Heterogeneous response to TGF-β1/3 isoforms in fibroblasts of different origins: implications for wound healing and tumorigenesis

. 2023 Dec ; 160 (6) : 541-554. [epub] 20230914

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37707642

Grantová podpora
VEGA-1/0561/18, 1/0319/20 and 1/0455/22 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
APVV-20-0017 and APVV-22-0006 Agentúra na Podporu Výskumu a Vývoja
Cooperatio ONCO Univerzita Karlova v Praze
CZ.02.1.01/0.0/0.0/16_019/0000785 and LX22NPO5102 European Regional Development Fund

Odkazy

PubMed 37707642
PubMed Central PMC10700238
DOI 10.1007/s00418-023-02221-5
PII: 10.1007/s00418-023-02221-5
Knihovny.cz E-zdroje

Identification of therapeutic targets for treating fibrotic diseases and cancer remains challenging. Our study aimed to investigate the effects of TGF-β1 and TGF-β3 on myofibroblast differentiation and extracellular matrix deposition in different types of fibroblasts, including normal/dermal, cancer-associated, and scar-derived fibroblasts. When comparing the phenotype and signaling pathways activation we observed extreme heterogeneity of studied markers across different fibroblast populations, even within those isolated from the same tissue. Specifically, the presence of myofibroblast and deposition of extracellular matrix were dependent on the origin of the fibroblasts and the type of treatment they received (TGF-β1 vs. TGF-β3). In parallel, we detected activation of canonical signaling (pSMAD2/3) across all studied fibroblasts, albeit to various extents. Treatment with TGF-β1 and TGF-β3 resulted in the activation of canonical and several non-canonical pathways, including AKT, ERK, and ROCK. Among studied cells, cancer-associated fibroblasts displayed the most heterogenic response to TGF-β1/3 treatments. In general, TGF-β1 demonstrated a more potent activation of signaling pathways compared to TGF-β3, whereas TGF-β3 exhibited rather an inhibitory effect in keloid- and hypertrophic scar-derived fibroblasts suggesting its clinical potential for scar treatment. In summary, our study has implications for comprehending the role of TGF-β signaling in fibroblast biology, fibrotic diseases, and cancer. Future research should focus on unraveling the mechanisms beyond differential fibroblast responses to TGF-β isomers considering inherent fibroblast heterogeneity.

Zobrazit více v PubMed

Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nat Commun. 2012;3:735. doi: 10.1038/ncomms1734. PubMed DOI PMC

Bielefeld KA, Amini-Nik S, Alman BA. Cutaneous wound healing: recruiting developmental pathways for regeneration. Cell Mol Life Sci. 2013;70(12):2059–2081. doi: 10.1007/s00018-012-1152-9. PubMed DOI PMC

Carthy JM, Sundqvist A, Heldin A, van Dam H, Kletsas D, Heldin CH, Moustakas A. Tamoxifen inhibits TGF-beta-mediated activation of myofibroblasts by blocking non-smad signaling through ERK1/2. J Cell Physiol. 2015;230(12):3084–3092. doi: 10.1002/jcp.25049. PubMed DOI

Coma M, Frohlichova L, Urban L, Zajicek R, Urban T, Szabo P, Novak S, Fetissov V, Dvorankova B, Smetana K, Jr, Gal P. Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (inflammation proliferation and maturation) Int J Mol Sci. 2021 doi: 10.3390/ijms22020897. PubMed DOI PMC

Deng CC, Hu YF, Zhu DH, Cheng Q, Gu JJ, Feng QL, Zhang LX, Xu YP, Wang D, Rong Z, Yang B. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun. 2021;12(1):3709. doi: 10.1038/s41467-021-24110-y. PubMed DOI PMC

Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–1659. doi: 10.1056/NEJM198612253152606. PubMed DOI

Dvorak HF. Tumors: wounds that do not heal-redux. Cancer Immunol Res. 2015;3(1):1–11. doi: 10.1158/2326-6066.CIR-14-0209. PubMed DOI PMC

