Refinement of the Sugar Puckering Torsion Potential in the AMBER DNA Force Field
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39748297
PubMed Central
PMC11780733
DOI
10.1021/acs.jctc.4c01100
Knihovny.cz E-zdroje
- MeSH
- A-DNA chemie MeSH
- B-DNA chemie MeSH
- DNA * chemie MeSH
- konformace nukleové kyseliny MeSH
- simulace molekulární dynamiky MeSH
- termodynamika * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- A-DNA MeSH
- B-DNA MeSH
- DNA * MeSH
The transition from B-DNA to A-DNA occurs in many protein-DNA interactions or in DNA/RNA hybrid duplexes, and thus plays a role in many important biomolecular processes that convey the biological function of DNA. However, the stability of A-DNA is severely underestimated in current AMBER force fields such as OL15, OL21 or bsc1, potentially leading to unstable or deformed protein-DNA complexes. In this study, we refine the deoxyribose dihedral potential to increase the stability of the north (N) puckering present in A-DNA. The new parameters, termed OL24, model A/B equilibrium in B-DNA duplexes in water in good agreement with nuclear magnetic resonance (NMR) experiment. They also improve the description of DNA/RNA hybrids and the transition of the DNA duplex to the A-form in concentrated ethanol solutions. These refinements significantly improve the modeling of protein-DNA complexes, increasing their structural stability and A-form population, while maintaining accurate representation of canonical B-DNA duplexes. Overall, the new parameters should allow more reliable modeling of the thermodynamic equilibrium between A- and B-DNA forms and the interactions of DNA with proteins.
Zobrazit více v PubMed
Kim Y.; Geiger J. H.; Hahn S.; Sigler P. B. Crystal structure of a yeast TBP/TATA-box complex. Nature 1993, 365 (6446), 512–520. 10.1038/365512a0. PubMed DOI
Eom S. H.; Wang J.; Steitz T. A. Structure of Taq polymerase with DNA at the polymerase active site. Nature 1996, 382 (6588), 278–281. 10.1038/382278a0. PubMed DOI
Florentiev V. L.; Ivanov V. I. RNA polymerase: two-step mechanism with overlapping steps. Nature 1970, 228 (5271), 519–522. 10.1038/228519a0. PubMed DOI
Setlow P. DNA in dormant spores of Bacillus species is in an A-like conformation. Mol. Microbiol. 1992, 6 (5), 563–567. 10.1111/j.1365-2958.1992.tb01501.x. PubMed DOI
Ivanov V. I.; Minchenkova L. E.; Chernov B. K.; McPhie P.; Ryu S.; Garges S.; Barber A. M.; Zhurkin V. B.; Adhya S. CRP-DNA complexes: inducing the A-like form in the binding sites with an extended central spacer. J. Mol. Biol. 1995, 245 (3), 228–240. 10.1006/jmbi.1994.0019. PubMed DOI
Jones S.; van Heyningen P.; Berman H. M.; Thornton J. M. Protein-DNA interactions: A structural analysis. J. Mol. Biol. 1999, 287 (5), 877–896. 10.1006/jmbi.1999.2659. PubMed DOI
Anders C.; Niewoehner O.; Duerst A.; Jinek M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 2014, 513 (7519), 569–573. 10.1038/nature13579. PubMed DOI PMC
Jiang F.; Taylor D. W.; Chen J. S.; Kornfeld J. E.; Zhou K.; Thompson A. J.; Nogales E.; Doudna J. A. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science 2016, 351 (6275), 867–871. 10.1126/science.aad8282. PubMed DOI PMC
Svozil D.; Kalina J.; Omelka M.; Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008, 36 (11), 3690–3706. 10.1093/nar/gkn260. PubMed DOI PMC
