How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair

. 2017 Oct 26 ; 22 (11) : . [epub] 20171026

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29072623

It is now suggested that the inhibition of biological programs that are associated with the tumor microenvironment may be critical to the diagnostics, prevention and treatment of cancer. On the other hand, a suitable wound microenvironment would accelerate tissue repair and prevent extensive scar formation. In the present review paper, we define key signaling molecules (growth factors, cytokines, chemokines, and galectins) involved in the formation of the tumor microenvironment that decrease overall survival and increase drug resistance in cancer suffering patients. Additional attention will also be given to show whether targeted modulation of these regulators promote tissue regeneration and wound management. Whole-genome transcriptome profiling, in vitro and animal experiments revealed that interleukin 6, interleukin 8, chemokine (C-X-C motif) ligand 1, galectin-1, and selected proteins of the extracellular matrix (e.g., fibronectin) do have similar regulation during wound healing and tumor growth. Published data demonstrate remarkable similarities between the tumor and wound microenvironments. Therefore, tailor made manipulation of cancer stroma can have important therapeutic consequences. Moreover, better understanding of cancer cell-stroma interaction can help to improve wound healing by supporting granulation tissue formation and process of reepithelization of extensive and chronic wounds as well as prevention of hypertrophic scars and formation of keloids.

Zobrazit více v PubMed

Korkaya H., Liu S., Wicha M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Investig. 2011;121:3804–3809. doi: 10.1172/JCI57099. PubMed DOI PMC

Scatena R., Bottoni P., Pontoglio A., Giardina B. Cancer stem cells: The development of new cancer therapeutics. Expert. Opin. Biol. Ther. 2011;11:875–892. doi: 10.1517/14712598.2011.573780. PubMed DOI

Gandalovicova A., Rosel D., Fernandes M., Vesely P., Heneberg P., Cermak V., Petruzelka L., Kumar S., Sanz-Moreno V., Brabek J. Migrastatics-anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC

Dvorak H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986;315:1650–1659. PubMed

Dvorankova B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., Andre S., Gabius H.J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI

Kolar M., Szabo P., Dvorankova B., Lacina L., Gabius H.J., Strnad H., Sachova J., Vlcek C., Plzak J., Chovanec M., et al. Upregulation of il-6, il-8 and cxcl-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI

Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K., Jr. Cancer microenvironment: What can we learn from the stem cell niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC

Braund R., Hook S., Medlicott N.J. The role of topical growth factors in chronic wounds. Curr. Drug Deliv. 2007;4:195–204. doi: 10.2174/156720107781023857. PubMed DOI

Plzak J., Lacina L., Chovanec M., Dvorankova B., Szabo P., Cada Z., Smetana K., Jr. Epithelial-stromal interaction in squamous cell epithelium-derived tumors: An important new player in the control of tumor biological properties. Anticancer Res. 2010;30:455–462. PubMed

Strnad H., Lacina L., Kolar M., Cada Z., Vlcek C., Dvorankova B., Betka J., Plzak J., Chovanec M., Sachova J., et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI

Valach J., Fik Z., Strnad H., Chovanec M., Plzak J., Cada Z., Szabo P., Sachova J., Hroudova M., Urbanova M., et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: Increased expression of galectin-1 and induction of poor prognosis factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI

Hinz B. Formation and function of the myofibroblast during tissue repair. J. Investig. Dermatol. 2007;127:526–537. doi: 10.1038/sj.jid.5700613. PubMed DOI

Hanahan D., Coussens L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–322. doi: 10.1016/j.ccr.2012.02.022. PubMed DOI

Nakamura K., Smyth M.J. Targeting cancer-related inflammation in the era of immunotherapy. Immunol. Cell Biol. 2017;95:325–332. doi: 10.1038/icb.2016.126. PubMed DOI

Krejčí E., Dvořánková B., Szabo P., Naňka O., Strnad H., Kodet O., Lacina L., Kolář M., Smetana K.J. Fibroblasts as drivers of healing and cancer progression: From in vitro experiments to clinics. In: Quan T., editor. Molecular Mechanisms of Skin Aging and Age-Related Diseases. CRC Press; Boca Raton, FL, USA: 2016. pp. 121–138.

