Platinum-based drug-induced depletion of amino acids in the kidneys and liver
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36212465
PubMed Central
PMC9535364
DOI
10.3389/fonc.2022.986045
Knihovny.cz E-resources
- Keywords
- TCA, amino acids, chicken embryo, methionine cycle, platinum nanoparticles, toxicity,
- Publication type
- Journal Article MeSH
Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.
Central European Institute of Technology Brno University of Technology Brno Czechia
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czechia
Department of Inorganic Chemistry Faculty of Science Palacky University Olomouc Czechia
See more in PubMed
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol (2014) 0:364–78. doi: 10.1016/j.ejphar.2014.07.025 PubMed DOI PMC
Avan A, Postma TJ, Ceresa C, Cavaletti G, Giovannetti E, Peters GJ. Platinum-induced neurotoxicity and preventive strategies: Past, present, and future. Oncologist (2015) 20(4):411–32. doi: 10.1634/theoncologist.2014-0044 PubMed DOI PMC
Bosl GJ, Motzer RJ. Testicular germ-cell cancer. N Engl J Med (1997) 337(4):242–53. doi: 10.1056/NEJM199707243370406 PubMed DOI
Heger Z, Gumulec J, Cernei N, Tmejova K, Kopel P, Balvan J, et al. . 17beta-estradiol-containing liposomes as a novel delivery system for the antisense therapy of ER-positive breast cancer: An in vitro study on the MCF-7 cell line. Oncol Rep (2015) 33(2):921–9. doi: 10.3892/or.2014.3627 PubMed DOI
Oun R, Rowan E. Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J Pharmacol (2017) 811:125–8. doi: 10.1016/j.ejphar.2017.05.063 PubMed DOI
Starobova H, Vetter I. Pathophysiology of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci (2017) 10:174. doi: 10.3389/fnmol.2017.00174 PubMed DOI PMC
Langevin S, Chang JS, Chang S. Serious retinopathy associated with cisplatin treatment. RETIn. Cases Brief Rep (2019) 13(3):211–4. doi: 10.1097/ICB.0000000000000573 PubMed DOI
Tsuji D, Suzuki K, Kawasaki Y, Goto K, Matsui R, Seki N, et al. . Risk factors associated with chemotherapy-induced nausea and vomiting in the triplet antiemetic regimen including palonosetron or granisetron for cisplatin-based chemotherapy: Analysis of a randomized, double-blind controlled trial. Support Care Cancer (2019) 27(3):1139–47. doi: 10.1007/s00520-018-4403-y PubMed DOI
Hwang DB, Won DH, Shin YS, Kim SY, Kang BC, Lim KM, et al. . Ccrn4l as a pre-dose marker for prediction of cisplatin-induced hepatotoxicity susceptibility. Free Radic Biol Med (2020) 148:128–39. doi: 10.1016/j.freeradbiomed.2020.01.003 PubMed DOI
Manyau PMC, Mabeka M, Mudzviti T, Kadzatsa W, Nyamhunga A. Renal function impairment in cervical cancer patients treated with cisplatin-based chemoradiation: A review of medical records in a Zimbabwean outpatient department. PloS One (2021) 16(2):e0245383. doi: 10.1371/journal.pone.0245383 PubMed DOI PMC
Amptoulach S, Tsavaris N. Neurotoxicity caused by the treatment with platinum analogues. Chemother. Res Pract (2011), 3, 843019. doi: 10.1155/2011/843019 PubMed DOI PMC
Jurek T, Rorat M, Dys P, Swiatek B. Fatal cisplatin overdose in the treatment of mediastinal lymphoma with the ESHAP regimen - analysis of the causes of the adverse drug event. Onkologie (2013) 36(1-2):49–52. doi: 10.1159/000346677 PubMed DOI
