/0278-6915(96)87355-8. PubMed DOI
Yang Z., Zhu W., Gao S., Yin T., Jiang W., Hu M. Breast cancer resistance protein (abcg2) determines distribution of genistein phase ii metabolites: Reevaluation of the roles of abcg2 in the disposition of genistein. Drug Metab. Dispos. 2012;40:1883–1893. doi: 10.1124/dmd.111.043901. PubMed DOI PMC
Motlekar N., Khan M.A., Youan B.B.C. Preparation and characterization of genistein containing poly(ethylene glycol) microparticles. J. Appl. Polym. Sci. 2006;101:2070–2078. doi: 10.1002/app.23827. DOI
Kwon S.H., Kang M.J., Huh J.S., Ha K.W., Lee J.R., Lee S.K., Lee B.S., Han I.H., Lee M.S., Lee M.W., et al. Comparison of oral bioavailability of genistein and genistin in rats. Int. J. Pharm. 2007;337:148–154. doi: 10.1016/j.ijpharm.2006.12.046. PubMed DOI
Kuiper G.G., Lemmen J.G., Carlsson B., Corton J.C., Safe S.H., van der Saag P.T., van der Burg B., Gustafsson J.A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology. 1998;139:4252–4263. doi: 10.1210/endo.139.10.6216. PubMed DOI
Thornton M.J., Taylor A.H., Mulligan K., Al-Azzawi F., Lyon C.C., O’Driscoll J., Messenger A.G. The distribution of estrogen receptor beta is distinct to that of estrogen receptor alpha and the androgen receptor in human skin and the pilosebaceous unit. J. Investig. Derm. Symp. Proc. 2003;8:100–103. doi: 10.1046/j.1523-1747.2003.12181.x. PubMed DOI
Campbell L., Emmerson E., Davies F., Gilliver S.C., Krust A., Chambon P., Ashcroft G.S., Hardman M.J. Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. J. Exp. Med. 2010;207:1825–1833. doi: 10.1084/jem.20100500. PubMed DOI PMC
Wang H., Zhao Z., Lin M., Groban L. Activation of gpr30 inhibits cardiac fibroblast proliferation. Mol. Cell. Biochem. 2015;405:135–148. doi: 10.1007/s11010-015-2405-3. PubMed DOI PMC
Cao C., Li S., Dai X., Chen Y., Feng Z., Zhao Y., Wu J. Genistein inhibits proliferation and functions of hypertrophic scar fibroblasts. Burn. J. Int. Soc. Burn. Inj. 2009;35:89–97. doi: 10.1016/j.burns.2008.03.011. PubMed DOI
Nakashima S., Koike T., Nozawa Y. Genistein, a protein tyrosine kinase inhibitor, inhibits thromboxane a2-mediated human platelet responses. Mol. Pharmacol. 1991;39:475–480. PubMed
Mizushina Y., Shiomi K., Kuriyama I., Takahashi Y., Yoshida H. Inhibitory effects of a major soy isoflavone, genistein, on human DNA topoisomerase ii activity and cancer cell proliferation. Int. J. Oncol. 2013;43:1117–1124. doi: 10.3892/ijo.2013.2032. PubMed DOI
Little P.J., Getachew R., Rezaei H.B., Sanchez-Guerrero E., Khachigian L.M., Wang H., Liao S., Zheng W., Ballinger M.L., Osman N. Genistein inhibits pdgf-stimulated proteoglycan synthesis in vascular smooth muscle without blocking pdgfbeta receptor phosphorylation. Arch. Biochem. Biophys. 2012;525:25–31. doi: 10.1016/j.abb.2012.05.025. PubMed DOI
Liu X.J., Yang L., Mao Y.Q., Wang Q., Huang M.H., Wang Y.P., Wu H.B. Effects of the tyrosine protein kinase inhibitor genistein on the proliferation, activation of cultured rat hepatic stellate cells. World J. Gastroenterol. 2002;8:739–745. doi: 10.3748/wjg.v8.i4.739. PubMed DOI PMC
Yu X., Zhu J., Mi M., Chen W., Pan Q., Wei M. Anti-angiogenic genistein inhibits vegf-induced endothelial cell activation by decreasing ptk activity and mapk activation. Med. Oncol. 2012;29:349–357. doi: 10.1007/s12032-010-9770-2. PubMed DOI
Fotsis T., Pepper M., Adlercreutz H., Fleischmann G., Hase T., Montesano R., Schweigerer L. Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc. Natl. Acad. Sci. USA. 1993;90:2690–2694. doi: 10.1073/pnas.90.7.2690. PubMed DOI PMC
