How Signaling Molecules Regulate Tumor Microenvironment: Parallels to Wound Repair
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
29072623
PubMed Central
PMC6150347
DOI
10.3390/molecules22111818
PII: molecules22111818
Knihovny.cz E-zdroje
- Klíčová slova
- cancer, cytokine, galectin, stem cell, tissue repair,
- MeSH
- buněčné mikroprostředí MeSH
- cytokiny metabolismus MeSH
- galektiny metabolismus MeSH
- hojení ran MeSH
- imunitní systém cytologie imunologie metabolismus MeSH
- keloid metabolismus patologie MeSH
- lidé MeSH
- mezibuněčné signální peptidy a proteiny metabolismus MeSH
- nádorové kmenové buňky metabolismus patologie MeSH
- nádorové mikroprostředí * MeSH
- nádory imunologie metabolismus patologie MeSH
- rány a poranění imunologie metabolismus patologie MeSH
- signální transdukce * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
- galektiny MeSH
- mezibuněčné signální peptidy a proteiny MeSH
It is now suggested that the inhibition of biological programs that are associated with the tumor microenvironment may be critical to the diagnostics, prevention and treatment of cancer. On the other hand, a suitable wound microenvironment would accelerate tissue repair and prevent extensive scar formation. In the present review paper, we define key signaling molecules (growth factors, cytokines, chemokines, and galectins) involved in the formation of the tumor microenvironment that decrease overall survival and increase drug resistance in cancer suffering patients. Additional attention will also be given to show whether targeted modulation of these regulators promote tissue regeneration and wound management. Whole-genome transcriptome profiling, in vitro and animal experiments revealed that interleukin 6, interleukin 8, chemokine (C-X-C motif) ligand 1, galectin-1, and selected proteins of the extracellular matrix (e.g., fibronectin) do have similar regulation during wound healing and tumor growth. Published data demonstrate remarkable similarities between the tumor and wound microenvironments. Therefore, tailor made manipulation of cancer stroma can have important therapeutic consequences. Moreover, better understanding of cancer cell-stroma interaction can help to improve wound healing by supporting granulation tissue formation and process of reepithelization of extensive and chronic wounds as well as prevention of hypertrophic scars and formation of keloids.
BIOCEV 252 50 Vestec Czech Republic
Department of Pharmacology Faculty of Medicine Pavol Jozef Šafárik University 040 11 Košice Slovakia
Institute of Anatomy 1st Faculty of Medicine Charles University 128 00 Prague Czech Republic
Zobrazit více v PubMed
Korkaya H., Liu S., Wicha M.S. Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J. Clin. Investig. 2011;121:3804–3809. doi: 10.1172/JCI57099. PubMed DOI PMC
Scatena R., Bottoni P., Pontoglio A., Giardina B. Cancer stem cells: The development of new cancer therapeutics. Expert. Opin. Biol. Ther. 2011;11:875–892. doi: 10.1517/14712598.2011.573780. PubMed DOI
Gandalovicova A., Rosel D., Fernandes M., Vesely P., Heneberg P., Cermak V., Petruzelka L., Kumar S., Sanz-Moreno V., Brabek J. Migrastatics-anti-metastatic and anti-invasion drugs: Promises and challenges. Trends Cancer. 2017;3:391–406. doi: 10.1016/j.trecan.2017.04.008. PubMed DOI PMC
Dvorak H.F. Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med. 1986;315:1650–1659. PubMed
Dvorankova B., Szabo P., Lacina L., Gal P., Uhrova J., Zima T., Kaltner H., Andre S., Gabius H.J., Sykova E., et al. Human galectins induce conversion of dermal fibroblasts into myofibroblasts and production of extracellular matrix: Potential application in tissue engineering and wound repair. Cells Tissues Organs. 2011;194:469–480. doi: 10.1159/000324864. PubMed DOI
Kolar M., Szabo P., Dvorankova B., Lacina L., Gabius H.J., Strnad H., Sachova J., Vlcek C., Plzak J., Chovanec M., et al. Upregulation of il-6, il-8 and cxcl-1 production in dermal fibroblasts by normal/malignant epithelial cells in vitro: Immunohistochemical and transcriptomic analyses. Biol. Cell. 2012;104:738–751. doi: 10.1111/boc.201200018. PubMed DOI
Lacina L., Plzak J., Kodet O., Szabo P., Chovanec M., Dvorankova B., Smetana K., Jr. Cancer microenvironment: What can we learn from the stem cell niche. Int. J. Mol. Sci. 2015;16:24094–24110. doi: 10.3390/ijms161024094. PubMed DOI PMC
Braund R., Hook S., Medlicott N.J. The role of topical growth factors in chronic wounds. Curr. Drug Deliv. 2007;4:195–204. doi: 10.2174/156720107781023857. PubMed DOI
Plzak J., Lacina L., Chovanec M., Dvorankova B., Szabo P., Cada Z., Smetana K., Jr. Epithelial-stromal interaction in squamous cell epithelium-derived tumors: An important new player in the control of tumor biological properties. Anticancer Res. 2010;30:455–462. PubMed
Strnad H., Lacina L., Kolar M., Cada Z., Vlcek C., Dvorankova B., Betka J., Plzak J., Chovanec M., Sachova J., et al. Head and neck squamous cancer stromal fibroblasts produce growth factors influencing phenotype of normal human keratinocytes. Histochem. Cell Biol. 2010;133:201–211. doi: 10.1007/s00418-009-0661-6. PubMed DOI
Valach J., Fik Z., Strnad H., Chovanec M., Plzak J., Cada Z., Szabo P., Sachova J., Hroudova M., Urbanova M., et al. Smooth muscle actin-expressing stromal fibroblasts in head and neck squamous cell carcinoma: Increased expression of galectin-1 and induction of poor prognosis factors. Int. J. Cancer. 2012;131:2499–2508. doi: 10.1002/ijc.27550. PubMed DOI
Hinz B. Formation and function of the myofibroblast during tissue repair. J. Investig. Dermatol. 2007;127:526–537. doi: 10.1038/sj.jid.5700613. PubMed DOI
Hanahan D., Coussens L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–322. doi: 10.1016/j.ccr.2012.02.022. PubMed DOI
Nakamura K., Smyth M.J. Targeting cancer-related inflammation in the era of immunotherapy. Immunol. Cell Biol. 2017;95:325–332. doi: 10.1038/icb.2016.126. PubMed DOI
Krejčí E., Dvořánková B., Szabo P., Naňka O., Strnad H., Kodet O., Lacina L., Kolář M., Smetana K.J. Fibroblasts as drivers of healing and cancer progression: From in vitro experiments to clinics. In: Quan T., editor. Molecular Mechanisms of Skin Aging and Age-Related Diseases. CRC Press; Boca Raton, FL, USA: 2016. pp. 121–138.