Bowden NA. Nucleotide excision repair: Why is it not used to predict response to platinum-based chemotherapy? Cancer Lett (2014) 346(2):163–71. doi: 10.1016/j.canlet.2014.01.005 PubMed DOI
He CB, Lu KD, Liu DM, Lin WB. Nanoscale metal-organic frameworks for the Co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J Am Chem Soc (2014) 136(14):5181–4. doi: 10.1021/ja4098862 PubMed DOI PMC
Kim YK, Jung JS, Lee SH, Kim YW. Effects of antioxidants and Ca2+ in cisplatin-induced cell injury in rabbit renal cortical slices. Toxicol Appl Pharmacol (1997) 146(2):261–9. doi: 10.1006/taap.1997.8252 PubMed DOI
Panesso MC, Shi MJ, Cho HJ, Paek J, Ye JF, Moe OW, et al. . Klotho has dual protective effects on cisplatin-induced acute kidney injury. Kidney Int (2014) 85(4):855–70. doi: 10.1038/ki.2013.489 PubMed DOI PMC
Cersosimo RJ. Hepatotoxicity associated with cisplatin chemotherapy. Ann Pharmacother (1993) 27(4):438–41. doi: 10.1177/106002809302700408 PubMed DOI
Lu YK, Cederbaum AI. Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P450 2E1. Toxicol. Sci (2006) 89(2):515–23. doi: 10.1093/toxsci/kfj031 PubMed DOI
Cavalli F, Tschopp L, Sonntag RW, Zimmermann A. Case of liver toxicity following cis- dichlorodiammineplatinum(ll)treatment. Cancer Treat Rep (1978) 62(12):2125–6. PubMed
Dasari S, Tchounwou PB. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur J Pharmacol (2014) 740:364–78. doi: 10.1016/j.ejphar.2014.07.025 PubMed DOI PMC
Koc A, Duru M, Ciralik H, Akcan R, Sogut S. Protective agent, erdosteine, against cisplatin-induced hepatic oxidant injury in rats. Mol Cell Biochem (2005) 278(1-2):79–84. doi: 10.1007/s11010-005-6630-z PubMed DOI
Olszewski U, Ulsperger E, Geissler K, Hamilton G. Comparison of the effects of the oral anticancer platinum(IV) complexes oxoplatin and metabolite cis-diammine-tetrachlorido-platinum(IV) on global gene expression of NCI-H526 cells. J Exp Pharmacol (2011) 3:43–50. doi: 10.2147/JEP.S13630 PubMed DOI PMC
Hauert S, Bhatia SN. Mechanisms of cooperation in cancer nanomedicine: Towards systems nanotechnology. Trends Biotechnol (2014) 32(9):448–55. doi: 10.1016/j.tibtech.2014.06.010 PubMed DOI PMC
Cao GJ, Fisher CM, Jiang XM, Chong Y, Zhang H, Guo HY, et al. . Platinum nanoparticles: an avenue for enhancing the release of nitric oxide from s-nitroso-N-acetylpenicillamine and s-nitrosoglutathione. Nanoscale (2018) 10(23):11176–85. doi: 10.1039/c8nr03874k PubMed DOI
Ma Y, Wang ZH, Ma YX, Han ZH, Zhang M, Chen HY, et al. . A telomerase-responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin-resistant cancer. Angewandte Chemie-Int Edition (2018) 57(19):5389–93. doi: 10.1002/anie.201801195 PubMed DOI
Pajic MNK, Stevanovic SI, Radmilovic VV, Gavrilovic-Wohlmuther A, Radmilovic VR, Gojkovic SL, et al. . Shape evolution of carbon supported pt nanoparticles: From synthesis to application. Appl Catal B-Environ (2016) 196:174–84. doi: 10.1016/j.apcatb.2016.05.033 DOI
Li L, Wang CP, Huang Q, Xiao JR, Zhang Q, Cheng YY, et al. . And oxidized dextran for repeated photothermal cancer therapy. J Mater Chem B (2018) 6(16):2474–80. doi: 10.1039/c8tb00091c PubMed DOI
