Itaconate, an endogenous immunomodulator from the tricarboxylic acid (TCA) cycle, shows therapeutic effects in various disease models, but is highly polar with poor cellular permeability. We previously reported a novel, topical itaconate derivative, SCD-153, for the treatment of alopecia areata. Here, we present the discovery of orally available itaconate derivatives for systemic and skin disorders. Four sets of prodrugs were synthesized using pivaloyloxymethyl (POM), isopropyloxycarbonyloxymethyl (POC), (5-methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL), and 3-(hexadecyloxy)propyl (HDP) pro-moieties pairing with itaconic acid (IA), 1-methyl itaconate (1-MI), and 4-methyl itaconate (4-MI). Among these, POC-based prodrugs (P2, P9, P13) showed favorable stability, permeability, and pharmacokinetics. Notably, P2 and P13 significantly inhibited Poly(I:C)/IFNγ-induced inflammatory cytokines in human epidermal keratinocytes. Oral studies demonstrated favorable pharmacokinetics releasing micromolar concentrations of IA or 4-MI from P2 and P13, respectively. These findings highlight the potential of prodrug strategies to enhance itaconate's cellular permeability and oral bioavailability, paving the way for clinical translation.
- MeSH
- Administration, Oral MeSH
- Rats MeSH
- Humans MeSH
- Mice MeSH
- Drug Discovery MeSH
- Prodrugs * chemistry pharmacology chemical synthesis pharmacokinetics MeSH
- Succinates * chemistry pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
- MeSH
- Acetates metabolism MeSH
- Metabolic Flux Analysis MeSH
- Citric Acid Cycle * MeSH
- Deuterium * MeSH
- Liver * metabolism diagnostic imaging MeSH
- Rats MeSH
- Magnetic Resonance Imaging MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
OBJECTIVE: Redox signaling mediated by reversible oxidative cysteine thiol modifications is crucial for driving cellular adaptation to dynamic environmental changes, maintaining homeostasis, and ensuring proper function. This is particularly critical in pancreatic β-cells, which are highly metabolically active and play a specialized role in whole organism glucose homeostasis. Glucose stimulation in β-cells triggers signals leading to insulin secretion, including changes in ATP/ADP ratio and intracellular calcium levels. Additionally, lipid metabolism and reactive oxygen species (ROS) signaling are essential for β-cell function and health. METHODS: We employed IodoTMT isobaric labeling combined with tandem mass spectrometry to elucidate redox signaling pathways in pancreatic β-cells. RESULTS: Glucose stimulation significantly increases ROS levels in β-cells, leading to targeted reversible oxidation of proteins involved in key metabolic pathways such as glycolysis, the tricarboxylic acid (TCA) cycle, pyruvate metabolism, oxidative phosphorylation, protein processing in the endoplasmic reticulum (ER), and insulin secretion. Furthermore, the glucose-induced increase in reversible cysteine oxidation correlates with the presence of other post-translational modifications, including acetylation and phosphorylation. CONCLUSIONS: Proper functioning of pancreatic β-cell metabolism relies on fine-tuned regulation, achieved through a sophisticated system of diverse post-translational modifications that modulate protein functions. Our findings demonstrate that glucose induces the production of ROS in pancreatic β-cells, leading to targeted reversible oxidative modifications of proteins. Furthermore, protein activity is modulated by acetylation and phosphorylation, highlighting the complexity of the regulatory mechanisms in β-cell function.
- MeSH
- Insulin-Secreting Cells * metabolism drug effects MeSH
- Adaptation, Physiological physiology MeSH
- Glucose * metabolism MeSH
- Humans MeSH
- Mice MeSH
- Oxidation-Reduction * MeSH
- Protein Processing, Post-Translational MeSH
- Reactive Oxygen Species * metabolism MeSH
- Insulin Secretion drug effects physiology MeSH
- Signal Transduction * physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Tumor cells often adapt to amino acid deprivation through metabolic rewiring, compensating for the loss with alternative amino acids/substrates. We have described such a scenario in leukemic cells treated with L-asparaginase (ASNase). Clinical effect of ASNase is based on nutrient stress achieved by its dual enzymatic action which leads to depletion of asparagine and glutamine and is accompanied with elevated aspartate and glutamate concentrations in serum of acute lymphoblastic leukemia patients. We showed that in these limited conditions glutamate uptake compensates for the loss of glutamine availability. Extracellular glutamate flux detection confirms its integration into the TCA cycle and its participation in nucleotide and glutathione synthesis. Importantly, it is glutamate-driven de novo synthesis of glutathione which is the essential metabolic pathway necessary for glutamate's pro-survival effect. In vivo findings support this effect by showing that inhibition of glutamate transporters enhances the therapeutic effect of ASNase. In summary, ASNase induces elevated extracellular glutamate levels under nutrient stress, which leads to a rewiring of intracellular glutamate metabolism and has a negative impact on ASNase treatment.