Zgarbová M.; Jurecka P.; Sponer J.; Otyepka M. A- to B-DNA Transition in AMBER Force Fields and Its Coupling to Sugar Pucker. J. Chem. Theory Comput. 2018, 14 (1), 319–328. 10.1021/acs.jctc.7b00926. PubMed DOI
Jurečka P.; Zgarbova M.; Cerny F.; Salomon J. Multistate B- to A- transition in protein-DNA Binding - How well is it described by current AMBER force fields?. J. Biomol. Struct. Dyn. 2024, 1–11. 10.1080/07391102.2024.2327539. PubMed DOI
Zgarbová M.; Sponer J.; Otyepka M.; Cheatham T. E. 3rd; Galindo-Murillo R.; Jurecka P. Refinement of the Sugar-Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11 (12), 5723–5736. 10.1021/acs.jctc.5b00716. PubMed DOI
Zgarbová M.; Sponer J.; Jurecka P. Z-DNA as a Touchstone for Additive Empirical Force Fields and a Refinement of the Alpha/Gamma DNA Torsions for AMBER. J. Chem. Theory Comput. 2021, 17 (10), 6292–6301. 10.1021/acs.jctc.1c00697. PubMed DOI
Perez A.; Marchan I.; Svozil D.; Sponer J.; Cheatham T. E. 3rd; Laughton C. A.; Orozco M. Refinement of the AMBER force field for nucleic acids: improving the description of alpha/gamma conformers. Biophys. J. 2007, 92 (11), 3817–3829. 10.1529/biophysj.106.097782. PubMed DOI PMC
Ivani I.; Dans P. D.; Noy A.; Perez A.; Faustino I.; Hospital A.; Walther J.; Andrio P.; Goni R.; Balaceanu A.; Portella G.; Battistini F.; Gelpi J. L.; Gonzalez C.; Vendruscolo M.; Laughton C. A.; Harris S. A.; Case D. A.; Orozco M. Parmbsc1: a refined force field for DNA simulations. Nat. Methods 2016, 13 (1), 55–58. 10.1038/nmeth.3658. PubMed DOI PMC
Ivanov V. I.; Minchenkova L. E.; Minyat E. E.; Frank-Kamenetskii M. D.; Schyolkina A. K. The B to A transition of DNA in solution. J. Mol. Biol. 1974, 87 (4), 817–833. 10.1016/0022-2836(74)90086-2. PubMed DOI
Bax A.; Lerner L. Measurement of H-1-H-1 Coupling-Constants in DNA Fragments by 2d Nmr. J. Magn. Reson. 1988, 79 (3), 429–438. 10.1016/0022-2364(88)90080-7. DOI
Wu Z. G.; Delaglio F.; Tjandra N.; Zhurkin V. B.; Bax A. Overall structure and sugar dynamics of a DNA dodecamer from homo- and heteronuclear dipolar couplings and 31P chemical shift anisotropy. J. Biomol NMR 2003, 26 (4), 297–315. 10.1023/A:1024047103398. PubMed DOI
Knappeová B.; Mlynsky V.; Pykal M.; Sponer J.; Banas P.; Otyepka M.; Krepl M. Comprehensive Assessment of Force-Field Performance in Molecular Dynamics Simulations of DNA/RNA Hybrid Duplexes. J. Chem. Theory Comput. 2024, 20, 6917–6929. 10.1021/acs.jctc.4c00601. PubMed DOI PMC
Zhang C.; Bell D.; Harger M.; Ren P. Polarizable Multipole-Based Force Field for Aromatic Molecules and Nucleobases. J. Chem. Theory Comput. 2017, 13 (2), 666–678. 10.1021/acs.jctc.6b00918. PubMed DOI PMC
Zhang C.; Lu C.; Jing Z.; Wu C.; Piquemal J. P.; Ponder J. W.; Ren P. AMOEBA Polarizable Atomic Multipole Force Field for Nucleic Acids. J. Chem. Theory Comput. 2018, 14 (4), 2084–2108. 10.1021/acs.jctc.7b01169. PubMed DOI PMC
Hart K.; Foloppe N.; Baker C. M.; Denning E. J.; Nilsson L.; Mackerell A. D. Jr. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. J. Chem. Theory Comput. 2012, 8 (1), 348–362. 10.1021/ct200723y. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Jr. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics. J. Chem. Theory Comput. 2017, 13 (5), 2053–2071. 10.1021/acs.jctc.7b00067. PubMed DOI PMC