Majidinia M., Yousefi B. Breast tumor stroma: A driving force in the development of resistance to therapies. Chem. Biol. Drug Des. 2017;89:309–318. doi: 10.1111/cbdd.12893. PubMed DOI
Tlsty T.D., Coussens L.M. Tumor stroma and regulation of cancer development. Annu. Rev. Pathol. 2006;1:119–150. doi: 10.1146/annurev.pathol.1.110304.100224. PubMed DOI
Appleby T.C., Greenstein A.E., Hung M., Liclican A., Velasquez M., Villasenor A.G., Wang R., Wong M.H., Liu X., Papalia G.A., et al. Biochemical characterization and structure determination of a potent, selective antibody inhibitor of human MMP9. J. Biol. Chem. 2017;292:6810–6820. doi: 10.1074/jbc.M116.760579. PubMed DOI PMC
Patra D., Sandell L.J. Antiangiogenic and anticancer molecules in cartilage. Expert Rev. Mol. Med. 2012;14:e10. doi: 10.1017/erm.2012.3. PubMed DOI
Butler M.S., Robertson A.A., Cooper M.A. Natural product and natural product derived drugs in clinical trials. Nat. Prod. Rep. 2014;31:1612–1661. doi: 10.1039/C4NP00064A. PubMed DOI
Hofheinz R.D., al-Batran S.E., Hartmann F., Hartung G., Jager D., Renner C., Tanswell P., Kunz U., Amelsberg A., Kuthan H., et al. Stromal antigen targeting by a humanised monoclonal antibody: An early phase II trial of sibrotuzumab in patients with metastatic colorectal cancer. Onkologie. 2003;26:44–48. doi: 10.1159/000069863. PubMed DOI
Fischer E., Chaitanya K., Wuest T., Wadle A., Scott A.M., van den Broek M., Schibli R., Bauer S., Renner C. Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies. Clin. Cancer Res. 2012;18:6208–6218. doi: 10.1158/1078-0432.CCR-12-0644. PubMed DOI
Wen Y., Wang C.T., Ma T.T., Li Z.Y., Zhou L.N., Mu B., Leng F., Shi H.S., Li Y.O., Wei Y.Q. Immunotherapy targeting fibroblast activation protein inhibits tumor growth and increases survival in a murine colon cancer model. Cancer Sci. 2010;101:2325–2332. doi: 10.1111/j.1349-7006.2010.01695.x. PubMed DOI PMC
Wang D., Saga Y., Sato N., Nakamura T., Takikawa O., Mizukami H., Matsubara S., Fujiwara H. The hepatocyte growth factor antagonist NK4 inhibits indoleamine-2,3-dioxygenase expression via the c-Met-phosphatidylinositol 3-kinase-AKT signaling pathway. Int. J. Oncol. 2016;48:2303–2309. doi: 10.3892/ijo.2016.3486. PubMed DOI PMC
Kim H., Hong S.H., Kim J.Y., Kim I.C., Park Y.W., Lee S.J., Song S.W., Kim J.J., Park G., Kim T.M., et al. Preclinical development of a humanized neutralizing antibody targeting hgf. Exp. Mol. Med. 2017;49:e309. doi: 10.1038/emm.2017.21. PubMed DOI PMC
Civenni G., Longoni N., Costales P., Dallavalle C., Garcia Inclan C., Albino D., Nunez L.E., Moris F., Carbone G.M., Catapano C.V. EC-70124, a novel glycosylated indolocarbazole multikinase inhibitor, reverts tumorigenic and stem cell properties in prostate cancer by inhibiting STAT3 and NF-κB. Mol. Cancer Ther. 2016;15:806–818. doi: 10.1158/1535-7163.MCT-15-0791. PubMed DOI
Gobbi M., Steurer M., Caligaris-Cappio F., Montillo M., Janssens A., Trentin L., Dummler T., Zollner S., Zeitler S., Riecke K., et al. Anti-CXCL12/SDF-1 spiegelmer (r) NOX-A12 alone and in combination with bendamustine and rituximab in patients with relapsed chronic lymphocytic leukemia (CLL): Results from a phase IIa study. Blood. 2013;122:1635.