Majidinia M., Yousefi B. Breast tumor stroma: A driving force in the development of resistance to therapies. Chem. Biol. Drug Des. 2017;89:309–318. doi: 10.1111/cbdd.12893. PubMed DOI

Tlsty T.D., Coussens L.M. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 2006;1:119–150. doi: 10.1146/annurev.pathol.1.110304.100224. PubMed DOI

Appleby T.C., Greenstein A.E., Hung M., Liclican A., Velasquez M., Villasenor A.G., Wang R., Wong M.H., Liu X., Papalia G.A., et al. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9. J. Biol. Chem. 2017;292:6810–6820. doi: 10.1074/jbc.M116.760579. PubMed DOI PMC

Patra D., Sandell L.J. Antiangiogenic and anticancer molecules in cartilage. Expert Rev. Mol. Med. 2012;14:e10. doi: 10.1017/erm.2012.3. PubMed DOI

Butler M.S., Robertson A.A., Cooper M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014;31:1612–1661. doi: 10.1039/C4NP00064A. PubMed DOI

Hofheinz R.D., al-Batran S.E., Hartmann F., Hartung G., Jager D., Renner C., Tanswell P., Kunz U., Amelsberg A., Kuthan H., et al. Stromal antigen targeting by a humanised monoclonal antibody: An early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26:44–48. doi: 10.1159/000069863. PubMed DOI

Fischer E., Chaitanya K., Wuest T., Wadle A., Scott A.M., van den Broek M., Schibli R., Bauer S., Renner C. Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies. Clin. Cancer Res. 2012;18:6208–6218. doi: 10.1158/1078-0432.CCR-12-0644. PubMed DOI

Wen Y., Wang C.T., Ma T.T., Li Z.Y., Zhou L.N., Mu B., Leng F., Shi H.S., Li Y.O., Wei Y.Q. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101:2325–2332. doi: 10.1111/j.1349-7006.2010.01695.x. PubMed DOI PMC

Wang D., Saga Y., Sato N., Nakamura T., Takikawa O., Mizukami H., Matsubara S., Fujiwara H. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway. Int. J. Oncol. 2016;48:2303–2309. doi: 10.3892/ijo.2016.3486. PubMed DOI PMC

Kim H., Hong S.H., Kim J.Y., Kim I.C., Park Y.W., Lee S.J., Song S.W., Kim J.J., Park G., Kim T.M., et al. Preclinical development of a humanized neutralizing antibody targeting hgf. Exp. Mol. Med. 2017;49:e309. doi: 10.1038/emm.2017.21. PubMed DOI PMC

Civenni G., Longoni N., Costales P., Dallavalle C., Garcia Inclan C., Albino D., Nunez L.E., Moris F., Carbone G.M., Catapano C.V. EC-70124, a novel glycosylated indolocarbazole multikinase inhibitor, reverts tumorigenic and stem cell properties in prostate cancer by inhibiting STAT3 and NF-κB. Mol. Cancer Ther. 2016;15:806–818. doi: 10.1158/1535-7163.MCT-15-0791. PubMed DOI

Gobbi M., Steurer M., Caligaris-Cappio F., Montillo M., Janssens A., Trentin L., Dummler T., Zollner S., Zeitler S., Riecke K., et al. Anti-CXCL12/SDF-1 spiegelmer (r) NOX-A12 alone and in combination with bendamustine and rituximab in patients with relapsed chronic lymphocytic leukemia (CLL): Results from a phase IIa study. Blood. 2013;122:1635.

Abraham M., Klein S., Bulvik B., Wald H., Weiss I.D., Olam D., Weiss L., Beider K., Eizenberg O., Wald O., et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of aml blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-C1 via altered miR-15a/16-1 expression. Leukemia. 2017 doi: 10.1038/leu.2017.82. PubMed DOI

Cooper T.M., Sison E.A.R., Baker S.D., Li L., Ahmed A., Trippett T., Gore L., Macy M.E., Narendran A., August K., et al. A phase 1 study of the CXCR4 antagonist plerixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: A Pediatric Oncology Experimental Therapeutics Investigators' consortium study (POE 10-03) Pediatr. Blood Cancer. 2017;64 doi: 10.1002/pbc.26414. PubMed DOI PMC

Onoyama M., Kitadai Y., Tanaka Y., Yuge R., Shinagawa K., Tanaka S., Yasui W., Chayama K. Combining molecular targeted drugs to inhibit both cancer cells and activated stromal cells in gastric cancer. Neoplasia. 2013;15:1391–1399. doi: 10.1593/neo.131668. PubMed DOI PMC

Wagner A.J., Kindler H., Gelderblom H., Schoffski P., Bauer S., Hohenberger P., Kopp H.G., Lopez-Martin J.A., Peeters M., Reichardt P., et al. A phase II study of a human anti-PDGFRα monoclonal antibody (olaratumab, IMC-3G3) in previously treated patients with metastatic gastrointestinal stromal tumors. Ann. Oncol. 2017;28:541–546. doi: 10.1093/annonc/mdw659. PubMed DOI PMC

Appiah-Kubi K., Wang Y., Qian H., Wu M., Yao X., Wu Y., Chen Y. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour. Biol. 2016;37:10053–10066. doi: 10.1007/s13277-016-5069-z. PubMed DOI