Lemkul J. A.; MacKerell A. D. Jr. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: II. Microsecond Molecular Dynamics Simulations of Duplex DNA. J. Chem. Theory Comput. 2017, 13 (5), 2072–2085. 10.1021/acs.jctc.7b00068. PubMed DOI PMC
Winkler L.; Galindo-Murillo R.; Cheatham T. E. 3rd Assessment of A- to B- DNA Transitions Utilizing the Drude Polarizable Force Field. J. Chem. Theory Comput. 2023, 19 (23), 8955–8966. 10.1021/acs.jctc.3c01002. PubMed DOI PMC
Tucker M. R.; Piana S.; Tan D.; LeVine M. V.; Shaw D. E. Development of Force Field Parameters for the Simulation of Single- and Double-Stranded DNA Molecules and DNA-Protein Complexes. J. Phys. Chem. B 2022, 126 (24), 4442–4457. 10.1021/acs.jpcb.1c10971. PubMed DOI PMC
Gyi J. I.; Lane A. N.; Conn G. L.; Brown T. Solution structures of DNA.RNA hybrids with purine-rich and pyrimidine-rich strands: comparison with the homologous DNA and RNA duplexes. Biochemistry 1998, 37 (1), 73–80. 10.1021/bi9719713. PubMed DOI
Zgarbová M.; Otyepka M.; Sponer J.; Mladek A.; Banas P.; Cheatham T. E. 3rd; Jurecka P. Refinement of the Cornell et al. Nucleic Acids Force Field Based on Reference Quantum Chemical Calculations of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011, 7 (9), 2886–2902. 10.1021/ct200162x. PubMed DOI PMC
Krepl M.; Zgarbova M.; Stadlbauer P.; Otyepka M.; Banas P.; Koca J.; Cheatham T. E. 3rd; Jurecka P.; Sponer J. Reference simulations of noncanonical nucleic acids with different chi variants of the AMBER force field: quadruplex DNA, quadruplex RNA and Z-DNA. J. Chem. Theory Comput. 2012, 8 (7), 2506–2520. 10.1021/ct300275s. PubMed DOI PMC
Zgarbová M.; Luque F. J.; Sponer J.; Otyepka M.; Jurecka P. A Novel Approach for Deriving Force Field Torsion Angle Parameters Accounting for Conformation-Dependent Solvation Effects. J. Chem. Theory Comput. 2012, 8 (9), 3232–3242. 10.1021/ct3001987. PubMed DOI
Galindo-Murillo R.; Robertson J. C.; Zgarbova M.; Sponer J.; Otyepka M.; Jurecka P.; Cheatham T. E. 3rd Assessing the Current State of Amber Force Field Modifications for DNA. J. Chem. Theory Comput. 2016, 12 (8), 4114–4127. 10.1021/acs.jctc.6b00186. PubMed DOI PMC
Love O.; Galindo-Murillo R.; Zgarbova M.; Sponer J.; Jurecka P.; Cheatham T. E. 3rd Assessing the Current State of Amber Force Field Modifications for DNA horizontal line 2023 Edition. J. Chem. Theory Comput. 2023, 19 (13), 4299–4307. 10.1021/acs.jctc.3c00233. PubMed DOI PMC
Klamt A.; Schuurmann G. Cosmo - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient. J. Chem. Soc., Perkin Trans. 2 1993, (5), 799–805. 10.1039/P29930000799. DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865–3868. 10.1103/PhysRevLett.77.3865. PubMed DOI
Weigend F.; Furche F.; Ahlrichs R. Gaussian basis sets of quadruple zeta valence quality for atoms H–Kr. J. Chem. Phys. 2003, 119 (24), 12753–12762. 10.1063/1.1627293. DOI
Lu Q.; Luo R. A Poisson-Boltzmann dynamics method with nonperiodic boundary condition. J. Chem. Phys. 2003, 119 (21), 11035–11047. 10.1063/1.1622376. DOI
Luo R.; David L.; Gilson M. K. Accelerated Poisson-Boltzmann calculations for static and dynamic systems. J. Comput. Chem. 2002, 23 (13), 1244–1253. 10.1002/jcc.10120. PubMed DOI
Halkier A.; Helgaker T.; Jorgensen P.; Klopper W.; Koch H.; Olsen J.; Wilson A. K. Basis-set convergence in correlated calculations on Ne, N2, and H2O. Chem. Phys. Lett. 1998, 286 (3–4), 243–252. 10.1016/S0009-2614(98)00111-0. DOI