Tuli H.S., Tuorkey M.J., Thakral F., Sak K., Kumar M., Sharma A.K., Sharma U., Jain A., Aggarwal V., Bishayee A. Molecular mechanisms of action of genistein in cancer: Recent advances. Front. Pharmacol. 2019;10:1336. doi: 10.3389/fphar.2019.01336. PubMed DOI PMC
Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J. Biol. Chem. 1987;262:5592–5595. doi: 10.1016/S0021-9258(18)45614-1. PubMed DOI
Stahl S., Chun T.Y., Gray W.G. Phytoestrogens act as estrogen agonists in an estrogen-responsive pituitary cell line. Toxicol. Appl. Pharmacol. 1998;152:41–48. doi: 10.1006/taap.1998.8500. PubMed DOI
Ellis S., Lin E.J., Tartar D. Immunology of wound healing. Curr. Dermatol. Rep. 2018;7:350–358. doi: 10.1007/s13671-018-0234-9. PubMed DOI PMC
Wilgus T.A. Inflammation as an orchestrator of cutaneous scar formation: A review of the literature. Plast. Aesthet Res. 2020;7 doi: 10.20517/2347-9264.2020.150. PubMed DOI PMC
Landen N.X., Li D.Q., Stahle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016;73:3861–3885. doi: 10.1007/s00018-016-2268-0. PubMed DOI PMC
Ashcroft G.S., Mills S.J., Lei K., Gibbons L., Jeong M.J., Taniguchi M., Burow M., Horan M.A., Wahl S.M., Nakayama T. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J. Clin. Investig. 2003;111:1309–1318. doi: 10.1172/JCI16288. PubMed DOI PMC
Archer D.F. Postmenopausal skin and estrogen. Gynecol. Endocrinol. 2012;28:2–6. doi: 10.3109/09513590.2012.705392. PubMed DOI
Hamalainen M., Nieminen R., Vuorela P., Heinonen M., Moilanen E. Anti-inflammatory effects of flavonoids: Genistein, kaempferol, quercetin, and daidzein inhibit stat-1 and nf-kappab activations, whereas flavone, isorhamnetin, naringenin, and pelargonidin inhibit only nf-kappab activation along with their inhibitory effect on inos expression and no production in activated macrophages. Mediat. Inflamm. 2007;2007:45673. PubMed PMC
Brasier A.R. The nf-kappab regulatory network. Cardiovasc. Toxicol. 2006;6:111–130. doi: 10.1385/CT:6:2:111. PubMed DOI
Weinheimer-Haus E.M., Mirza R.E., Koh T.J. Nod-like receptor protein-3 inflammasome plays an important role during early stages of wound healing. PLoS ONE. 2015;10:e0119106. doi: 10.1371/journal.pone.0119106. PubMed DOI PMC
Eo H., Lee H.J., Lim Y. Ameliorative effect of dietary genistein on diabetes induced hyper-inflammation and oxidative stress during early stage of wound healing in alloxan induced diabetic mice. Biochem. Biophys. Res. Commun. 2016;478:1021–1027. doi: 10.1016/j.bbrc.2016.07.039. PubMed DOI
Park E., Lee S.M., Jung I.K., Lim Y., Kim J.H. Effects of genistein on early-stage cutaneous wound healing. Biochem. Biophys. Res. Commun. 2011;410:514–519. doi: 10.1016/j.bbrc.2011.06.013. PubMed DOI
Abron J.D., Singh N.P., Price R.L., Nagarkatti M., Nagarkatti P.S., Singh U.P. Genistein induces macrophage polarization and systemic cytokine to ameliorate experimental colitis. PLoS ONE. 2018;13:e0199631. doi: 10.1371/journal.pone.0199631. PubMed DOI PMC
Ji G., Zhang Y., Yang Q., Cheng S., Hao J., Zhao X., Jiang Z. Genistein suppresses lps-induced inflammatory response through inhibiting nf-kappab following amp kinase activation in raw 264.7 macrophages. PLoS ONE. 2012;7:e53101. doi: 10.1371/journal.pone.0053101. PubMed DOI PMC
Cong L., Yang S., Zhang Y., Cao J., Fu X. Dfmg attenuates the activation of macrophages induced by coculture with lpcinjured huve12 cells via the tlr4/myd88/nfkappab signaling pathway. Int. J. Mol. Med. 2018;41:2619–2628. PubMed PMC