Dvorankova B, Szabo P, Lacina L, Kodet O, Matouskova E, Smetana K., Jr Fibroblasts prepared from different types of malignant tumors stimulate expression of luminal marker keratin 8 in the EM-G3 breast cancer cell line. Histochem Cell Biol. 2012;137(5):679–685. doi: 10.1007/s00418-012-0918-3. PubMed DOI

Dvorankova B, Lacina L, Smetana K., Jr Isolation of normal fibroblasts and their cancer-associated counterparts (CAFs) for biomedical research. Methods Mol Biol. 2019;1879:393–406. doi: 10.1007/7651_2018_137. PubMed DOI

Eferl R, Hasselblatt P, Rath M, Popper H, Zenz R, Komnenovic V, Idarraga MH, Kenner L, Wagner EF. Development of pulmonary fibrosis through a pathway involving the transcription factor Fra-2/AP-1. Proc Natl Acad Sci U S A. 2008;105(30):10525–10530. doi: 10.1073/pnas.0801414105. PubMed DOI PMC

Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, Sivajothi S, Armstrong TD, Engle DD, Yu KH, Hao Y, Wolfgang CL, Park Y, Preall J, Jaffee EM, Califano A, Robson P, Tuveson DA. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 2019;9(8):1102–1123. doi: 10.1158/2159-8290.CD-19-0094. PubMed DOI PMC

Gal P, Varinska L, Faber L, Novak S, Szabo P, Mitrengova P, Mirossay A, Mucaji P, Smetana K. How signaling molecules regulate tumor microenvironment: parallels to wound repair. Molecules. 2017 doi: 10.3390/molecules22111818. PubMed DOI PMC

Gal P, Brabek J, Holub M, Jakubek M, Sedo A, Lacina L, Strnadova K, Dubovy P, Hornychova H, Ryska A, Smetana K., Jr Autoimmunity, cancer and COVID-19 abnormally activate wound healing pathways: critical role of inflammation. Histochem Cell Biol. 2022;158(5):415–434. doi: 10.1007/s00418-022-02140-x. PubMed DOI PMC

Han C, Liu T, Yin R. Biomarkers for cancer-associated fibroblasts. Biomark Res. 2020;8(1):64. doi: 10.1186/s40364-020-00245-w. PubMed DOI PMC

Hao Y, Baker D, Ten Dijke P. TGF-beta-mediated epithelial-mesenchymal transition and cancer metastasis. Int J Mol Sci. 2019 doi: 10.3390/ijms20112767. PubMed DOI PMC

Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. Am J Pathol. 2007;170(6):1807–1816. doi: 10.2353/ajpath.2007.070112. PubMed DOI PMC

Hsu M, Peled ZM, Chin GS, Liu W, Longaker MT. Ontogeny of expression of transforming growth factor-beta 1 (TGF-beta 1), TGF-beta 3, and TGF-beta receptors I and II in fetal rat fibroblasts and skin. Plast Reconstr Surg. 2001;107(7):1787–1794. doi: 10.1097/00006534-200106000-00023. PubMed DOI

Ibrahim MM, Chen L, Bond JE, Medina MA, Ren L, Kokosis G, Selim AM, Levinson H. Myofibroblasts contribute to but are not necessary for wound contraction. Lab Invest. 2015;95(12):1429–1438. doi: 10.1038/labinvest.2015.116. PubMed DOI PMC

Jarkovska K, Dvorankova B, Halada P, Kodet O, Szabo P, Gadher SJ, Motlik J, Kovarova H, Smetana K., Jr Revelation of fibroblast protein commonalities and differences and their possible roles in wound healing and tumourigenesis using co-culture models of cells. Biol Cell. 2014;106(7):203–218. doi: 10.1111/boc.201400014. PubMed DOI

Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–598. doi: 10.1038/nrc.2016.73. PubMed DOI

Kieffer Y, Hocine HR, Gentric G, Pelon F, Bernard C, Bourachot B, Lameiras S, Albergante L, Bonneau C, Guyard A, Tarte K, Zinovyev A, Baulande S, Zalcman G, Vincent-Salomon A, Mechta-Grigoriou F. Single-cell analysis reveals fibroblast clusters linked to immunotherapy resistance in cancer. Cancer Discov. 2020;10(9):1330–1351. doi: 10.1158/2159-8290.CD-19-1384. PubMed DOI