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma drug therapy metabolism pathology MeSH
- Asparaginase * pharmacology metabolism MeSH
- Citric Acid Cycle drug effects MeSH
- Glutamine metabolism MeSH
- Glutathione * metabolism MeSH
- Glutamic Acid * metabolism MeSH
- Humans MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Antineoplastic Agents pharmacology MeSH
- Xenograft Model Antitumor Assays MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Neuropatická bolest patří k častým klinickým příznakům onemocnění periferního (mononeuropatie, polyneuropatie) i centrálního nervového systému (míšní léze, stavy po cévních mozkových příhodách apod.). Významně snižuje kvalitu života pacientů, interferuje se spánkem a je často provázena úzkostí a/nebo depresí. Léčba neuropatické bolesti je dominantně založena na farmakoterapii, pro kterou je k dispozici řada preparátů využitelných v monoterapii či v rámci kombinované léčby. K lékům první volby (s průkazem účinnosti na úrovni IA) patří některá antiepileptika a antidepresiva. Z antiepileptik jde především o modulátory alfa-2-delta podjednotky kalciových kanálů, tedy gabapentin a pregabalin. Oba léky byly dlouhodobě považovány za srovnatelně účinné, v posledních 5–7 letech však bylo publikováno několik negativních studií vysoké kvality s pre- gabalinem, zatímco evidence účinku gabapentinu je nadále velmi robustní. Z antiepileptik je pro dosažení analgetického účinku klíčová blokáda zpětného vychytávání noradrenalinu. Využitelné jsou proto především léky ze skupiny inhibitorů zpětného vychytávání serotoninu a noradrenalinu (SNRI, např. duloxetin či venlafaxin) a také tricyklická antidepresiva (TCA, především amitriptylin), zatímco efekt inhibitorů zpětného vychytávání serotoninu (SSRI) v terapii neuropatické bolesti prokázán nebyl. Účinné jsou také opioidy (tramadol, morfin, oxykodon, tapentadol), které jsou využívány jako léky druhé či třetí volby, a to jako monoterapie či add-on terapie k lékům první volby. U pacientů s lokalizovanou neuropatickou bolestí (např. u postherpetické neuralgie) lze využít topicky aplikované preparáty (např. kapsaicin či topicky aplikovaný lidokain), jejichž výhodou je excelentní bezpečnostní profil. Prakticky u všech zmíněných léků je pokračování terapie podmíněno dokumentací jejich účinnosti, např. poklesem intenzity bolesti hodnocené pomocí numerické škály bolesti. Vedle farmakoterapie lze v léčbě neuropatické bolesti využít také postupy nefarmakologické, síla doporučení pro jejich využití (vycházející z evidence jejich účinnosti) je však u většiny těchto postupů daleko nižší než v případě farmakoterapie, obvykle z dů- vodu absence kvalitních a dostatečně velkých studií. Většina používaných neinvazivních nefarmakologických metod má vynikající bezpečnostní profil a jejich použití je obzvláště výhodné u pacientů vyššího věku. U pacientů s periferní neuropatickou bolestí jde především o transkutánní elektrickou nervovou stimulaci (TENS), která vykazuje excelentní bezpečnost a u pacientů s lokalizovanou bolestí je doporučována dokonce jako jedna z metod 1. volby. Účinnost v léčbě neuropatické bolesti i fibromyalgie je prokázána také u vysokofrekvenční repetitivní transkraniální mozkové stimulace (rTMS) kontralaterální primární motorické kůry (M1), případně dalších oblastí mozku. U závažných refrakterních typů neuropatické bolesti je možné využít stimulaci míšní (SCS), případně stimulaci periferního nervu (PENS). Jedná se však již o invazivní metody indikované u malého procenta pacientů s vysokou intenzitou bolesti a nejnižší odpovědí na konvenční terapie. Využitelné jsou také některé psychoterapeutické metody, zejména mindfulness či kognitivně-behaviorální terapie, které lze s výhodou použít zejména jako přídatnou (add-on) terapii na úrovni druhé volby. Ostatní nefarmakologické postupy vykazují v provedených metaanalýzách nekonkluzivní výsledky a jejich užití se dle aktuální úrovně evidence spíše nedoporučuje.