Rezaei SJT, Hesami A, Khorramabadi H, Amani V, Malekzadeh AM, Ramazani A, et al. . Pt(II) complexes immobilized on polymer-modified magnetic carbon nanotubes as a new platinum drug delivery system. Appl Organomet Chem (2018) 32(7):e4401. doi: 10.1002/aoc.4401 DOI
Horie M, Kato H, Endoh S, Fujita K, Nishio K, Komaba LK, et al. . Evaluation of cellular influences of platinum nanoparticles by stable medium dispersion. Metallomics (2011) 3(11):1244–52. doi: 10.1039/c1mt00060h PubMed DOI
Asharani PV, Xinyi N, Hande MP, Valiyaveettil S. And p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine (2010) 5(1):51–64. doi: 10.2217/nnm.09.85 PubMed DOI
Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: Targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev (2016) 116(5):3436–86. doi: 10.1021/acs.chemrev.5b00597 PubMed DOI PMC
Nejdl L, Kudr J, Moulick A, Hegerova D, Ruttkay-Nedecky B, Gumulec J, et al. . Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PloS One (2017) 12(7):e0180798. doi: 10.1371/journal.pone.0180798 PubMed DOI PMC
Sikder M, Wang J, Chandler GT, Berti D, Baalousha M. Synthesis, characterization, and environmental behaviors of monodispersed platinum nanoparticles. J Colloid Interface Sci (2019) 540:330–41. doi: 10.1016/j.jcis.2019.01.036 PubMed DOI
Sorensen SN, Engelbrekt C, Lutzhoft HH, Jimenez-Lamana J, Noori JS, Alatraktchi FA, et al. . A multimethod approach for investigating algal toxicity of platinum nanoparticles. Environ Sci Technol (2016) 50(19):10635–43. doi: 10.1021/acs.est.6b01072 PubMed DOI
Lin CX, Gu JL, Cao JM. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int J Nanomed. (2019) 14:5595–609. doi: 10.2147/IJN.S209135 PubMed DOI PMC
Katao K, Honma R, Kato S, Watanabe S, Imai J. Influence of platinum nanoparticles orally administered to rats evaluated by systemic gene expression profiling. Exp Anim (2011) 60(1):33–45. doi: 10.1538/expanim.60.33 PubMed DOI
Eliezar J, Scarano W, Boase NRB, Thurecht KJ, Stenzel MH. In vivo evaluation of folate decorated cross-linked micelles for the delivery of platinum anticancer drugs. Biomacromolecules (2015) 16(2):515–23. doi: 10.1021/bm501558d PubMed DOI
Liu L, Ye Q, Lu MG, Lo YC, Hsu YH, Wei MC, et al. . A new approach to reduce toxicities and to improve bioavailabilities of platinum-containing anti-cancer nanodrugs. Sci Rep (2015) 5:10881. doi: 10.1038/srep10881 PubMed DOI PMC
Heger Z, Cernei N, Kudr J, Gumulec J, Blazkova I, Zitka O, et al. . A novel insight into the cardiotoxicity of antineoplastic drug doxorubicin. Int J Mol Sci (2013) 14(11):21629–46. doi: 10.3390/ijms141121629 PubMed DOI PMC
Vieiramakings E, Vanderwesthuyzen J, Metz J. Both valine and isoleucine supplementation delay the development of neurological impairment in vitamin b-12 deficient bats. Int J Vitam. Nutr Res (1990) 60(1):41–6. PubMed
Harper AE, Miller RH, Block KP. Branched -chain amino-acid -metabolism. Annu Rev Nutr (1984) 4:409–54. doi: 10.1146/annurev.nu.04.070184.002205 PubMed DOI
Holdsworth JD, Dionigi P, Clague MB, James OFW, Wright PD. Body protein -metabolism and plasma amino-acids in cirrhosis of the liver-the effect of varying the branched-chain amino-acid content of intravenous amino-acid solutions. Clin Nutr (1984) 3(3):153–62. doi: 10.1016/0261-5614(84)90048-7 PubMed DOI