Klass BR, Grobbelaar AO, Rolfe KJ. Transforming growth factor beta1 signalling, wound healing and repair: a multifunctional cytokine with clinical implications for wound repair, a delicate balance. Postgrad Med J. 2009;85(999):9–14. doi: 10.1136/pgmj.2008.069831. PubMed DOI

Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ, Horowitz JC. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol. 2009;41(4):484–493. doi: 10.1165/rcmb.2008-0447OC. PubMed DOI PMC

Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumour Biol. 2016;37(9):11553–11572. doi: 10.1007/s13277-016-5098-7. PubMed DOI

Lakos G, Takagawa S, Chen SJ, Ferreira AM, Han G, Masuda K, Wang XJ, DiPietro LA, Varga J. Targeted disruption of TGF-beta/Smad3 signaling modulates skin fibrosis in a mouse model of scleroderma. Am J Pathol. 2004;165(1):203–217. doi: 10.1016/s0002-9440(10)63289-0. PubMed DOI PMC

LeBleu VS, Kalluri R. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis Model Mech. 2018 doi: 10.1242/dmm.029447. PubMed DOI PMC

Lynch MD, Watt FM. Fibroblast heterogeneity: implications for human disease. J Clin Invest. 2018;128(1):26–35. doi: 10.1172/JCI93555. PubMed DOI PMC

Mateu R, Zivicova V, Krejci ED, Grim M, Strnad H, Vlcek C, Kolar M, Lacina L, Gal P, Borsky J, Smetana K, Jr, Dvorankova B. Functional differences between neonatal and adult fibroblasts and keratinocytes: donor age affects epithelial-mesenchymal crosstalk in vitro. Int J Mol Med. 2016;38(4):1063–1074. doi: 10.3892/ijmm.2016.2706. PubMed DOI PMC

Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, Phillips AO. Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem. 2008;283(10):6530–6545. doi: 10.1074/jbc.M704819200. PubMed DOI

Midwood KS, Chiquet M, Tucker RP, Orend G. Tenascin-C at a glance. J Cell Sci. 2016;129(23):4321–4327. doi: 10.1242/jcs.190546. PubMed DOI

Ni J, Dong Z, Han W, Kondrikov D, Su Y. The role of RhoA and cytoskeleton in myofibroblast transformation in hyperoxic lung fibrosis. Free Radic Biol Med. 2013;61:26–39. doi: 10.1016/j.freeradbiomed.2013.03.012. PubMed DOI PMC

Nurmik M, Ullmann P, Rodriguez F, Haan S, Letellier E. In search of definitions: cancer-associated fibroblasts and their markers. Int J Cancer. 2020;146(4):895–905. doi: 10.1002/ijc.32193. PubMed DOI PMC

Pakshir P, Noskovicova N, Lodyga M, Son DO, Schuster R, Goodwin A, Karvonen H, Hinz B. The myofibroblast at a glance. J Cell Sci. 2020 doi: 10.1242/jcs.227900. PubMed DOI

Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-beta family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2(1):18–28. PubMed PMC

Reich N, Maurer B, Akhmetshina A, Venalis P, Dees C, Zerr P, Palumbo K, Zwerina J, Nevskaya T, Gay S, Distler O, Schett G, Distler JH. The transcription factor Fra-2 regulates the production of extracellular matrix in systemic sclerosis. Arthritis Rheum. 2010;62(1):280–290. doi: 10.1002/art.25056. PubMed DOI

Shah M, Foreman DM, Ferguson MW. Neutralisation of TGF-beta 1 and TGF-beta 2 or exogenous addition of TGF-beta 3 to cutaneous rat wounds reduces scarring. J Cell Sci. 1995;108(Pt 3):985–1002. doi: 10.1242/jcs.108.3.985. PubMed DOI