Zhang Z.S., Xie Q.F., Che L.M. Effects of gamma irradiation on aflatoxin b1 levels in soybean and on the properties of soybean and soybean oil. Appl. Radiat. Isot. 2018;139:224–230. doi: 10.1016/j.apradiso.2018.05.003. PubMed DOI
Byun E.B., Sung N.Y., Yang M.S., Lee B.S., Song D.S., Park J.N., Kim J.H., Jang B.S., Choi D.S., Park S.H., et al. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of nf-kappab and mapk signaling pathway in lipopolysaccharide-induced macrophages. Food Chem. Toxicol. 2014;74:255–264. doi: 10.1016/j.fct.2014.08.019. PubMed DOI
Yellayi S., Zakroczymski M.A., Selvaraj V., Valli V.E., Ghanta V., Helferich W.G., Cooke P.S. The phytoestrogen genistein suppresses cell-mediated immunity in mice. J. Endocrinol. 2003;176:267–274. doi: 10.1677/joe.0.1760267. PubMed DOI
Verdrengh M., Jonsson I.M., Holmdahl R., Tarkowski A. Genistein as an anti-inflammatory agent. Inflamm. Res. 2003;52:341–346. doi: 10.1007/s00011-003-1182-8. PubMed DOI
Zhang H., Zhao Z., Pang X., Yang J., Yu H., Zhang Y., Zhou H., Zhao J. Genistein protects against ox-ldl-induced inflammation through microrna-155/socs1-mediated repression of nf-kb signaling pathway in huvecs. Inflammation. 2017;40:1450–1459. doi: 10.1007/s10753-017-0588-3. PubMed DOI
Lee Y.W., Lee W.H. Protective effects of genistein on proinflammatory pathways in human brain microvascular endothelial cells. J. Nutr. Biochem. 2008;19:819–825. doi: 10.1016/j.jnutbio.2007.10.006. PubMed DOI
Wang A., Wei J., Lu C., Chen H., Zhong X., Lu Y., Li L., Huang H., Dai Z., Han L. Genistein suppresses psoriasis-related inflammation through a stat3-nf-kappab-dependent mechanism in keratinocytes. Int. Immunopharmacol. 2019;69:270–278. doi: 10.1016/j.intimp.2019.01.054. PubMed DOI
Savoia P., Raina G., Camillo L., Farruggio S., Mary D., Veronese F., Graziola F., Zavattaro E., Tiberio R., Grossini E. Anti-oxidative effects of 17 beta-estradiol and genistein in human skin fibroblasts and keratinocytes. J. Dermatol. Sci. 2018;92:62–77. doi: 10.1016/j.jdermsci.2018.07.007. PubMed DOI
Faber L., Kovac I., Mitrengova P., Novotny M., Varinska L., Vasilenko T., Kello M., Coma M., Kuruc T., Petrova K., et al. Genistein improves skin flap viability in rats: A preliminary in vivo and in vitro investigation. Molecules. 2018;23:1637. doi: 10.3390/molecules23071637. PubMed DOI PMC
Lachova V., Mitrengova P., Melegova N., Smetana K., Jr., Gal P. Genistein induces bcl-2 expression in human dermal microvascular endothelial cells: A short report. Folia Biol. 2020;66:142–147. PubMed
Emmerson E., Campbell L., Ashcroft G.S., Hardman M.J. The phytoestrogen genistein promotes wound healing by multiple independent mechanisms. Mol. Cell. Endocrinol. 2010;321:184–193. doi: 10.1016/j.mce.2010.02.026. PubMed DOI
Tie L., An Y., Han J., Xiao Y., Xiaokaiti Y., Fan S., Liu S., Chen A.F., Li X. Genistein accelerates refractory wound healing by suppressing superoxide and foxo1/inos pathway in type 1 diabetes. J. Nutr. Biochem. 2013;24:88–96. doi: 10.1016/j.jnutbio.2012.02.011. PubMed DOI
Duchnik E., Kruk J., Baranowska-Bosiacka I., Pilutin A., Maleszka R., Marchlewicz M. Effects of the soy isoflavones, genistein and daidzein, on male rats’ skin. Postepy Dermatol. Alergol. 2019;36:760–766. doi: 10.5114/ada.2019.87280. PubMed DOI PMC
Gal P., Varinska L., Faber L., Novak S., Szabo P., Mitrengova P., Mirossay A., Mucaji P., Smetana K. How signaling molecules regulate tumor microenvironment: Parallels to wound repair. Molecules. 2017;22:1818. doi: 10.3390/molecules22111818. PubMed DOI PMC
Midgley A.C., Bowen T., Phillips A.O., Steadman R. Microrna-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell. 2014;13:235–244. doi: 10.1111/acel.12167. PubMed DOI PMC