Kosanam H, Thai K, Zhang Y, Advani A, Connelly KA, Diamandis EP, et al. . Diabetes induces lysine acetylation of intermediary metabolism enzymes in the kidney. Diabetes (2014) 63(7):2432–9. doi: 10.2337/db12-1770 PubMed DOI
Buchtelova H, Dostalova S, Michalek P, Krizkova S, Strmiska V, Kopel P, et al. . Size-related cytotoxicological aspects of polyvinylpyrrolidone-capped platinum nanoparticles. Food Chem Toxicol (2017) 105:337–46. doi: 10.1016/j.fct.2017.04.043 PubMed DOI
Long NV, Ohtaki M, Nogami M, Hien TD. Effects of heat treatment and poly(vinylpyrrolidone) (PVP) polymer on electrocatalytic activity of polyhedral pt nanoparticles towards their methanol oxidation. Colloid Polym. Sci (2011) 289(12):1373–86. doi: 10.1007/s00396-011-2460-6 DOI
Borowik A, Banasiuk R, Derewonko N, Rychlowski M, Krychowiak-Masnicka M, Wyrzykowski D, et al. . Interactions of newly synthesized platinum nanoparticles with ICR-191 and their potential application. Sci Rep (2019) 9(1):4987. doi: 10.1038/s41598-019-41092-6 PubMed DOI PMC
Teow Y, Valiyaveettil S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale (2010) 2(12):2607–13. doi: 10.1039/c0nr00204f PubMed DOI
Yue B, Ma Y, Tao H, Yu L, Jian G, Wang X, et al. . CN x nanotubes as catalyst support to immobilize platinum nanoparticles for methanol oxidation. J Mater. Chem (2008) 18(15):1747–50. doi: 10.1039/b718283j DOI
Mazzotta E, Rella S, Turco A, Malitesta C. XPS in development of chemical sensors. RSC Adv (2015) 5(101):83164–86. doi: 10.1039/C5RA14139G DOI
Mondal A, Jana NR. Effect of size and oxidation state of platinum nanoparticles on the electrocatalytic performance of graphene-nanoparticle composites. RSC Adv (2015) 5(104):85196–201. doi: 10.1039/C5RA17087G DOI
Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X Ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation. Muilenberg GE, editor. (Norwalk: Physical Electronics Division, Perkin-Elmer Corp; ) (1995).
Tian ZQ, Jiang SP, Liang YM, Shen PK. Synthesis and characterization of platinum catalysts on multiwalled carbon nanotubes by intermittent microwave irradiation for fuel cell applications. J Phys Chem B (2006) 110(11):5343–50. doi: 10.1021/jp056401o PubMed DOI
Villers D, Sun S, Serventi A, Dodelet J, Desilets S. Characterization of pt nanoparticles deposited onto carbon nanotubes grown on carbon paper and evaluation of this electrode for the reduction of oxygen. J Phys Chem B (2006) 110(51):25916–25. doi: 10.1021/jp065923g PubMed DOI
Borodko Y, Humphrey SM, Tilley TD, Frei H, Somorjai GA. Charge-transfer interaction of poly(vinylpyrrolidone) with platinum and rhodium nanoparticles. J Phys Chem C (2007) 111(17):6288–95. doi: 10.1021/jp068742n DOI
Borodko Y, Habas SE, Koebel M, Yang P, Frei H, Somorjai GA. Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV– raman and FTIR. J Phys Chem B (2006) 110(46):23052–9. doi: 10.1021/jp063338+ PubMed DOI
Ye J-Y, Attard GA, Brew A, Zhou Z-Y, Sun S-G, Morgan DJ, et al. . Explicit detection of the mechanism of platinum nanoparticle shape control by polyvinylpyrrolidone. J Phys Chem C (2016) 120(14):7532–42. doi: 10.1021/acs.jpcc.5b10910 DOI