Shi M, Yu DH, Chen Y, Zhao CY, Zhang J, Liu QH, Ni CR, Zhu MH. Expression of fibroblast activation protein in human pancreatic adenocarcinoma and its clinicopathological significance. World J Gastroenterol. 2012;18(8):840–846. doi: 10.3748/wjg.v18.i8.840. PubMed DOI PMC

Shi J, Li J, Guan H, Cai W, Bai X, Fang X, Hu X, Wang Y, Wang H, Zheng Z, Su L, Hu D, Zhu X. Anti-fibrotic actions of interleukin-10 against hypertrophic scarring by activation of PI3K/AKT and STAT3 signaling pathways in scar-forming fibroblasts. PLoS ONE. 2014;9(5):e98228. doi: 10.1371/journal.pone.0098228. PubMed DOI PMC

Speight P, Kofler M, Szaszi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFbeta-regulated Smad3. Nat Commun. 2016;7:11642. doi: 10.1038/ncomms11642. PubMed DOI PMC

Szabo P, Kolar M, Dvorankova B, Lacina L, Stork J, Vlcek C, Strnad H, Tvrdek M, Smetana K., Jr Mouse 3T3 fibroblasts under the influence of fibroblasts isolated from stroma of human basal cell carcinoma acquire properties of multipotent stem cells. Biol Cell. 2011;103(5):233–248. doi: 10.1042/BC20100113. PubMed DOI

Talbott HE, Mascharak S, Griffin M, Wan DC, Longaker MT. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell. 2022;29(8):1161–1180. doi: 10.1016/j.stem.2022.07.006. PubMed DOI PMC

Thannickal VJ, Horowitz JC. Evolving concepts of apoptosis in idiopathic pulmonary fibrosis. Proc Am Thorac Soc. 2006;3(4):350–356. doi: 10.1513/pats.200601-001TK. PubMed DOI PMC

Trojanowska M. Noncanonical transforming growth factor beta signaling in scleroderma fibrosis. Curr Opin Rheumatol. 2009;21(6):623–629. doi: 10.1097/BOR.0b013e32833038ce. PubMed DOI PMC

Turati M, Mousset A, Issa N, Turtoi A, Ronca R. TGF-beta mediated drug resistance in solid cancer. Cytokine Growth Factor Rev. 2023 doi: 10.1016/j.cytogfr.2023.04.001. PubMed DOI

Varney SD, Betts CB, Zheng R, Wu L, Hinz B, Zhou J, Van De Water L. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation. J Cell Sci. 2016;129(4):774–787. doi: 10.1242/jcs.1705. PubMed DOI PMC

Wilkes MC, Mitchell H, Penheiter SG, Dore JJ, Suzuki K, Edens M, Sharma DK, Pagano RE, Leof EB. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res. 2005;65(22):10431–10440. doi: 10.1158/0008-5472.CAN-05-1522. PubMed DOI

Xu L, Cui WH, Zhou WC, Li DL, Li LC, Zhao P, Mo XT, Zhang Z, Gao J. Activation of Wnt/beta-catenin signalling is required for TGF-beta/Smad2/3 signalling during myofibroblast proliferation. J Cell Mol Med. 2017;21(8):1545–1554. doi: 10.1111/jcmm.13085. PubMed DOI PMC

Yang Y, Ma B, Han L, Xu W, Du X, Wei W, Liao T, Ji Q, Qu N, Wang Y. Integrated single-cell and bulk RNA sequencing analyses reveal a prognostic signature of cancer-associated fibroblasts in head and neck squamous cell carcinoma. Front Genet. 2022;13:1028469. doi: 10.3389/fgene.2022.1028469. PubMed DOI PMC

Yoshida K, Kuwano K, Hagimoto N, Watanabe K, Matsuba T, Fujita M, Inoshima I, Hara N. MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J Pathol. 2002;198(3):388–396. doi: 10.1002/path.1208. PubMed DOI

Zhang YE. Non-smad signaling pathways of the TGF-beta family. Cold Spring Harb Perspect Biol. 2017 doi: 10.1101/cshperspect.a022129. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...