Carnesecchi J., Malbouyres M., de Mets R., Balland M., Beauchef G., Vie K., Chamot C., Lionnet C., Ruggiero F., Vanacker J.M. Estrogens induce rapid cytoskeleton re-organization in human dermal fibroblasts via the non-classical receptor gpr30. PLoS ONE. 2015;10:e0120672. doi: 10.1371/journal.pone.0120672. PubMed DOI PMC
Tsui K.H., Wang P.H., Chen C.K., Chen Y.J., Chiou S.H., Sung Y.J., Li H.Y. Non-classical estrogen receptors action on human dermal fibroblasts. Taiwan. J. Obstet. Gynecol. 2011;50:474–478. doi: 10.1016/j.tjog.2011.10.013. PubMed DOI
Hinz B. The role of myofibroblasts in wound healing. Curr. Res. Transl. Med. 2016;64:171–177. doi: 10.1016/j.retram.2016.09.003. PubMed DOI
Desmouliere A., Geinoz A., Gabbiani F., Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J. Cell Biol. 1993;122:103–111. doi: 10.1083/jcb.122.1.103. PubMed DOI PMC
Sapudom J., Wu X., Chkolnikov M., Ansorge M., Anderegg U., Pompe T. Fibroblast fate regulation by time dependent tgf-beta1 and il-10 stimulation in biomimetic 3d matrices. Biomater. Sci. 2017;5:1858–1867. doi: 10.1039/C7BM00286F. PubMed DOI
Band A.M., Laiho M. Crosstalk of tgf-beta and estrogen receptor signaling in breast cancer. J. Mammary Gland. Biol. Neoplasia. 2011;16:109–115. doi: 10.1007/s10911-011-9203-7. PubMed DOI
Stoica A., Saceda M., Fakhro A., Solomon H.B., Fenster B.D., Martin M.B. The role of transforming growth factor-beta in the regulation of estrogen receptor expression in the mcf-7 breast cancer cell line. Endocrinology. 1997;138:1498–1505. doi: 10.1210/endo.138.4.5074. PubMed DOI
Matsuda T., Yamamoto T., Muraguchi A., Saatcioglu F. Cross-talk between transforming growth factor-beta and estrogen receptor signaling through smad3. J. Biol. Chem. 2001;276:42908–42914. doi: 10.1074/jbc.M105316200. PubMed DOI
Sienkiewicz P., Surazynski A., Palka J., Miltyk W. Nutritional concentration of genistein protects human dermal fibroblasts from oxidative stress-induced collagen biosynthesis inhibition through igf-i receptor-mediated signaling. Acta Pol. Pharm. 2008;65:203–211. PubMed
Raffetto J.D., Ligi D., Maniscalco R., Khalil R.A., Mannello F. Why venous leg ulcers have difficulty healing: Overview on pathophysiology, clinical consequences, and treatment. J. Clin. Med. 2020;10:29. doi: 10.3390/jcm10010029. PubMed DOI PMC
Smith P.C., Santibanez J.F., Morales J.P., Martinez J. Epidermal growth factor stimulates urokinase-type plasminogen activator expression in human gingival fibroblasts. Possible modulation by genistein and curcumin. J. Periodontal Res. 2004;39:380–387. doi: 10.1111/j.1600-0765.2004.00753.x. PubMed DOI
Carmeliet P., Jain R.K. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257. doi: 10.1038/35025220. PubMed DOI
Mukund V., Mukund D., Sharma V., Mannarapu M., Alam A. Genistein: Its role in metabolic diseases and cancer. Crit. Rev. Oncol. Hematol. 2017;119:13–22. doi: 10.1016/j.critrevonc.2017.09.004. PubMed DOI
Varinska L., Gal P., Mojzisova G., Mirossay L., Mojzis J. Soy and breast cancer: Focus on angiogenesis. Int. J. Mol. Sci. 2015;16:11728–11749. doi: 10.3390/ijms160511728. PubMed DOI PMC
Li Y.Q., Xing X.H., Wang H., Weng X.L., Yu S.B., Dong G.Y. Dose-dependent effects of genistein on bone homeostasis in rats’ mandibular subchondral bone. Acta Pharmacol. Sin. 2012;33:66–74. doi: 10.1038/aps.2011.136. PubMed DOI PMC