Abraham M., Klein S., Bulvik B., Wald H., Weiss I.D., Olam D., Weiss L., Beider K., Eizenberg O., Wald O., et al. The CXCR4 inhibitor BL-8040 induces the apoptosis of aml blasts by downregulating ERK, BCL-2, MCL-1 and cyclin-C1 via altered miR-15a/16-1 expression. Leukemia. 2017 doi: 10.1038/leu.2017.82. PubMed DOI
Cooper T.M., Sison E.A.R., Baker S.D., Li L., Ahmed A., Trippett T., Gore L., Macy M.E., Narendran A., August K., et al. A phase 1 study of the CXCR4 antagonist plerixafor in combination with high-dose cytarabine and etoposide in children with relapsed or refractory acute leukemias or myelodysplastic syndrome: A Pediatric Oncology Experimental Therapeutics Investigators' consortium study (POE 10-03) Pediatr. Blood Cancer. 2017;64 doi: 10.1002/pbc.26414. PubMed DOI PMC
Onoyama M., Kitadai Y., Tanaka Y., Yuge R., Shinagawa K., Tanaka S., Yasui W., Chayama K. Combining molecular targeted drugs to inhibit both cancer cells and activated stromal cells in gastric cancer. Neoplasia. 2013;15:1391–1399. doi: 10.1593/neo.131668. PubMed DOI PMC
Wagner A.J., Kindler H., Gelderblom H., Schoffski P., Bauer S., Hohenberger P., Kopp H.G., Lopez-Martin J.A., Peeters M., Reichardt P., et al. A phase II study of a human anti-PDGFRα monoclonal antibody (olaratumab, IMC-3G3) in previously treated patients with metastatic gastrointestinal stromal tumors. Ann. Oncol. 2017;28:541–546. doi: 10.1093/annonc/mdw659. PubMed DOI PMC
Appiah-Kubi K., Wang Y., Qian H., Wu M., Yao X., Wu Y., Chen Y. Platelet-derived growth factor receptor/platelet-derived growth factor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour. Biol. 2016;37:10053–10066. doi: 10.1007/s13277-016-5069-z. PubMed DOI
Morris J.C., Tan A.R., Olencki T.E., Shapiro G.I., Dezube B.J., Reiss M., Hsu F.J., Berzofsky J.A., Lawrence D.P. Phase I study of GC1008 (fresolimumab): A human anti-transforming growth factor-beta (TGFβ) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS ONE. 2014;9:e90353. doi: 10.1371/journal.pone.0090353. PubMed DOI PMC
Faivre S.J., Santoro A., Gane E., Kelley R.K., Hourmand I.I., Assenat E., Gueorguieva I., Cleverly A., Desaiah D., Lahn M.M.F., et al. A phase 2 study of galunisertib, a novel transforming growth factor-beta (TGFβ) receptor I kinase inhibitor in patients with advanced hepatocellular carcinoma (HCC) and low serum alpha fetoprotein (AFP) J. Clin. Oncol. 2016;34:4070.
Shepard H.M. Breaching the castle walls: Hyaluronan depletion as a therapeutic approach to cancer therapy. Front. Oncol. 2015;5:192. doi: 10.3389/fonc.2015.00192. PubMed DOI PMC
Roy K., Kanwar R.K., Kanwar J.R. Targeted inhibition of tumour vascularisation using anti-PDGF/VEGF aptamers. Austin J. Nanomed. Nanotechnol. 2014;2:1027.
Balkwill F. Tumour necrosis factor and cancer. Nat. Rev. Cancer. 2009;9:361–371. doi: 10.1038/nrc2628. PubMed DOI
Angevin E., Tabernero J., Elez E., Cohen S.J., Bahleda R., van Laethem J.L., Ottensmeier C., Lopez-Martin J.A., Clive S., Joly F., et al. A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 2014;20:2192–2204. doi: 10.1158/1078-0432.CCR-13-2200. PubMed DOI
Cao Y. Future options of anti-angiogenic cancer therapy. Chin. J. Cancer. 2016;35:21. doi: 10.1186/s40880-016-0084-4. PubMed DOI PMC
Yu S.S., Quinn D.I., Dorff T.B. Clinical use of cabozantinib in the treatment of advanced kidney cancer: Efficacy, safety, and patient selection. OncoTargets Ther. 2016;9:5825–5837. doi: 10.2147/OTT.S97397. PubMed DOI PMC
Zhou S., Wang F., Hsieh T.C., Wu J.M., Wu E. Thalidomide-a notorious sedative to a wonder anticancer drug. Curr. Med. Chem. 2013;20:4102–4108. doi: 10.2174/09298673113209990198. PubMed DOI PMC
Shi L., Zhou J., Wu J., Shen Y., Li X. Anti-angiogenic therapy: Strategies to develop potent VEGFR-2 tyrosine kinase inhibitors and future prospect. Curr. Med. Chem. 2016;23:1000–1040. doi: 10.2174/0929867323666160210130426. PubMed DOI
Cheng N.C., van Zandwijk N., Reid G. Cilengitide inhibits attachment and invasion of malignant pleural mesothelioma cells through antagonism of integrins αvβ3 and αvβ5. PLoS ONE. 2014;9:e90374. doi: 10.1371/journal.pone.0090374. PubMed DOI PMC
Millard M., Odde S., Neamati N. Integrin targeted therapeutics. Theranostics. 2011;1:154–188. doi: 10.7150/thno/v01p0154. PubMed DOI PMC
Colon-Otero G., Weroha S.J., Foster N.R., Haluska P., Hou X., Wahner-Hendrickson A.E., Jatoi A., Block M.S., Dinh T.A., Robertson M.W., et al. Phase 2 trial of everolimus and letrozole in relapsed estrogen receptor-positive high-grade ovarian cancers. Gynecol. Oncol. 2017;146:64–68. doi: 10.1016/j.ygyno.2017.04.020. PubMed DOI