Morris J.C., Tan A.R., Olencki T.E., Shapiro G.I., Dezube B.J., Reiss M., Hsu F.J., Berzofsky J.A., Lawrence D.P. Phase I study of GC1008 (fresolimumab): A human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE. 2014;9:e90353. doi: 10.1371/journal.pone.0090353. PubMed DOI PMC

Faivre S.J., Santoro A., Gane E., Kelley R.K., Hourmand I.I., Assenat E., Gueorguieva I., Cleverly A., Desaiah D., Lahn M.M.F., et al. A phase 2 study of galunisertib, a novel transforming growth factor-beta (TGFβ) receptor I kinase inhibitor in patients with advanced hepatocellular carcinoma (HCC) and low serum alpha fetoprotein (AFP) J. Clin. Oncol. 2016;34:4070.

Shepard H.M. Breaching the castle walls: Hyaluronan depletion as a therapeutic approach to cancer therapy. Front. Oncol. 2015;5:192. doi: 10.3389/fonc.2015.00192. PubMed DOI PMC

Roy K., Kanwar R.K., Kanwar J.R. Targeted inhibition of tumour vascularisation using anti-PDGF/VEGF aptamers. Austin J. Nanomed. Nanotechnol. 2014;2:1027.

Balkwill F. Tumour necrosis factor and cancer. Nat. Rev. Cancer. 2009;9:361–371. doi: 10.1038/nrc2628. PubMed DOI

Angevin E., Tabernero J., Elez E., Cohen S.J., Bahleda R., van Laethem J.L., Ottensmeier C., Lopez-Martin J.A., Clive S., Joly F., et al. A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 2014;20:2192–2204. doi: 10.1158/1078-0432.CCR-13-2200. PubMed DOI

Cao Y. Future options of anti-angiogenic cancer therapy. Chin. J. Cancer. 2016;35:21. doi: 10.1186/s40880-016-0084-4. PubMed DOI PMC

Yu S.S., Quinn D.I., Dorff T.B. Clinical use of cabozantinib in the treatment of advanced kidney cancer: Efficacy, safety, and patient selection. OncoTargets Ther. 2016;9:5825–5837. doi: 10.2147/OTT.S97397. PubMed DOI PMC

Zhou S., Wang F., Hsieh T.C., Wu J.M., Wu E. Thalidomide-a notorious sedative to a wonder anticancer drug. Curr. Med. Chem. 2013;20:4102–4108. doi: 10.2174/09298673113209990198. PubMed DOI PMC

Shi L., Zhou J., Wu J., Shen Y., Li X. Anti-angiogenic therapy: Strategies to develop potent VEGFR-2 tyrosine kinase inhibitors and future prospect. Curr. Med. Chem. 2016;23:1000–1040. doi: 10.2174/0929867323666160210130426. PubMed DOI

Cheng N.C., van Zandwijk N., Reid G. Cilengitide inhibits attachment and invasion of malignant pleural mesothelioma cells through antagonism of integrins αvβ3 and αvβ5. PLoS ONE. 2014;9:e90374. doi: 10.1371/journal.pone.0090374. PubMed DOI PMC

Millard M., Odde S., Neamati N. Integrin targeted therapeutics. Theranostics. 2011;1:154–188. doi: 10.7150/thno/v01p0154. PubMed DOI PMC

Colon-Otero G., Weroha S.J., Foster N.R., Haluska P., Hou X., Wahner-Hendrickson A.E., Jatoi A., Block M.S., Dinh T.A., Robertson M.W., et al. Phase 2 trial of everolimus and letrozole in relapsed estrogen receptor-positive high-grade ovarian cancers. Gynecol. Oncol. 2017;146:64–68. doi: 10.1016/j.ygyno.2017.04.020. PubMed DOI

Walia A., Yang J.F., Huang Y.H., Rosenblatt M.I., Chang J.H., Azar D.T. Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim. Biophys. Acta. 2015;1850:2422–2438. doi: 10.1016/j.bbagen.2015.09.007. PubMed DOI PMC

Jeanne A., Schneider C., Martiny L., Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front. Pharmacol. 2015;6:252. doi: 10.3389/fphar.2015.00252. PubMed DOI PMC

Wu X., Giobbie-Hurder A., Liao X., Connelly C., Connolly E.M., Li J., Manos M.P., Lawrence D., McDermott D., Severgnini M., et al. Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol. Res. 2017;5:17–28. doi: 10.1158/2326-6066.CIR-16-0206. PubMed DOI PMC

Ries C.H., Cannarile M.A., Hoves S., Benz J., Wartha K., Runza V., Rey-Giraud F., Pradel L.P., Feuerhake F., Klaman I., et al. Targeting tumor-associated macrophages with anti- CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25:846–859. doi: 10.1016/j.ccr.2014.05.016. PubMed DOI