Louie SM, Gorham JM, Tan J, Hackley VA. Ultraviolet photo-oxidation of polyvinylpyrrolidone (PVP) coatings on gold nanoparticles. Environ Sci.: Nano (2017) 4(9):1866–75. doi: 10.1039/C7EN00411G PubMed DOI PMC
Burger H, Zoumaro-Djayoon A, Boersma A, Helleman J, Berns E, Mathijssen R, et al. . Differential transport of platinum compounds by the human organic cation transporter hOCT2 (hSLC22A2). Br J Pharmacol (2010) 159(4):898–908. doi: 10.1111/j.1476-5381.2009.00569.x PubMed DOI PMC
Murin R, Vidomanova E, Kowtharapu BS, Hatok J, Dobrota D. Role of s-adenosylmethionine cycle in carcinogenesis. Gen Physiol Biophys (2017) 36(5):513–20. doi: 10.4149/gpb_2017031 PubMed DOI
Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater Sci Eng: C (2016) 60:569–78. doi: 10.1016/j.msec.2015.11.067 PubMed DOI
Zhang X, Zeng G, Tian J, Wan Q, Huang Q, Wang K, et al. . PEGylation of carbon nanotubes via mussel inspired chemistry: Preparation, characterization and biocompatibility evaluation. Appl Surf Sci (2015) 351:425–32. doi: 10.1016/j.apsusc.2015.05.160 DOI
Caracciolo G, Farokhzad OC, Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol (2017) 35(3):257–64. doi: 10.1016/j.tibtech.2016.08.011 PubMed DOI
Li Y, Deng Y, Tian X, Ke H, Guo M, Zhu A, et al. . Multipronged design of light-triggered nanoparticles to overcome cisplatin resistance for efficient ablation of resistant tumor. ACS Nano (2015) 9(10):9626–37. doi: 10.1021/acsnano.5b05097 PubMed DOI
Pedone D, Moglianetti M, De Luca E, Bardi G, Pompa P.P.J.C.S.R. Platinum nanoparticles in nanobiomedicine. Chemical Society Reviews (2017) 46(16):4951–75. doi: 10.1039/C7CS00152E PubMed DOI
Perioli L, Ambrogi V, Angelici F, Ricci M, Giovagnoli S, Capuccella M, et al. . Development of mucoadhesive patches for buccal administration of ibuprofen. J Control Release (2004) 99(1):73–82. doi: 10.1016/j.jconrel.2004.06.005 PubMed DOI
Diaz del Consuelo I, Falson F, Guy RH, Jacques Y. Ex vivo evaluation of bioadhesive films for buccal delivery of fentanyl. J Control Release (2007) 122(2):135–40. doi: 10.1016/j.jconrel.2007.05.017 PubMed DOI
Rasekh M, Karavasili C, Soong YL, Bouropoulos N, Morris M, Armitage D, et al. . Electrospun PVP-indomethacin constituents for transdermal dressings and drug delivery devices. Int J Pharm (2014) 473(1-2):95–104. doi: 10.1016/j.ijpharm.2014.06.059 PubMed DOI
Kaneda Y, Tsutsumi Y, Yoshioka Y, Kamada H, Yamamoto Y, Kodaira H, et al. . The use of PVP as a polymeric carrier to improve the plasma half-life of drugs. Biomaterials (2004) 25(16):3259–66. doi: 10.1016/j.biomaterials.2003.10.003 PubMed DOI
Gatto F, Moglianetti M, Pompa PP, Bardi G. Platinum nanoparticles decrease reactive oxygen species and modulate gene expression without alteration of immune responses in THP-1 monocytes. Nanomater. (Basel) (2018) 8(6):392. doi: 10.3390/nano8060392 PubMed DOI PMC
Almarzoug MHA, Ali D, Alarifi S, Alkahtani S, Alhadheq AM. Platinum nanoparticles induced genotoxicity and apoptotic activity in human normal and cancer hepatic cells via oxidative stress-mediated Bax/Bcl-2 and caspase-3 expression. Environ Toxicol (2020) 35(9):930–41. doi: 10.1002/tox.22929 PubMed DOI
Franco P, De Marco I. The use of Poly(N-vinyl pyrrolidone) in the delivery of drugs: A review. Polym. (Basel) (2020) 12(5):1114. doi: 10.3390/polym12051114 PubMed DOI PMC