Walia A., Yang J.F., Huang Y.H., Rosenblatt M.I., Chang J.H., Azar D.T. Endostatin’s emerging roles in angiogenesis, lymphangiogenesis, disease, and clinical applications. Biochim. Biophys. Acta. 2015;1850:2422–2438. doi: 10.1016/j.bbagen.2015.09.007. PubMed DOI PMC
Jeanne A., Schneider C., Martiny L., Dedieu S. Original insights on thrombospondin-1-related antireceptor strategies in cancer. Front. Pharmacol. 2015;6:252. doi: 10.3389/fphar.2015.00252. PubMed DOI PMC
Wu X., Giobbie-Hurder A., Liao X., Connelly C., Connolly E.M., Li J., Manos M.P., Lawrence D., McDermott D., Severgnini M., et al. Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol. Res. 2017;5:17–28. doi: 10.1158/2326-6066.CIR-16-0206. PubMed DOI PMC
Ries C.H., Cannarile M.A., Hoves S., Benz J., Wartha K., Runza V., Rey-Giraud F., Pradel L.P., Feuerhake F., Klaman I., et al. Targeting tumor-associated macrophages with anti- CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell. 2014;25:846–859. doi: 10.1016/j.ccr.2014.05.016. PubMed DOI
Reilley M.J., Bailey A., Subbiah V., Janku F., Naing A., Falchook G., Karp D., Piha-Paul S., Tsimberidou A., Fu S., et al. Phase i clinical trial of combination imatinib and ipilimumab in patients with advanced malignancies. J. Immunother. Cancer. 2017;5:35. doi: 10.1186/s40425-017-0238-1. PubMed DOI PMC
Linch S., Kasiewicz M.J., McNamara M., Hilgart I., Farhad M., Redmond W. Galectin-3 inhibition using novel inhibitor GR-MD-02 improves survival and immune function while reducing tumor vasculature. J. Immunother. Cancer. 2015;3:306. doi: 10.1186/2051-1426-3-S2-P306. DOI
Feng X., Clark R.A., Galanakis D., Tonnesen M.G. Fibrin and collagen differentially regulate human dermal microvascular endothelial cell integrins: Stabilization of αv/β3 mRNA by fibrin1. J. Investig. Dermatol. 1999;113:913–919. doi: 10.1046/j.1523-1747.1999.00786.x. PubMed DOI
Perzelova V., Varinska L., Dvorankova B., Szabo P., Spurny P., Valach J., Mojzis J., Andre S., Gabius H.J., Smetana K., Jr., et al. Extracellular matrix of galectin-1-exposed dermal and tumor-associated fibroblasts favors growth of human umbilical vein endothelial cells in vitro: A short report. Anticancer Res. 2014;34:3991–3996. PubMed
Rhodes J.M., Simons M. The extracellular matrix and blood vessel formation: Not just a scaffold. J. Cell Mol. Med. 2007;11:176–205. doi: 10.1111/j.1582-4934.2007.00031.x. PubMed DOI PMC
Clark R.A., Ghosh K., Tonnesen M.G. Tissue engineering for cutaneous wounds. J. Investig. Dermatol. 2007;127:1018–1029. doi: 10.1038/sj.jid.5700715. PubMed DOI
Deonarine K., Panelli M.C., Stashower M.E., Jin P., Smith K., Slade H.B., Norwood C., Wang E., Marincola F.M., Stroncek D.F. Gene expression profiling of cutaneous wound healing. J. Transl. Med. 2007;5:11. doi: 10.1186/1479-5876-5-11. PubMed DOI PMC
Smetana K., Jr., Szabo P., Gal P., Andre S., Gabius H.J., Kodet O., Dvorankova B. Emerging role of tissue lectins as microenvironmental effectors in tumors and wounds. Histol. Histopathol. 2015;30:293–309. PubMed
Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786. PubMed DOI
Motlik J., Klima J., Dvorankova B., Smetana K., Jr. Porcine epidermal stem cells as a biomedical model for wound healing and normal/malignant epithelial cell propagation. Theriogenology. 2007;67:105–111. doi: 10.1016/j.theriogenology.2006.09.018. PubMed DOI
Dvorak H.F. Tumor stroma, tumor blood vessels, and antiangiogenesis therapy. Cancer J. 2015;21:237–243. doi: 10.1097/PPO.0000000000000124. PubMed DOI
van den Broek L.J., Limandjaja G.C., Niessen F.B., Gibbs S. Human hypertrophic and keloid scar models: Principles, limitations and future challenges from a tissue engineering perspective. Exp. Dermatol. 2014;23:382–386. doi: 10.1111/exd.12419. PubMed DOI PMC
Gauglitz G.G., Korting H.C., Pavicic T., Ruzicka T., Jeschke M.G. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011;17:113–125. doi: 10.2119/molmed.2009.00153. PubMed DOI PMC
Jumper N., Paus R., Bayat A. Functional histopathology of keloid disease. Histol. Histopathol. 2015;30:1033–1057. PubMed
Rees P.A., Greaves N.S., Baguneid M., Bayat A. Chemokines in wound healing and as potential therapeutic targets for reducing cutaneous scarring. Adv. Wound Care (New Rochelle) 2015;4:687–703. doi: 10.1089/wound.2014.0568. PubMed DOI PMC
Taylor A., Budd D.C., Shih B., Seifert O., Beaton A., Wright T., Dempsey M., Kelly F., Egerton J., Marshall R.P., et al. Transforming growth factor beta gene signatures are spatially enriched in keloid tissue biopsies and ex vivo-cultured keloid fibroblasts. Acta Derm. Venereol. 2017;97:10–16. doi: 10.2340/00015555-2462. PubMed DOI