Reilley M.J., Bailey A., Subbiah V., Janku F., Naing A., Falchook G., Karp D., Piha-Paul S., Tsimberidou A., Fu S., et al. Phase i clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J. Immunother. Cancer. 2017;5:35. doi: 10.1186/s40425-017-0238-1. PubMed DOI PMC

Linch S., Kasiewicz M.J., McNamara M., Hilgart I., Farhad M., Redmond W. Galectin-3 inhibition using novel inhibitor GR-MD-02 improves survival and immune function while reducing tumor vasculature. J. Immunother. Cancer. 2015;3:306. doi: 10.1186/2051-1426-3-S2-P306. DOI

Feng X., Clark R.A., Galanakis D., Tonnesen M.G. Fibrin and collagen differentially regulate human dermal microvascular endothelial cell integrins: Stabilization of αv/β3 mRNA by fibrin1. J. Investig. Dermatol. 1999;113:913–919. doi: 10.1046/j.1523-1747.1999.00786.x. PubMed DOI

Perzelova V., Varinska L., Dvorankova B., Szabo P., Spurny P., Valach J., Mojzis J., Andre S., Gabius H.J., Smetana K., Jr., et al. Extracellular matrix of galectin-1-exposed dermal and tumor-associated fibroblasts favors growth of human umbilical vein endothelial cells in vitro: A short report. Anticancer Res. 2014;34:3991–3996. PubMed

Rhodes J.M., Simons M. The extracellular matrix and blood vessel formation: Not just a scaffold. J. Cell Mol. Med. 2007;11:176–205. doi: 10.1111/j.1582-4934.2007.00031.x. PubMed DOI PMC

Clark R.A., Ghosh K., Tonnesen M.G. Tissue engineering for cutaneous wounds. J. Investig. Dermatol. 2007;127:1018–1029. doi: 10.1038/sj.jid.5700715. PubMed DOI

Deonarine K., Panelli M.C., Stashower M.E., Jin P., Smith K., Slade H.B., Norwood C., Wang E., Marincola F.M., Stroncek D.F. Gene expression profiling of cutaneous wound healing. J. Transl. Med. 2007;5:11. doi: 10.1186/1479-5876-5-11. PubMed DOI PMC

Smetana K., Jr., Szabo P., Gal P., Andre S., Gabius H.J., Kodet O., Dvorankova B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed

Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. PubMed DOI

Motlik J., Klima J., Dvorankova B., Smetana K., Jr. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology. 2007;67:105–111. doi: 10.1016/j.theriogenology.2006.09.018. PubMed DOI

Dvorak H.F. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J. 2015;21:237–243. doi: 10.1097/PPO.0000000000000124. PubMed DOI

van den Broek L.J., Limandjaja G.C., Niessen F.B., Gibbs S. Human hypertrophic and keloid scar models: Principles, limitations and future challenges from a tissue engineering perspective. Exp. Dermatol. 2014;23:382–386. doi: 10.1111/exd.12419. PubMed DOI PMC

Gauglitz G.G., Korting H.C., Pavicic T., Ruzicka T., Jeschke M.G. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011;17:113–125. doi: 10.2119/molmed.2009.00153. PubMed DOI PMC

Jumper N., Paus R., Bayat A. Functional histopathology of keloid disease. Histol. Histopathol. 2015;30:1033–1057. PubMed

Rees P.A., Greaves N.S., Baguneid M., Bayat A. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv. Wound Care (New Rochelle) 2015;4:687–703. doi: 10.1089/wound.2014.0568. PubMed DOI PMC

Taylor A., Budd D.C., Shih B., Seifert O., Beaton A., Wright T., Dempsey M., Kelly F., Egerton J., Marshall R.P., et al. Transforming growth factor beta gene signatures are spatially enriched in keloid tissue biopsies and ex vivo-cultured keloid fibroblasts. Acta Derm. Venereol. 2017;97:10–16. doi: 10.2340/00015555-2462. PubMed DOI

Dienus K., Bayat A., Gilmore B.F., Seifert O. Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: Implications for development of a novel treatment option. Arch. Dermatol. Res. 2010;302:725–731. doi: 10.1007/s00403-010-1084-x. PubMed DOI

Scott A.M., Wiseman G., Welt S., Adjei A., Lee F.T., Hopkins W., Divgi C.R., Hanson L.H., Mitchell P., Gansen D.N., et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003;9:1639–1647. PubMed

Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322. PubMed DOI PMC

Bremnes R.M., Donnem T., Al-Saad S., Al-Shibli K., Andersen S., Sirera R., Camps C., Marinez I., Busund L.T. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol. 2011;6:209–217. doi: 10.1097/JTO.0b013e3181f8a1bd. PubMed DOI