Halkier A.; Helgaker T.; Jorgensen P.; Klopper W.; Olsen J. Basis-set convergence of the energy in molecular Hartree-Fock calculations. Chem. Phys. Lett. 1999, 302 (5–6), 437–446. 10.1016/S0009-2614(99)00179-7. DOI
Jurecka P.; Hobza P. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine···cytosine, adenine···thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. J. Am. Chem. Soc. 2003, 125 (50), 15608–15613. 10.1021/ja036611j. PubMed DOI
Ahlrichs R.; Bar M.; Haser M.; Horn H.; Kolmel C. Electronic-Structure Calculations on Workstation Computers - the Program System Turbomole. Chem. Phys. Lett. 1989, 162 (3), 165–169. 10.1016/0009-2614(89)85118-8. DOI
Drew H. R.; Wing R. M.; Takano T.; Broka C.; Tanaka S.; Itakura K.; Dickerson R. E. Structure of a B-DNA Dodecamer - Conformation and Dynamics. Proc. Natl. Acad. Sci. U.S.A. 1981, 78 (4), 2179–2183. 10.1073/pnas.78.4.2179. PubMed DOI PMC
Barabas O.; Ronning D. R.; Guynet C.; Hickman A. B.; Ton-Hoang B.; Chandler M.; Dyda F. Mechanism of is200/is605 family DNA transposases: Activation and transposon-directed target site selection. Cell 2008, 132 (2), 208–220. 10.1016/j.cell.2007.12.029. PubMed DOI PMC
Horton J. R.; Nastri H. G.; Riggs P. D.; Cheng X. D. Asp34 of PvuII endonuclease is directly involved in DNA minor groove recognition and indirectly involved in catalysis. J. Mol. Biol. 1998, 284 (5), 1491–1504. 10.1006/jmbi.1998.2269. PubMed DOI
Case D. A.; Cheatham T. E. 3rd; Darden T.; Gohlke H.; Luo R.; Merz K. M. Jr.; Onufriev A.; Simmerling C.; Wang B.; Woods R. J. The Amber biomolecular simulation programs. J. Comput. Chem. 2005, 26 (16), 1668–1688. 10.1002/jcc.20290. PubMed DOI PMC
Macke T. J.; Case D. A.. Modeling Unusual Nucleic Acid Structures. In Molecular Modeling of Nucleic Acids; Leontis N. B.; SantaLucia J. J., Eds.; American Chemical Society: Washington, DC, 1997; Vol. 682, pp 379–393.
Trantírek L.; Stefl R.; Vorlickova M.; Koca J.; Sklenar V.; Kypr J. An A-type double helix of DNA having B-type puckering of the deoxyribose rings. J. Mol. Biol. 2000, 297 (4), 907–922. 10.1006/jmbi.2000.3592. PubMed DOI
Štefl R.; Trantírek L.; Vorlícková M.; Koca J.; Sklenár V.; Kypr J. A-like guanine-guanine stacking in the aqueous DNA duplex of d(GGGGCCCC). J. Mol. Biol. 2001, 307 (2), 513–524. 10.1006/jmbi.2001.4484. PubMed DOI
Weisz K.; Shafer R. H.; Egan W.; James T. L. The Octamer Motif in Immunoglobulin Genes - Extraction of Structural Constraints from 2-Dimensional Nmr-Studies. Biochemistry 1992, 31 (33), 7477–7487. 10.1021/bi00148a007. PubMed DOI
Wang J.; Wolf R. M.; Caldwell J. W.; Kollman P. A.; Case D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25 (9), 1157–1174. 10.1002/jcc.20035. PubMed DOI
Joung I. S.; Cheatham T. E. 3rd Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B 2008, 112 (30), 9020–9041. 10.1021/jp8001614. PubMed DOI PMC
Joung I. S.; Cheatham T. E. 3rd Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. J. Phys. Chem. B 2009, 113 (40), 13279–13290. 10.1021/jp902584c. PubMed DOI PMC
Berendsen H. J. C.; Grigera J. R.; Straatsma T. P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. A 1987, 91 (24), 6269–6271. 10.1021/j100308a038. DOI
Jorgensen W. L.; Chandrasekhar J.; Madura J. D.; Impey R. W.; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79 (2), 926–935. 10.1063/1.445869. DOI