Dienus K., Bayat A., Gilmore B.F., Seifert O. Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: Implications for development of a novel treatment option. Arch. Dermatol. Res. 2010;302:725–731. doi: 10.1007/s00403-010-1084-x. PubMed DOI
Scott A.M., Wiseman G., Welt S., Adjei A., Lee F.T., Hopkins W., Divgi C.R., Hanson L.H., Mitchell P., Gansen D.N., et al. A phase I dose-escalation study of sibrotuzumab in patients with advanced or metastatic fibroblast activation protein-positive cancer. Clin. Cancer Res. 2003;9:1639–1647. PubMed
Coussens L.M., Werb Z. Inflammation and cancer. Nature. 2002;420:860–867. doi: 10.1038/nature01322. PubMed DOI PMC
Bremnes R.M., Donnem T., Al-Saad S., Al-Shibli K., Andersen S., Sirera R., Camps C., Marinez I., Busund L.T. The role of tumor stroma in cancer progression and prognosis: Emphasis on carcinoma-associated fibroblasts and non-small cell lung cancer. J. Thorac. Oncol. 2011;6:209–217. doi: 10.1097/JTO.0b013e3181f8a1bd. PubMed DOI
Ostman A., Augsten M. Cancer-associated fibroblasts and tumor growth-bystanders turning into key players. Curr. Opin. Genet. Dev. 2009;19:67–73. doi: 10.1016/j.gde.2009.01.003. PubMed DOI
Erez N., Glanz S., Raz Y., Avivi C., Barshack I. Cancer associated fibroblasts express pro-inflammatory factors in human breast and ovarian tumors. Biochem. Biophys. Res. Commun. 2013;437:397–402. doi: 10.1016/j.bbrc.2013.06.089. PubMed DOI
Comito G., Giannoni E., Segura C.P., Barcellos-de-Souza P., Raspollini M.R., Baroni G., Lanciotti M., Serni S., Chiarugi P. Cancer-associated fibroblasts and M2-polarized macrophages synergize during prostate carcinoma progression. Oncogene. 2014;33:2423–2431. doi: 10.1038/onc.2013.191. PubMed DOI
Chen R., Chen B. Siltuximab (CNTO 328): A promising option for human malignancies. Drug Des. Devel. Ther. 2015;9:3455–3458. doi: 10.2147/DDDT.S86438. PubMed DOI PMC
Flechsig P., Dadrich M., Bickelhaupt S., Jenne J., Hauser K., Timke C., Peschke P., Hahn E.W., Grone H.J., Yingling J., et al. LY2109761 attenuates radiation-induced pulmonary murine fibrosis via reversal of TGF-β and BMP-associated proinflammatory and proangiogenic signals. Clin. Cancer Res. 2012;18:3616–3627. doi: 10.1158/1078-0432.CCR-11-2855. PubMed DOI
Guo Y., Xu F., Lu T., Duan Z., Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat. Rev. 2012;38:904–910. doi: 10.1016/j.ctrv.2012.04.007. PubMed DOI
McFarland-Mancini M.M., Funk H.M., Paluch A.M., Zhou M., Giridhar P.V., Mercer C.A., Kozma S.C., Drew A.F. Differences in wound healing in mice with deficiency of IL-6 versus IL-6 receptor. J. Immunol. 2010;184:7219–7228. doi: 10.4049/jimmunol.0901929. PubMed DOI
Luckett-Chastain L.R., Gallucci R.M. Interleukin (IL)-6 modulates transforming growth factor-β expression in skin and dermal fibroblasts from IL-6-deficient mice. Br. J. Dermatol. 2009;161:237–248. doi: 10.1111/j.1365-2133.2009.09215.x. PubMed DOI PMC
Jobe N.P., Rosel D., Dvorankova B., Kodet O., Lacina L., Mateu R., Smetana K., Brabek J. Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit caf-induced human melanoma cell invasiveness. Histochem. Cell Biol. 2016;146:205–217. doi: 10.1007/s00418-016-1433-8. PubMed DOI
Jayatilaka H., Tyle P., Chen J.J., Kwak M., Ju J., Kim H.J., Lee J.S.H., Wu P.H., Gilkes D.M., Fan R., et al. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 2017;8:15584. doi: 10.1038/ncomms15584. PubMed DOI PMC
Kubota Y., Takubo K., Shimizu T., Ohno H., Kishi K., Shibuya M., Saya H., Suda T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 2009;206:1089–1102. doi: 10.1084/jem.20081605. PubMed DOI PMC
Ashcroft G.S., Mills S.J., Lei K., Gibbons L., Jeong M.J., Taniguchi M., Burow M., Horan M.A., Wahl S.M., Nakayama T. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J. Clin. Investig. 2003;111:1309–1318. doi: 10.1172/JCI16288. PubMed DOI PMC
Gilliver S.C., Emmerson E., Bernhagen J., Hardman M.J. MIF: A key player in cutaneous biology and wound healing. Exp. Dermatol. 2011;20:1–6. doi: 10.1111/j.1600-0625.2010.01194.x. PubMed DOI
Izzo J.G., Correa A.M., Wu T.T., Malhotra U., Chao C.K., Luthra R., Ensor J., Dekovich A., Liao Z., Hittelman W.N., et al. Pretherapy nuclear factor-κB status, chemoradiation resistance, and metastatic progression in esophageal carcinoma. Mol. Cancer Ther. 2006;5:2844–2850. doi: 10.1158/1535-7163.MCT-06-0351. PubMed DOI
Jiang C., Masood M., Rasul A., Wei W., Wang Y., Ali M., Mustaqeem M., Li J., Li X. Altholactone inhibits NF-κB and STAT3 activation and induces reactive oxygen species-mediated apoptosis in prostate cancer DU145 cells. Molecules. 2017;22:240. doi: 10.3390/molecules22020240. PubMed DOI PMC