Ostman A., Augsten M. Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr. Opin. Genet. Dev. 2009;19:67–73. doi: 10.1016/j.gde.2009.01.003. PubMed DOI

Erez N., Glanz S., Raz Y., Avivi C., Barshack I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem. Biophys. Res. Commun. 2013;437:397–402. doi: 10.1016/j.bbrc.2013.06.089. PubMed DOI

Comito G., Giannoni E., Segura C.P., Barcellos-de-Souza P., Raspollini M.R., Baroni G., Lanciotti M., Serni S., Chiarugi P. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2014;33:2423–2431. doi: 10.1038/onc.2013.191. PubMed DOI

Chen R., Chen B. Siltuximab (CNTO 328): A promising option for human malignancies. Drug Des. Devel. Ther. 2015;9:3455–3458. doi: 10.2147/DDDT.S86438. PubMed DOI PMC

Flechsig P., Dadrich M., Bickelhaupt S., Jenne J., Hauser K., Timke C., Peschke P., Hahn E.W., Grone H.J., Yingling J., et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin. Cancer Res. 2012;18:3616–3627. doi: 10.1158/1078-0432.CCR-11-2855. PubMed DOI

Guo Y., Xu F., Lu T., Duan Z., Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat. Rev. 2012;38:904–910. doi: 10.1016/j.ctrv.2012.04.007. PubMed DOI

McFarland-Mancini M.M., Funk H.M., Paluch A.M., Zhou M., Giridhar P.V., Mercer C.A., Kozma S.C., Drew A.F. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J. Immunol. 2010;184:7219–7228. doi: 10.4049/jimmunol.0901929. PubMed DOI

Luckett-Chastain L.R., Gallucci R.M. Interleukin (IL)-6 modulates transforming growth factor-β expression in skin and dermal fibroblasts from IL-6-deficient mice. Br. J. Dermatol. 2009;161:237–248. doi: 10.1111/j.1365-2133.2009.09215.x. PubMed DOI PMC

Jobe N.P., Rosel D., Dvorankova B., Kodet O., Lacina L., Mateu R., Smetana K., Brabek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit caf-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI

Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC

Kubota Y., Takubo K., Shimizu T., Ohno H., Kishi K., Shibuya M., Saya H., Suda T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 2009;206:1089–1102. doi: 10.1084/jem.20081605. PubMed DOI PMC

Ashcroft G.S., Mills S.J., Lei K., Gibbons L., Jeong M.J., Taniguchi M., Burow M., Horan M.A., Wahl S.M., Nakayama T. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J. Clin. Investig. 2003;111:1309–1318. doi: 10.1172/JCI16288. PubMed DOI PMC

Gilliver S.C., Emmerson E., Bernhagen J., Hardman M.J. MIF: A key player in cutaneous biology and wound healing. Exp. Dermatol. 2011;20:1–6. doi: 10.1111/j.1600-0625.2010.01194.x. PubMed DOI

Izzo J.G., Correa A.M., Wu T.T., Malhotra U., Chao C.K., Luthra R., Ensor J., Dekovich A., Liao Z., Hittelman W.N., et al. Pretherapy nuclear factor-κB status, chemoradiation resistance, and metastatic progression in esophageal carcinoma. Mol. Cancer Ther. 2006;5:2844–2850. doi: 10.1158/1535-7163.MCT-06-0351. PubMed DOI

Jiang C., Masood M., Rasul A., Wei W., Wang Y., Ali M., Mustaqeem M., Li J., Li X. Altholactone inhibits NF-κB and STAT3 activation and induces reactive oxygen species-mediated apoptosis in prostate cancer DU145 cells. Molecules. 2017;22:240. doi: 10.3390/molecules22020240. PubMed DOI PMC

Greten F.R., Arkan M.C., Bollrath J., Hsu L.C., Goode J., Miething C., Goktuna S.I., Neuenhahn M., Fierer J., Paxian S., et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130:918–931. doi: 10.1016/j.cell.2007.07.009. PubMed DOI PMC

Graves D.T., Nooh N., Gillen T., Davey M., Patel S., Cottrell D., Amar S. Il-1 plays a critical role in oral, but not dermal, wound healing. J. Immunol. 2001;167:5316–5320. doi: 10.4049/jimmunol.167.9.5316. PubMed DOI

Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol. 2014;4:62. doi: 10.3389/fonc.2014.00062. PubMed DOI PMC

Shiga K., Hara M., Nagasaki T., Sato T., Takahashi H., Takeyama H. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers (Basel) 2015;7:2443–2458. doi: 10.3390/cancers7040902. PubMed DOI PMC

Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009;4:e4992. doi: 10.1371/journal.pone.0004992. PubMed DOI PMC

Sugimoto H., Mundel T.M., Kieran M.W., Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 2006;5:1640–1646. doi: 10.4161/cbt.5.12.3354. PubMed DOI