Si H., Yu J., Jiang H., Lum H., Liu D. Phytoestrogen genistein up-regulates endothelial nitric oxide synthase expression via activation of camp response element-binding protein in human aortic endothelial cells. Endocrinology. 2012;153:3190–3198. doi: 10.1210/en.2012-1076. PubMed DOI PMC
Yan G.R., Zou F.Y., Dang B.L., Zhang Y., Yu G., Liu X., He Q.Y. Genistein-induced mitotic arrest of gastric cancer cells by downregulating kif20a, a proteomics study. Proteomics. 2012;12:2391–2399. doi: 10.1002/pmic.201100652. PubMed DOI
Guo Y., Wang S., Hoot D.R., Clinton S.K. Suppression of vegf-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J. Nutr. Biochem. 2007;18:408–417. doi: 10.1016/j.jnutbio.2006.08.006. PubMed DOI
Ambra R., Rimbach G., de Pascual Teresa S., Fuchs D., Wenzel U., Daniel H., Virgili F. Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr. Metab. Cardiovasc. Dis. NMCD. 2006;16:35–43. doi: 10.1016/j.numecd.2005.03.003. PubMed DOI
Kim M.H. Flavonoids inhibit vegf/bfgf-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J. Cell. Biochem. 2003;89:529–538. doi: 10.1002/jcb.10543. PubMed DOI
Su S.J., Yeh T.M., Chuang W.J., Ho C.L., Chang K.L., Cheng H.L., Liu H.S., Cheng H.L., Hsu P.Y., Chow N.H. The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem. Pharmacol. 2005;69:307–318. doi: 10.1016/j.bcp.2004.09.025. PubMed DOI
Lu P., Takai K., Weaver V.M., Werb Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011;3:a005058. doi: 10.1101/cshperspect.a005058. PubMed DOI PMC
Berndt S., Issa M.E., Carpentier G., Cuendet M. A bivalent role of genistein in sprouting angiogenesis. Planta Med. 2018;84:653–661. doi: 10.1055/a-0587-5991. PubMed DOI
Polito F., Marini H., Bitto A., Irrera N., Vaccaro M., Adamo E.B., Micali A., Squadrito F., Minutoli L., Altavilla D. Genistein aglycone, a soy-derived isoflavone, improves skin changes induced by ovariectomy in rats. Br. J. Pharmacol. 2012;165:994–1005. doi: 10.1111/j.1476-5381.2011.01619.x. PubMed DOI PMC
Marini H., Polito F., Altavilla D., Irrera N., Minutoli L., Calo M., Adamo E.B., Vaccaro M., Squadrito F., Bitto A. Genistein aglycone improves skin repair in an incisional model of wound healing: A comparison with raloxifene and oestradiol in ovariectomized rats. Br. J. Pharmacol. 2010;160:1185–1194. doi: 10.1111/j.1476-5381.2010.00758.x. PubMed DOI PMC
Piao M., Mori D., Satoh T., Sugita Y., Tokunaga O. Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein. Combined with a cdna microarray analysis. Endothel. J. Endothel. Cell Res. 2006;13:249–266. doi: 10.1080/10623320600903940. PubMed DOI
Lu H., Shi J.X., Zhang D.M., Chen H.L., Qi M., Yin H.X. Genistein, a soybean isoflavone, reduces the production of pro-inflammatory and adhesion molecules induced by hemolysate in brain microvascular endothelial cells. Acta Neurol. Belg. 2009;109:32–37. PubMed
Jia Z., Babu P.V., Si H., Nallasamy P., Zhu H., Zhen W., Misra H.P., Li Y., Liu D. Genistein inhibits tnf-alpha-induced endothelial inflammation through the protein kinase pathway a and improves vascular inflammation in c57bl/6 mice. Int. J. Cardiol. 2013;168:2637–2645. doi: 10.1016/j.ijcard.2013.03.035. PubMed DOI PMC
Montiel M., de la Blanca E.P., Jimenez E. Angiotensin ii induces focal adhesion kinase/paxillin phosphorylation and cell migration in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun. 2005;327:971–978. doi: 10.1016/j.bbrc.2004.12.110. PubMed DOI
Mukai K., Urai T., Asano K., Nakajima Y., Nakatani T. Evaluation of effects of topical estradiol benzoate application on cutaneous wound healing in ovariectomized female mice. PLoS ONE. 2016;11:e0163560. doi: 10.1371/journal.pone.0163560. PubMed DOI PMC