Jan H, Gul R, Andleeb A, Ullah S, Shah M, Khanum M, et al. . A detailed review on biosynthesis of platinum nanoparticles (PtNPs), their potential antimicrobial and biomedical applications. J Saudi Chem Soc (2021) 25(8):101297. doi: 10.1016/j.jscs.2021.101297 DOI
Kim HR, Park JH, Lee SH, Kwack SJ, Lee J, Kim S, et al. . Using intracellular metabolic profiling to identify novel biomarkers of cisplatin-induced acute kidney injury in NRK-52E cells. J Toxicol Environ Health A (2022) 85(1):29–42. doi: 10.1080/15287394.2021.1969305 PubMed DOI
Galvez L, Rusz M, Schwaiger-Haber M, El Abiead Y, Hermann G, Jungwirth U, et al. . Preclinical studies on metal based anticancer drugs as enabled by integrated metallomics and metabolomics. Metallomics (2019) 11(10):1716–28. doi: 10.1039/c9mt00141g PubMed DOI
Gunda V, Pathania AS, Chava S, Prathipati P, Chaturvedi NK, Coulter DW, et al. . Amino acids regulate cisplatin insensitivity in neuroblastoma. Cancers (Basel) (2020) 12(9):2576. doi: 10.3390/cancers12092576 PubMed DOI PMC
Pasini E, Corsetti G, Aquilani R, Romano C, Picca A, Calvani R, et al. . Protein-amino acid metabolism disarrangements: The hidden enemy of chronic age-related conditions. Nutrients (2018) 10(4):391. doi: 10.3390/nu10040391 PubMed DOI PMC
Borst P. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life (2020) 72(11):2241–59. doi: 10.1002/iub.2367 PubMed DOI PMC
Tully E, Bharti S, Woo J, Bhujwalla Z, Gabrielson E. Biguanide drugs enhance cytotoxic effects of cisplatin by depleting aspartate and NAD+ in sensitive cancer cells. Cancer Biol Ther (2021) 22(10-12):579–86. doi: 10.1080/15384047.2021.1982599 PubMed DOI PMC
Mailloux RJ, Beriault R, Lemire J, Singh R, Chenier DR, Hamel RD, et al. . The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PloS One (2007) 2(8):e690. doi: 10.1371/journal.pone.0000690 PubMed DOI PMC
Ozaki T, Ishiguro S, Itoh H, Furuhama K, Nakazawa M, Yamashita T. Cisplatin binding and inactivation of mitochondrial glutamate oxaloacetate transaminase in cisplatin-induced rat nephrotoxicity. Biosci Biotechnol Biochem (2013) 77(8):1645–9. doi: 10.1271/bbb.130172 PubMed DOI
Ren JG, Seth P, Ye H, Guo K, Hanai JI, Husain Z, et al. . Citrate suppresses tumor growth in multiple models through inhibition of glycolysis, the tricarboxylic acid cycle and the IGF-1R pathway. Sci Rep (2017) 7(1):4537. doi: 10.1038/s41598-017-04626-4 PubMed DOI PMC
Ryu CS, Kwak HC, Lee KS, Kang KW, Oh SJ, Lee KH, et al. . Sulfur amino acid metabolism in doxorubicin-resistant breast cancer cells. Toxicol Appl Pharmacol (2011) 255(1):94–102. doi: 10.1016/j.taap.2011.06.004 PubMed DOI
Ali M, Manjula SN, Wani SUD, Parihar VK, Mruthunjaya KM, Madhunapantula SV. Protective role of herbal formulation-divine noni against cisplatin-induced cytotoxicity in healthy cells by activating Nrf2 expression: An in-vivo and in-vitro approach. Phytomed. Plus (2021) 1(1):100009. doi: 10.1016/j.phyplu.2020.100009 DOI
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. The effects of apigenin-biosynthesized ultra-small platinum nanoparticles on the human monocytic THP-1 cell line. Cells (2019) 8(5):444. doi: 10.3390/cells8050444 PubMed DOI PMC