Greten F.R., Arkan M.C., Bollrath J., Hsu L.C., Goode J., Miething C., Goktuna S.I., Neuenhahn M., Fierer J., Paxian S., et al. NF-κB is a negative regulator of IL-1β secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell. 2007;130:918–931. doi: 10.1016/j.cell.2007.07.009. PubMed DOI PMC
Graves D.T., Nooh N., Gillen T., Davey M., Patel S., Cottrell D., Amar S. Il-1 plays a critical role in oral, but not dermal, wound healing. J. Immunol. 2001;167:5316–5320. doi: 10.4049/jimmunol.167.9.5316. PubMed DOI
Augsten M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol. 2014;4:62. doi: 10.3389/fonc.2014.00062. PubMed DOI PMC
Shiga K., Hara M., Nagasaki T., Sato T., Takahashi H., Takeyama H. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers (Basel) 2015;7:2443–2458. doi: 10.3390/cancers7040902. PubMed DOI PMC
Spaeth E.L., Dembinski J.L., Sasser A.K., Watson K., Klopp A., Hall B., Andreeff M., Marini F. Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS ONE. 2009;4:e4992. doi: 10.1371/journal.pone.0004992. PubMed DOI PMC
Sugimoto H., Mundel T.M., Kieran M.W., Kalluri R. Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol. Ther. 2006;5:1640–1646. doi: 10.4161/cbt.5.12.3354. PubMed DOI
Subramaniam K.S., Tham S.T., Mohamed Z., Woo Y.L., Mat Adenan N.A., Chung I. Cancer-associated fibroblasts promote proliferation of endometrial cancer cells. PLoS ONE. 2013;8:e68923. doi: 10.1371/journal.pone.0068923. PubMed DOI PMC
Owens P., Polikowsky H., Pickup M.W., Gorska A.E., Jovanovic B., Shaw A.K., Novitskiy S.V., Hong C.C., Moses H.L. Bone morphogenetic proteins stimulate mammary fibroblasts to promote mammary carcinoma cell invasion. PLoS ONE. 2013;8:e67533. doi: 10.1371/journal.pone.0067533. PubMed DOI PMC
Du B., Shim J.S. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21:965. doi: 10.3390/molecules21070965. PubMed DOI PMC
Luo Y., Lan L., Jiang Y.G., Zhao J.H., Li M.C., Wei N.B., Lin Y.H. Epithelial-mesenchymal transition and migration of prostate cancer stem cells is driven by cancer-associated fibroblasts in an HIF-1α/β-catenin-dependent pathway. Mol. Cells. 2013;36:138–144. doi: 10.1007/s10059-013-0096-8. PubMed DOI PMC
Li W., Croce K., Steensma D.P., McDermott D.F., Ben-Yehuda O., Moslehi J. Vascular and metabolic implications of novel targeted cancer therapies: Focus on kinase inhibitors. J. Am. Coll. Cardiol. 2015;66:1160–1178. doi: 10.1016/j.jacc.2015.07.025. PubMed DOI
Losi P., Briganti E., Errico C., Lisella A., Sanguinetti E., Chiellini F., Soldani G. Fibrin-based scaffold incorporating VEGF- and BFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater. 2013;9:7814–7821. doi: 10.1016/j.actbio.2013.04.019. PubMed DOI
Cohen M.A., Eaglstein W.H. Recombinant human platelet-derived growth factor gel speeds healing of acute full-thickness punch biopsy wounds. J. Am. Acad. Dermatol. 2001;45:857–862. doi: 10.1067/mjd.2001.117721. PubMed DOI
Steed D.L. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic ulcer study group. J. Vasc. Surg. 1995;21:71–81. doi: 10.1016/S0741-5214(95)70245-8. PubMed DOI
Fernandez-Montequin J.I., Betancourt B.Y., Leyva-Gonzalez G., Mola E.L., Galan-Naranjo K., Ramirez-Navas M., Bermudez-Rojas S., Rosales F., Garcia-Iglesias E., Berlanga-Acosta J., et al. Intralesional administration of epidermal growth factor-based formulation (Heberprot-P) in chronic diabetic foot ulcer: Treatment up to complete wound closure. Int. Wound J. 2009;6:67–72. doi: 10.1111/j.1742-481X.2008.00561.x. PubMed DOI PMC
Johnson N.R., Wang Y. Controlled delivery of heparin-binding EGF-like growth factor yields fast and comprehensive wound healing. J. Control. Release. 2013;166:124–129. doi: 10.1016/j.jconrel.2012.11.004. PubMed DOI PMC
Mast B.A., Schultz G.S. Interactions of cytokines, growth factors, and proteases in acute and chronic wounds. Wound Repair Regen. 1996;4:411–420. doi: 10.1046/j.1524-475X.1996.40404.x. PubMed DOI
Chen R.R., Mooney D.J. Polymeric growth factor delivery strategies for tissue engineering. Pharm. Res. 2003;20:1103–1112. doi: 10.1023/A:1025034925152. PubMed DOI
Solis D., Bovin N.V., Davis A.P., Jimenez-Barbero J., Romero A., Roy R., Smetana K., Jr., Gabius H.J. A guide into glycosciences: How chemistry, biochemistry and biology cooperate to crack the sugar code. Biochim. Biophys. Acta. 2015;1850:186–235. doi: 10.1016/j.bbagen.2014.03.016. PubMed DOI