Perzelova V., Sabol F., Vasilenko T., Novotny M., Kovac I., Slezak M., Durkac J., Holly M., Pilatova M., Szabo P., et al. Pharmacological activation of estrogen receptors-alpha and -beta differentially modulates keratinocyte differentiation with functional impact on wound healing. Int. J. Mol. Med. 2016;37:21–28. doi: 10.3892/ijmm.2015.2351. PubMed DOI PMC
Novotny M., Vasilenko T., Varinska L., Smetana K., Jr., Szabo P., Sarissky M., Dvorankova B., Mojzis J., Bobrov N., Toporcerova S., et al. Er-alpha agonist induces conversion of fibroblasts into myofibroblasts, while er-beta agonist increases ecm production and wound tensile strength of healing skin wounds in ovariectomised rats. Exp. Dermatol. 2011;20:703–708. doi: 10.1111/j.1600-0625.2011.01284.x. PubMed DOI
Susanikova I., Puchl’ova M., Lachova V., Svajdlenka E., Mucaji P., Smetana K., Jr., Gal P. Genistein and selected phytoestrogen-containing extracts differently modulate antioxidant properties and cell differentiation: An in vitro study in nih-3t3, hacat and mcf-7 cells. Folia Biol. 2019;65:24–35. PubMed
Zhou T., Yang Z., Chen Y., Chen Y., Huang Z., You B., Peng Y., Chen J. Estrogen accelerates cutaneous wound healing by promoting proliferation of epidermal keratinocytes via erk/akt signaling pathway. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2016;38:959–968. doi: 10.1159/000443048. PubMed DOI
Miyazaki K., Hanamizu T., Iizuka R., Chiba K. Genistein and daidzein stimulate hyaluronic acid production in transformed human keratinocyte culture and hairless mouse skin. Ski. Pharmacol. Appl. Ski. Physiol. 2002;15:175–183. doi: 10.1159/000063546. PubMed DOI
Berman B., Maderal A., Raphael B. Keloids and hypertrophic scars: Pathophysiology, classification, and treatment. Dermatol. Surg. 2017;43:S3–S18. doi: 10.1097/DSS.0000000000000819. PubMed DOI
Yates S., Rayner T.E. Transcription factor activation in response to cutaneous injury: Role of ap-1 in reepithelialization. Wound Repair Regen. 2002;10:5–15. doi: 10.1046/j.1524-475X.2002.10902.x. PubMed DOI
Jurzak M., Adamczyk K. Influence of genistein on c-jun, c-fos and fos-b of ap-1 subunits expression in skin keratinocytes, fibroblasts and keloid fibroblasts cultured in vitro. Acta Pol. Pharm. 2013;70:205–213. PubMed
Jurzak M., Adamczyk K., Antonczak P., Garncarczyk A., Kusmierz D., Latocha M. Evaluation of genistein ability to modulate ctgf mrna/protein expression, genes expression of tgfbeta isoforms and expression of selected genes regulating cell cycle in keloid fibroblasts in vitro. Acta Pol. Pharm. 2014;71:972–986. PubMed
Kim G.Y., Suh J., Jang J.H., Kim D.H., Park O.J., Park S.K., Surh Y.J. Genistein inhibits proliferation of brca1 mutated breast cancer cells: The gpr30-akt axis as a potential target. J. Cancer Prev. 2019;24:197–207. doi: 10.15430/JCP.2019.24.4.197. PubMed DOI PMC
Sun L., Zhao W., Li J., Tse L.A., Xing X., Lin S., Zhao J., Ren Z., Zhang C.X., Liu X. Dietary flavonoid intake and risk of esophageal squamous cell carcinoma: A population-based case-control study. Nutrition. 2021;89:111235. doi: 10.1016/j.nut.2021.111235. PubMed DOI
Pavese J.M., Krishna S.N., Bergan R.C. Genistein inhibits human prostate cancer cell detachment, invasion, and metastasis. Am. J. Clin. Nutr. 2014;100:431S–436S. doi: 10.3945/ajcn.113.071290. PubMed DOI PMC
Xiong P., Wang R., Zhang X., DeLa Torre E., Leon F., Zhang Q., Zheng S., Wang G., Chen Q.H. Design, synthesis, and evaluation of genistein analogues as anti-cancer agents. Anticancer. Agents Med. Chem. 2015;15:1197–1203. doi: 10.2174/1871520615666150520142437. PubMed DOI PMC