Gurunathan S, Jeyaraj M, La H, Yoo H, Choi Y, Do JT, et al. . Anisotropic platinum nanoparticle-induced cytotoxicity, apoptosis, inflammatory response, and transcriptomic and molecular pathways in human acute monocytic leukemia cells. Int J Mol Sci (2020) 21(2):440. doi: 10.3390/ijms21020440 PubMed DOI PMC
Du B, Yu M, Zheng J. Transport and interactions of nanoparticles in the kidneys. Nat Rev Mater (2018) 3(10):358–74. doi: 10.1038/s41578-018-0038-3 DOI
Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WCW. Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination. J Control Release (2016) 240:332–48. doi: 10.1016/j.jconrel.2016.01.020 PubMed DOI
Ronavari A, Belteky P, Boka E, Zakupszky D, Igaz N, Szerencses B, et al. . Polyvinyl-Pyrrolidone-Coated silver nanoparticles-the colloidal, chemical, and biological consequences of steric stabilization under biorelevant conditions. Int J Mol Sci (2021) 22(16):8673. doi: 10.3390/ijms22168673 PubMed DOI PMC
Zhang P, Li W, Chen J, Li R, Zhang Z, Huang Y, et al. . Branched-chain amino acids as predictors for individual differences of cisplatin nephrotoxicity in rats: A pharmacometabonomics study. J Proteome Res (2017) 16(4):1753–62. doi: 10.1021/acs.jproteome.7b00014 PubMed DOI
Forsgard RA, Marrachelli VG, Korpela K, Frias R, Collado MC, Korpela R, et al. . Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male sprague-dawley rats. Cancer Chemother Pharmacol (2017) 80(2):317–32. doi: 10.1007/s00280-017-3364-z PubMed DOI PMC
Mukherjee S, Bollu VS, Roy A, Nethi SK, Madhusudana K, Kumar JM, et al. . Acute toxicity, biodistribution, and pharmacokinetics studies of pegylated platinum nanoparticles in mouse model. Adv. NanoBiomed Res (2021) 1(7):2000082. doi: 10.1002/anbr.202000082 DOI
Prasek M, Sawosz E, Jaworski S, Grodzik M, Ostaszewska T, Kamaszewski M, et al. . Influence of nanoparticles of platinum on chicken embryo development and brain morphology. Nanoscale Res. Lett (2013) 8(1):251–9. doi: 10.1186/1556-276X-8-251 PubMed DOI PMC
Coling DE, Ding D, Young R, Lis M, Stofko E, Blumenthal KM, et al. . Proteomic analysis of cisplatin-induced cochlear damage: Methods and early changes in protein expression. Hear Res (2007) 226(1-2):140–56. doi: 10.1016/j.heares.2006.12.017 PubMed DOI
Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, et al. . Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int (2006) 69(12):2194–204. doi: 10.1038/sj.ki.5000433 PubMed DOI
Gamelin L, Capitain O, Morel A, Dumont A, Traore S, Anne le B, et al. . Predictive factors of oxaliplatin neurotoxicity: The involvement of the oxalate outcome pathway. Clin Cancer Res (2007) 13(21):6359–68. doi: 10.1158/1078-0432.CCR-07-0660 PubMed DOI
Portilla D, Schnackenberg L, Beger RD. Metabolomics as an extension of proteomic analysis: study of acute kidney injury. Semin Nephrol (2007) 27(6):609–20. doi: 10.1016/j.semnephrol.2007.09.006 PubMed DOI PMC
Pariyani R, Ismail IS, Azam A, Khatib A, Abas F, Shaari K, et al. . Urinary metabolic profiling of cisplatin nephrotoxicity and nephroprotective effects of orthosiphon stamineus leaves elucidated by (1)H NMR spectroscopy. J Pharm BioMed Anal (2017) 135:20–30. doi: 10.1016/j.jpba.2016.12.010 PubMed DOI