Gal P., Vasilenko T., Kostelnikova M., Jakubco J., Kovac I., Sabol F., Andre S., Kaltner H., Gabius H.J., Smetana K., Jr. Open wound healing in vivo: Monitoring binding and presence of adhesion/growth-regulatory galectins in rat skin during the course of complete re-epithelialization. Acta Histochem. Cytochem. 2011;44:191–199. doi: 10.1267/ahc.11014. PubMed DOI PMC
Klima J., Lacina L., Dvorankova B., Herrmann D., Carnwath J.W., Niemann H., Kaltner H., Andre S., Motlik J., Gabius H.J., et al. Differential regulation of galectin expression/reactivity during wound healing in porcine skin and in cultures of epidermal cells with functional impact on migration. Physiol. Res. 2009;58:873–884. PubMed
Thijssen V.L., Griffioen A.W. Galectin-1 and -9 in angiogenesis: A sweet couple. Glycobiology. 2014;24:915–920. doi: 10.1093/glycob/cwu048. PubMed DOI
Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim. Biophys. Acta. 2015;1855:235–247. doi: 10.1016/j.bbcan.2015.03.003. PubMed DOI
Ito K., Stannard K., Gabutero E., Clark A.M., Neo S.Y., Onturk S., Blanchard H., Ralph S.J. Galectin-1 as a potent target for cancer therapy: Role in the tumor microenvironment. Cancer Metastasis Rev. 2012;31:763–778. doi: 10.1007/s10555-012-9388-2. PubMed DOI
Astorgues-Xerri L., Riveiro M.E., Tijeras-Raballand A., Serova M., Neuzillet C., Albert S., Raymond E., Faivre S. Unraveling galectin-1 as a novel therapeutic target for cancer. Cancer Treat. Rev. 2014;40:307–319. doi: 10.1016/j.ctrv.2013.07.007. PubMed DOI
Rabien A., Sanchez-Ruderisch H., Schulz P., Otto N., Wimmel A., Wiedenmann B., Detjen K.M. Tumor suppressor p16INK4a controls oncogenic K-Ras function in human pancreatic cancer cells. Cancer Sci. 2012;103:169–175. doi: 10.1111/j.1349-7006.2011.02140.x. PubMed DOI
Sanchez-Ruderisch H., Detjen K.M., Welzel M., Andre S., Fischer C., Gabius H.J., Rosewicz S. Galectin-1 sensitizes carcinoma cells to anoikis via the fibronectin receptor α5β1-integrin. Cell Death Differ. 2011;18:806–816. doi: 10.1038/cdd.2010.148. PubMed DOI PMC
Song S., Ji B., Ramachandran V., Wang H., Hafley M., Logsdon C., Bresalier R.S. Overexpressed galectin-3 in pancreatic cancer induces cell proliferation and invasion by binding Ras and activating Ras signaling. PLoS ONE. 2012;7:e42699. doi: 10.1371/journal.pone.0042699. PubMed DOI PMC
Griffioen A.W., Thijssen V.L. Galectins in tumor angiogenesis. Ann. Transl. Med. 2014;2:90. PubMed PMC
Cedeno-Laurent F., Dimitroff C.J. Galectins and their ligands: Negative regulators of anti-tumor immunity. Glycoconj. J. 2012;29:619–625. doi: 10.1007/s10719-012-9379-0. PubMed DOI PMC
Perillo N.L., Pace K.E., Seilhamer J.J., Baum L.G. Apoptosis of t cells mediated by galectin-1. Nature. 1995;378:736–739. doi: 10.1038/378736a0. PubMed DOI
Toscano M.A., Bianco G.A., Ilarregui J.M., Croci D.O., Correale J., Hernandez J.D., Zwirner N.W., Poirier F., Riley E.M., Baum L.G., et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 2007;8:825–834. doi: 10.1038/ni1482. PubMed DOI
Dalotto-Moreno T., Croci D.O., Cerliani J.P., Martinez-Allo V.C., Dergan-Dylon S., Mendez-Huergo S.P., Stupirski J.C., Mazal D., Osinaga E., Toscano M.A., et al. Targeting galectin-1 overcomes breast cancer-associated immunosuppression and prevents metastatic disease. Cancer Res. 2013;73:1107–1117. doi: 10.1158/0008-5472.CAN-12-2418. PubMed DOI
Juszczynski P., Ouyang J., Monti S., Rodig S.J., Takeyama K., Abramson J., Chen W., Kutok J.L., Rabinovich G.A., Shipp M.A. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA. 2007;104:13134–13139. doi: 10.1073/pnas.0706017104. PubMed DOI PMC
Grigorian A., Torossian S., Demetriou M. T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. Immunol. Rev. 2009;230:232–246. doi: 10.1111/j.1600-065X.2009.00796.x. PubMed DOI PMC
Cao Z., Said N., Amin S., Wu H.K., Bruce A., Garate M., Hsu D.K., Kuwabara I., Liu F.T., Panjwani N. Galectins-3 and -7, but not galectin-1, play a role in re-epithelialization of wounds. J. Biol. Chem. 2002;277:42299–42305. doi: 10.1074/jbc.M200981200. PubMed DOI
Lin Y.T., Chen J.S., Wu M.H., Hsieh I.S., Liang C.H., Hsu C.L., Hong T.M., Chen Y.L. Galectin-1 accelerates wound healing by regulating the neuropilin-1/SMAD3/NOX4 pathway and ROS production in myofibroblasts. J. Investig. Dermatol. 2015;135:258–268. doi: 10.1038/jid.2014.288. PubMed DOI
Ruvolo P.P. Galectin 3 as a guardian of the tumor microenvironment. Biochim. Biophys. Acta. 2016;1863:427–437. doi: 10.1016/j.bbamcr.2015.08.008. PubMed DOI
Galectin Inhibitor (GR-MD-02) and Ipilimumab in Patients with Metastatic Melanoma. [(accessed on 19 October 2017)]; Available online: https://clinicaltrials.gov/ct2/show/NCT02117362.