Jorgensen W. L.; Maxwell D. S.; TiradoRives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225–11236. 10.1021/ja9621760. DOI
Fox T.; Kollman P. A. Application of the RESP Methodology in the Parametrization of Organic Solvents. J. Phys. Chem. B 1998, 102 (41), 8070–8079. 10.1021/jp9717655. DOI
Martínez L.; Andrade R.; Birgin E. G.; Martinez J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30 (13), 2157–2164. 10.1002/jcc.21224. PubMed DOI
Wang J. M.; Cieplak P.; Kollman P. A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules?. J. Comput. Chem. 2000, 21 (12), 1049–1074. 10.1002/1096-987X(200009)21:12<1049::AID-JCC3>3.0.CO;2-F. DOI
Zgarbová M.; Luque F. J.; Sponer J.; Cheatham T. E. 3rd; Otyepka M.; Jurecka P. Toward Improved Description of DNA Backbone: Revisiting Epsilon and Zeta Torsion Force Field Parameters. J. Chem. Theory Comput. 2013, 9 (5), 2339–2354. 10.1021/ct400154j. PubMed DOI PMC
Maier J. A.; Martinez C.; Kasavajhala K.; Wickstrom L.; Hauser K. E.; Simmerling C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11 (8), 3696–3713. 10.1021/acs.jctc.5b00255. PubMed DOI PMC
Zgarbová M.; Otyepka M.; Sponer J.; Lankas F.; Jurecka P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10 (8), 3177–3189. 10.1021/ct500120v. PubMed DOI
Case D. A.; Belfon K.; Ben-Shalom I. Y.; Brozell S. R.; Cerutti D. S.; Cheatham T. E. III; Cruzeiro V. W. D.; Darden T. A.; Duke R. E.; Giambasu G.; Gilson M. K.; Gohlke H.; Goetz A. W.; Harris R.; Izadi S.; Izmailov S. A.; Kasavajhala K.; Kovalenko A.; Krasny R.; Kurtzman T.; Lee T. S.; LeGrand S.; Li P.; Lin C.; Liu J.; Luchko T.; Luo R.; Man V.; Merz K. M.; Miao Y.; Mikhailovski O.; Monard G.; Nguyen H.; Onufriev A.; Pan F.; Pantano S.; Qi R.; Roe D. R.; Roitberg A.; Saugi C.; Schott-Verdugo S.; Shen J.; Cimmerling C. L.; Skrynnikov N. R.; Smith J.; Swails J.; Walker R. C.; Wang J.; Wilson L.; Wolf R. M.; Wu X.; Yiong Y.; Xue Y.; York D. M.; Kollman P. A.. AMBER 2020; University of California: San Fransisco, 2020.
Feenstra K. A.; Hess B.; Berendsen H. J. C. Improving efficiency of large time-scale molecular dynamics simulations of hydrogen-rich systems. J. Comput. Chem. 1999, 20 (8), 786–798. 10.1002/(SICI)1096-987X(199906)20:8<786::AID-JCC5>3.0.CO;2-B. PubMed DOI
Hopkins C. W.; Le Grand S.; Walker R. C.; Roitberg A. E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11 (4), 1864–1874. 10.1021/ct5010406. PubMed DOI
El Hassan M. A.; Calladine C. R. Two distinct modes of protein-induced bending in DNA. J. Mol. Biol. 1998, 282 (2), 331–343. 10.1006/jmbi.1998.1994. PubMed DOI
Lu X. J.; Olson W. K. 3DNA: a versatile, integrated software system for the analysis, rebuilding and visualization of three-dimensional nucleic-acid structures. Nat. Protoc. 2008, 3 (7), 1213–1227. 10.1038/nprot.2008.104. PubMed DOI PMC
Lu X. J.; Olson W. K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 2003, 31 (17), 5108–5121. 10.1093/nar/gkg680. PubMed DOI PMC
Černý J.; Bozikova P.; Svoboda J.; Schneider B. A unified dinucleotide alphabet describing both RNA and DNA structures. Nucleic Acids Res. 2020, 48 (11), 6367–6381. 10.1093/nar/gkaa383. PubMed DOI PMC
Schwieters C. D.; Clore G. M. A physical picture of atomic motions within the Dickerson DNA dodecamer in solution derived from joint ensemble refinement against NMR and large-angle X-ray scattering data. Biochemistry 2007, 46 (5), 1152–1166. 10.1021/bi061943x. PubMed DOI