Subramaniam K.S., Tham S.T., Mohamed Z., Woo Y.L., Mat Adenan N.A., Chung I. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells. PLoS ONE. 2013;8:e68923. doi: 10.1371/journal.pone.0068923. PubMed DOI PMC

Owens P., Polikowsky H., Pickup M.W., Gorska A.E., Jovanovic B., Shaw A.K., Novitskiy S.V., Hong C.C., Moses H.L. Bone morphogenetic proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion. PLoS ONE. 2013;8:e67533. doi: 10.1371/journal.pone.0067533. PubMed DOI PMC

Du B., Shim J.S. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21:965. doi: 10.3390/molecules21070965. PubMed DOI PMC

Luo Y., Lan L., Jiang Y.G., Zhao J.H., Li M.C., Wei N.B., Lin Y.H. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol. Cells. 2013;36:138–144. doi: 10.1007/s10059-013-0096-8. PubMed DOI PMC

Li W., Croce K., Steensma D.P., McDermott D.F., Ben-Yehuda O., Moslehi J. Vascular and metabolic implications of novel targeted cancer therapies: Focus on kinase inhibitors. J. Am. Coll. Cardiol. 2015;66:1160–1178. doi: 10.1016/j.jacc.2015.07.025. PubMed DOI

Losi P., Briganti E., Errico C., Lisella A., Sanguinetti E., Chiellini F., Soldani G. Fibrin-based scaffold incorporating VEGF- and BFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013;9:7814–7821. doi: 10.1016/j.actbio.2013.04.019. PubMed DOI

Cohen M.A., Eaglstein W.H. Recombinant human platelet-derived growth factor gel speeds healing of acute full-thickness punch biopsy wounds. J. Am. Acad. Dermatol. 2001;45:857–862. doi: 10.1067/mjd.2001.117721. PubMed DOI

Steed D.L. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic ulcer study group. J. Vasc. Surg. 1995;21:71–81. doi: 10.1016/S0741-5214(95)70245-8. PubMed DOI

Fernandez-Montequin J.I., Betancourt B.Y., Leyva-Gonzalez G., Mola E.L., Galan-Naranjo K., Ramirez-Navas M., Bermudez-Rojas S., Rosales F., Garcia-Iglesias E., Berlanga-Acosta J., et al. Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: Treatment up to complete wound closure. Int. Wound J. 2009;6:67–72. doi: 10.1111/j.1742-481X.2008.00561.x. PubMed DOI PMC

Johnson N.R., Wang Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J. Control. Release. 2013;166:124–129. doi: 10.1016/j.jconrel.2012.11.004. PubMed DOI PMC

Mast B.A., Schultz G.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411–420. doi: 10.1046/j.1524-475X.1996.40404.x. PubMed DOI

Chen R.R., Mooney D.J. Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 2003;20:1103–1112. doi: 10.1023/A:1025034925152. PubMed DOI

Solis D., Bovin N.V., Davis A.P., Jimenez-Barbero J., Romero A., Roy R., Smetana K., Jr., Gabius H.J. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta. 2015;1850:186–235. doi: 10.1016/j.bbagen.2014.03.016. PubMed DOI

Gal P., Vasilenko T., Kostelnikova M., Jakubco J., Kovac I., Sabol F., Andre S., Kaltner H., Gabius H.J., Smetana K., Jr. Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem. Cytochem. 2011;44:191–199. doi: 10.1267/ahc.11014. PubMed DOI PMC

Klima J., Lacina L., Dvorankova B., Herrmann D., Carnwath J.W., Niemann H., Kaltner H., Andre S., Motlik J., Gabius H.J., et al. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol. Res. 2009;58:873–884. PubMed

Thijssen V.L., Griffioen A.W. Galectin-1 and -9 in angiogenesis: A sweet couple. Glycobiology. 2014;24:915–920. doi: 10.1093/glycob/cwu048. PubMed DOI

Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim. Biophys. Acta. 2015;1855:235–247. doi: 10.1016/j.bbcan.2015.03.003. PubMed DOI

Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., Onturk S., Blanchard H., Ralph S.J. Galectin-1 as a potent target for cancer therapy: Role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–778. doi: 10.1007/s10555-012-9388-2. PubMed DOI

Astorgues-Xerri L., Riveiro M.E., Tijeras-Raballand A., Serova M., Neuzillet C., Albert S., Raymond E., Faivre S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev. 2014;40:307–319. doi: 10.1016/j.ctrv.2013.07.007. PubMed DOI

Rabien A., Sanchez-Ruderisch H., Schulz P., Otto N., Wimmel A., Wiedenmann B., Detjen K.M. Tumor suppressor p16INK4a controls oncogenic K-Ras function in human pancreatic cancer cells. Cancer Sci. 2012;103:169–175. doi: 10.1111/j.1349-7006.2011.02140.x. PubMed DOI