Walker J.T., Elliott C.G., Forbes T.L., Hamilton D.W. Genetic deletion of galectin-3 does not impair full-thickness excisional skin healing. J. Investig. Dermatol. 2016;136:1042–1050. doi: 10.1016/j.jid.2016.01.014. PubMed DOI
Zhu C., Anderson A.C., Schubart A., Xiong H., Imitola J., Khoury S.J., Zheng X.X., Strom T.B., Kuchroo V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005;6:1245–1252. doi: 10.1038/ni1271. PubMed DOI
Seki M., Oomizu S., Sakata K.M., Sakata A., Arikawa T., Watanabe K., Ito K., Takeshita K., Niki T., Saita N., et al. Galectin-9 suppresses the generation of TH17, promotes the induction of regulatory t cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 2008;127:78–88. doi: 10.1016/j.clim.2008.01.006. PubMed DOI
Sindrewicz P., Lian L.Y., Yu L.G. Interaction of the oncofetal Thomsen-Friedenreich antigen with galectins in cancer progression and metastasis. Front. Oncol. 2016;6:79. doi: 10.3389/fonc.2016.00079. PubMed DOI PMC
Camby I., Le Mercier M., Lefranc F., Kiss R. Galectin-1: A small protein with major functions. Glycobiology. 2006;16:137R–157R. doi: 10.1093/glycob/cwl025. PubMed DOI
Hsieh S.H., Ying N.W., Wu M.H., Chiang W.F., Hsu C.L., Wong T.Y., Jin Y.T., Hong T.M., Chen Y.L. Galectin-1, a novel ligand of neuropilin-1, activates VEGFR-2 signaling and modulates the migration of vascular endothelial cells. Oncogene. 2008;27:3746–3753. doi: 10.1038/sj.onc.1211029. PubMed DOI
Wu M.H., Ying N.W., Hong T.M., Chiang W.F., Lin Y.T., Chen Y.L. Galectin-1 induces vascular permeability through the neuropilin-1/vascular endothelial growth factor receptor-1 complex. Angiogenesis. 2014;17:839–849. doi: 10.1007/s10456-014-9431-8. PubMed DOI
Tang D., Gao J., Wang S., Ye N., Chong Y., Huang Y., Wang J., Li B., Yin W., Wang D. Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 expression. Tumour. Biol. 2016;37:1889–1899. doi: 10.1007/s13277-015-3942-9. PubMed DOI
Markowska A.I., Jefferies K.C., Panjwani N. Galectin-3 protein modulates cell surface expression and activation of vascular endothelial growth factor receptor 2 in human endothelial cells. J. Biol. Chem. 2011;286:29913–29921. doi: 10.1074/jbc.M111.226423. PubMed DOI PMC
Van der Veldt A.A., Lammertsma A.A., Smit E.F. Scheduling of anticancer drugs: Timing may be everything. Cell Cycle. 2012;11:4339–4343. doi: 10.4161/cc.22187. PubMed DOI PMC
Van der Veldt A.A., Lubberink M., Bahce I., Walraven M., de Boer M.P., Greuter H.N., Hendrikse N.H., Eriksson J., Windhorst A.D., Postmus P.E., et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: Implications for scheduling of anti-angiogenic drugs. Cancer Cell. 2012;21:82–91. doi: 10.1016/j.ccr.2011.11.023. PubMed DOI
Conley S.J., Gheordunescu E., Kakarala P., Newman B., Korkaya H., Heath A.N., Clouthier S.G., Wicha M.S. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc. Natl. Acad. Sci. USA. 2012;109:2784–2789. doi: 10.1073/pnas.1018866109. PubMed DOI PMC
Casanovas O. Cancer: Limitations of therapies exposed. Nature. 2012;484:44–46. doi: 10.1038/484044a. PubMed DOI
Nicolussi A., D’Inzeo S., Capalbo C., Giannini G., Coppa A. The role of peroxiredoxins in cancer. Mol. Clin. Oncol. 2017;6:139–153. doi: 10.3892/mco.2017.1129. PubMed DOI PMC
Park M.H., Jo M., Kim Y.R., Lee C.K., Hong J.T. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol. Ther. 2016;163:1–23. doi: 10.1016/j.pharmthera.2016.03.018. PubMed DOI PMC
Kwee J.K. A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: A strange case of Dr. Jekyll and Mr. Hyde. Biomed. Res. Int. 2014;2014:209845. doi: 10.1155/2014/209845. PubMed DOI PMC
Koria P. Delivery of growth factors for tissue regeneration and wound healing. Biodrugs. 2012;26:163–175. doi: 10.2165/11631850-000000000-00000. PubMed DOI
Park J.W., Hwang S.R., Yoon I.S. Advanced growth factor delivery systems in wound management and skin regeneration. Molecules. 2017;22:1259. doi: 10.3390/molecules22081259. PubMed DOI PMC
IL-6 in the Ecosystem of Head and Neck Cancer: Possible Therapeutic Perspectives
Molecular Changes Underlying Genistein Treatment of Wound Healing: A Review
The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy
Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research