Tian Y.; Kayatta M.; Shultis K.; Gonzalez A.; Mueller L. J.; Hatcher M. E. 31P NMR investigation of backbone dynamics in DNA binding sites. J. Phys. Chem. B 2009, 113 (9), 2596–2603. 10.1021/jp711203m. PubMed DOI PMC
Tjandra N.; Tate S.; Ono A.; Kainosho M.; Bax A. The NMR structure of a DNA dodecamer in an aqueous dilute liquid crystalline phase. J. Am. Chem. Soc. 2000, 122 (26), 6190–6200. 10.1021/ja000324n. DOI
Ng H. L.; Kopka M. L.; Dickerson R. E. The structure of a stable intermediate in the A < --> B DNA helix transition. Proc. Natl. Acad. Sci. U.S.A. 2000, 97 (5), 2035–2039. 10.1073/pnas.040571197. PubMed DOI PMC
Han G. W. Direct-methods determination of an RNA/DNA hybrid decamer at 1.15 A resolution. Acta Crystallogr., Sect. D:Biol. Crystallogr. 2001, 57 (Pt 2), 213–218. 10.1107/S0907444900017595. PubMed DOI
Kopka M. L.; Lavelle L.; Han G. W.; Ng H. L.; Dickerson R. E. An unusual sugar conformation in the structure of an RNA/DNA decamer of the polypurine tract may affect recognition by RNase H. J. Mol. Biol. 2003, 334 (4), 653–665. 10.1016/j.jmb.2003.09.057. PubMed DOI
Cheatham T. E.; Kollman P. A. Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. J. Am. Chem. Soc. 1997, 119 (21), 4805–4825. 10.1021/ja963641w. DOI
Priyakumar U. D.; Mackerell A. D. Jr. Atomic detail investigation of the structure and dynamics of DNA.RNA hybrids: a molecular dynamics study. J. Phys. Chem. B 2008, 112 (5), 1515–1524. 10.1021/jp709827m. PubMed DOI PMC
Salazar M.; Fedoroff O. Y.; Miller J. M.; Ribeiro N. S.; Reid B. R. The DNA strand in DNA.RNA hybrid duplexes is neither B-form nor A-form in solution. Biochemistry 1993, 32 (16), 4207–4215. 10.1021/bi00067a007. PubMed DOI
Gonzalez C.; Stec W.; Reynolds M. A.; James T. L. Structure and dynamics of a DNA.RNA hybrid duplex with a chiral phosphorothioate moiety: NMR and molecular dynamics with conventional and time-averaged restraints. Biochemistry 1995, 34 (15), 4969–4982. 10.1021/bi00015a008. PubMed DOI
Nishizaki T.; Iwai S.; Ohtsuka E.; Nakamura H. Solution structure of an RNA.2′-O-methylated RNA hybrid duplex containing an RNA.DNA hybrid segment at the center. Biochemistry 1997, 36 (9), 2577–2585. 10.1021/bi962297c. PubMed DOI
Bošković F.; Keyser U. F. Nanopore microscope identifies RNA isoforms with structural colours. Nat. Chem. 2022, 14 (11), 1258–1264. 10.1038/s41557-022-01037-5. PubMed DOI
Bošković F.; Maffeo C.; Patino-Guillen G.; Tivony R.; Aksimentiev A.; Keyser U. F. Nanopore Translocation Reveals Electrophoretic Force on Noncanonical RNA:DNA Double Helix. ACS Nano 2024, 18 (23), 15013–15024. 10.1021/acsnano.4c01466. PubMed DOI PMC
Lavery R.; Zakrzewska K.. Base and Base Pair Morphologies, Helical Parameters, and Definitions. In Oxford Handbook of Nucleic Acid Structure; Neidle S., Eds.; Oxford University Press: New York, U.S.A., 1999.
Sinden R. R.Introduction to the Structure, Properties, and Reactions of DNA. In DNA Structure and Function; Academic Press: San Diego, 1994; pp 1–57.
Cheatham T. E. 3rd; Crowley M. F.; Fox T.; Kollman P. A. A molecular level picture of the stabilization of A-DNA in mixed ethanol-water solutions. Proc. Natl. Acad. Sci. U.S.A. 1997, 94 (18), 9626–9630. 10.1073/pnas.94.18.9626. PubMed DOI PMC