Sanchez-Ruderisch H., Detjen K.M., Welzel M., Andre S., Fischer C., Gabius H.J., Rosewicz S. Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ. 2011;18:806–816. doi: 10.1038/cdd.2010.148. PubMed DOI PMC

Song S., Ji B., Ramachandran V., Wang H., Hafley M., Logsdon C., Bresalier R.S. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS ONE. 2012;7:e42699. doi: 10.1371/journal.pone.0042699. PubMed DOI PMC

Griffioen A.W., Thijssen V.L. Galectins in tumor angiogenesis. Ann. Transl. Med. 2014;2:90. PubMed PMC

Cedeno-Laurent F., Dimitroff C.J. Galectins and their ligands: Negative regulators of anti-tumor immunity. Glycoconj. J. 2012;29:619–625. doi: 10.1007/s10719-012-9379-0. PubMed DOI PMC

Perillo N.L., Pace K.E., Seilhamer J.J., Baum L.G. Apoptosis of t cells mediated by galectin-1. Nature. 1995;378:736–739. doi: 10.1038/378736a0. PubMed DOI

Toscano M.A., Bianco G.A., Ilarregui J.M., Croci D.O., Correale J., Hernandez J.D., Zwirner N.W., Poirier F., Riley E.M., Baum L.G., et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 2007;8:825–834. doi: 10.1038/ni1482. PubMed DOI

Dalotto-Moreno T., Croci D.O., Cerliani J.P., Martinez-Allo V.C., Dergan-Dylon S., Mendez-Huergo S.P., Stupirski J.C., Mazal D., Osinaga E., Toscano M.A., et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res. 2013;73:1107–1117. doi: 10.1158/0008-5472.CAN-12-2418. PubMed DOI

Juszczynski P., Ouyang J., Monti S., Rodig S.J., Takeyama K., Abramson J., Chen W., Kutok J.L., Rabinovich G.A., Shipp M.A. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA. 2007;104:13134–13139. doi: 10.1073/pnas.0706017104. PubMed DOI PMC

Grigorian A., Torossian S., Demetriou M. T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol. Rev. 2009;230:232–246. doi: 10.1111/j.1600-065X.2009.00796.x. PubMed DOI PMC

Cao Z., Said N., Amin S., Wu H.K., Bruce A., Garate M., Hsu D.K., Kuwabara I., Liu F.T., Panjwani N. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J. Biol. Chem. 2002;277:42299–42305. doi: 10.1074/jbc.M200981200. PubMed DOI

Lin Y.T., Chen J.S., Wu M.H., Hsieh I.S., Liang C.H., Hsu C.L., Hong T.M., Chen Y.L. Galectin-1 accelerates wound healing by regulating the neuropilin-1/SMAD3/NOX4 pathway and ROS production in myofibroblasts. J. Investig. Dermatol. 2015;135:258–268. doi: 10.1038/jid.2014.288. PubMed DOI

Ruvolo P.P. Galectin 3 as a guardian of the tumor microenvironment. Biochim. Biophys. Acta. 2016;1863:427–437. doi: 10.1016/j.bbamcr.2015.08.008. PubMed DOI

Galectin Inhibitor (GR-MD-02) and Ipilimumab in Patients with Metastatic Melanoma. [(accessed on 19 October 2017)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02117362.

Walker J.T., Elliott C.G., Forbes T.L., Hamilton D.W. Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J. Investig. Dermatol. 2016;136:1042–1050. doi: 10.1016/j.jid.2016.01.014. PubMed DOI

Zhu C., Anderson A.C., Schubart A., Xiong H., Imitola J., Khoury S.J., Zheng X.X., Strom T.B., Kuchroo V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005;6:1245–1252. doi: 10.1038/ni1271. PubMed DOI

Seki M., Oomizu S., Sakata K.M., Sakata A., Arikawa T., Watanabe K., Ito K., Takeshita K., Niki T., Saita N., et al. Galectin-9 suppresses the generation of TH17, promotes the induction of regulatory t cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 2008;127:78–88. doi: 10.1016/j.clim.2008.01.006. PubMed DOI

Sindrewicz P., Lian L.Y., Yu L.G. Interaction of the oncofetal Thomsen-Friedenreich antigen with galectins in cancer progression and metastasis. Front. Oncol. 2016;6:79. doi: 10.3389/fonc.2016.00079. PubMed DOI PMC

Camby I., Le Mercier M., Lefranc F., Kiss R. Galectin-1: A small protein with major functions. Glycobiology. 2006;16:137R–157R. doi: 10.1093/glycob/cwl025. PubMed DOI

Hsieh S.H., Ying N.W., Wu M.H., Chiang W.F., Hsu C.L., Wong T.Y., Jin Y.T., Hong T.M., Chen Y.L. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–3753. doi: 10.1038/sj.onc.1211029. PubMed DOI

Wu M.H., Ying N.W., Hong T.M., Chiang W.F., Lin Y.T., Chen Y.L. Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis. 2014;17:839–849. doi: 10.1007/s10456-014-9431-8. PubMed DOI

Tang D., Gao J., Wang S., Ye N., Chong Y., Huang Y., Wang J., Li B., Yin W., Wang D. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour. Biol. 2016;37:1889–1899. doi: 10.1007/s13277-015-3942-9. PubMed DOI

Markowska A.I., Jefferies K.C., Panjwani N. Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J. Biol. Chem. 2011;286:29913–29921. doi: 10.1074/jbc.M111.226423. PubMed DOI PMC

Van der Veldt A.A., Lammertsma A.A., Smit E.F. Scheduling of anticancer drugs: Timing may be everything. Cell Cycle. 2012;11:4339–4343. doi: 10.4161/cc.22187. PubMed DOI PMC

Van der Veldt A.A., Lubberink M., Bahce I., Walraven M., de Boer M.P., Greuter H.N., Hendrikse N.H., Eriksson J., Windhorst A.D., Postmus P.E., et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: Implications for scheduling of anti-angiogenic drugs. Cancer Cell. 2012;21:82–91. doi: 10.1016/j.ccr.2011.11.023. PubMed DOI

Conley S.J., Gheordunescu E., Kakarala P., Newman B., Korkaya H., Heath A.N., Clouthier S.G., Wicha M.S. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci. USA. 2012;109:2784–2789. doi: 10.1073/pnas.1018866109. PubMed DOI PMC

Casanovas O. Cancer: Limitations of therapies exposed. Nature. 2012;484:44–46. doi: 10.1038/484044a. PubMed DOI

Nicolussi A., D’Inzeo S., Capalbo C., Giannini G., Coppa A. The role of peroxiredoxins in cancer. Mol. Clin. Oncol. 2017;6:139–153. doi: 10.3892/mco.2017.1129. PubMed DOI PMC

Park M.H., Jo M., Kim Y.R., Lee C.K., Hong J.T. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol. Ther. 2016;163:1–23. doi: 10.1016/j.pharmthera.2016.03.018. PubMed DOI PMC

Kwee J.K. A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: A strange case of Dr. Jekyll and Mr. Hyde. Biomed. Res. Int. 2014;2014:209845. doi: 10.1155/2014/209845. PubMed DOI PMC

Koria P. Delivery of growth factors for tissue regeneration and wound healing. Biodrugs. 2012;26:163–175. doi: 10.2165/11631850-000000000-00000. PubMed DOI

Park J.W., Hwang S.R., Yoon I.S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017;22:1259. doi: 10.3390/molecules22081259. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Unravelling heterogeneous effects of cancer‑associated fibroblasts on poor prognosis markers in breast cancer EM‑G3 cell line: In vitro‑targeted treatment (anti‑IL-6, anti‑VEGF-A, anti‑MFGE8) based on transcriptomic profiling

. 2024 Jan ; 51 (1) : . [epub] 20231117

Heterogeneous response to TGF-β1/3 isoforms in fibroblasts of different origins: implications for wound healing and tumorigenesis

. 2023 Dec ; 160 (6) : 541-554. [epub] 20230914

Expression of Selected miRNAs in Normal and Cancer-Associated Fibroblasts and in BxPc3 and MIA PaCa-2 Cell Lines of Pancreatic Ductal Adenocarcinoma

. 2023 Feb 10 ; 24 (4) : . [epub] 20230210

Tumor Biology and Microenvironment of Vestibular Schwannoma-Relation to Tumor Growth and Hearing Loss

. 2022 Dec 23 ; 11 (1) : . [epub] 20221223

IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives

. 2021 Oct 13 ; 22 (20) : . [epub] 20211013

Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review

. 2021 May 17 ; 43 (1) : 127-141. [epub] 20210517

Molecular Changes Underlying Hypertrophic Scarring Following Burns Involve Specific Deregulations at All Wound Healing Stages (Inflammation, Proliferation and Maturation)

. 2021 Jan 18 ; 22 (2) : . [epub] 20210118

Aesculus hippocastanum L. Extract Does Not Induce Fibroblast to Myofibroblast Conversion but Increases Extracellular Matrix Production In Vitro Leading to Increased Wound Tensile Strength in Rats

. 2020 Apr 22 ; 25 (8) : . [epub] 20200422

The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy

. 2019 Mar 28 ; 11 (4) : . [epub] 20190328

Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research

. 2017 Dec 13 ; 18 (12) : . [epub] 20171213

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...