Neuropathic pain is a common clinical symptom of peripheral (mononeuropathy, polyneuropathy) and central nervous systém disorders (spinal cord lesions, post-stroke conditions, etc.). It significantly reduces pa‘ients‘ quality of life, interferes with sleep and is often associated with anxiety and/or depression. The treatment of neuropathic pain is mainly based on pharmacotherapy, for which a number of agents are available for use as monotherapy or in combination therapy. First choice drugs (with evidence of efficacy at the IA level) include some antiepileptics and antidepres- sants. The antiepileptic drugs are mainly alpha-2-delta calcium channel subunit modulators, i.e. gabapentin and pregabalin. Both drugs have long been considered comparably effective, but in the last 5-7 years several negative, high-quality trials have been published with pregabalin, while the evidence for gabapentin remains very robust. Among the antiepileptic drugs, blockade of norepinephrine reuptake is key to achieving analgesia. Therefore, serotonin and noradrenaline reuptake inhibitors (SNRIs) (e.g. duloxetine or venlafaxine) and tricyclic antidepressants (TCAs, especially amitriptyline) are particularly useful, whereas the effect of serotonin reuptake inhibitors (SSRIs) in the treatment of neuropathic pain has not been demonstrated. Opioids (tramadol, morphine, oxycodone, tapentadol) are also effective and are used as second- or third-line drugs, either as monotherapy or as adjunctive therapy to first-line drugs. For patients with localised neuropathic pain (e.g. postherpetic neuralgia), topical agents (e.g. capsaicin or lidocaine) can be used, which have the advantage of an excellent safety profile. For all these agents, continuation of therapy requires documentation of efficacy, e.g. a reduction in pain intensity as assessed by a numerical pain scale. In addition to pharmacotherapy, non-pharmacological treatments can be used to treat neuropathic pain, but the strength of the recommendations for their use (based on evidence of their effectiveness) is much lower than for pharmacotherapy for most of these treatments, usually due to a lack of large, high-quality trials. Most of the non-invasive non-pharmacological methods used have an excellent safety profile and their use is particularly beneficial in older patients. For patients with peripheral neuropathic pain, transcutaneous electrical nerve stimulation (TENS) can be used with excellent safe‘y. It‘s even recommended as a first-line treatment for patients with localised pain. High-frequency repetitive transcranial brain stimulation (rTMS) of the contralateral primary motor cortex or several other brain regions has also been shown to be effective in the treatment of neuropathic pain and fibromyalgia. For refractory forms of neuropathic pain, spinal cord stimulation (SCS) or peripheral nerve stimulation (PENS) can be used, but both are invasive and their use is limited to a small percentage of patients with the most severe pain and least response to conventional therapies. Some psychotherapeutic techniques, particularly mindfulness or cognitive behavioural therapy, may also be used, particularly as second-line adjunctive therapy. Other non-pharmacological treatments have shown inconsistent results in meta-analyses and their use is not recommended based on the current level of evidence.
- MeSH
- Acupuncture Therapy MeSH
- Analgesics pharmacology classification therapeutic use MeSH
- Antidepressive Agents administration & dosage pharmacology therapeutic use MeSH
- Anticonvulsants administration & dosage pharmacology therapeutic use MeSH
- Aromatherapy MeSH
- Electric Stimulation methods MeSH
- Hyperesthesia diagnosis MeSH
- Cannabinoids pharmacology therapeutic use MeSH
- Combined Modality Therapy methods MeSH
- Humans MeSH
- Spinal Cord Stimulation MeSH
- Neuralgia * diagnosis drug therapy psychology therapy MeSH
- Paresthesia diagnosis MeSH
- Peripheral Nervous System MeSH
- Transcranial Magnetic Stimulation MeSH
- Mindfulness MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The recognition that rapidly proliferating cancer cells rely heavily on glutamine for their survival and growth has renewed interest in the development of glutamine antagonists for cancer therapy. Glutamine plays a pivotal role as a carbon source for synthesizing lipids and metabolites through the TCA cycle, as well as a nitrogen source for synthesis of amino acid and nucleotides. Numerous studies have explored the significance of glutamine metabolism in cancer, providing a robust rationale for targeting this metabolic pathway in cancer treatment. The glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON) has been explored as an anticancer therapeutic for nearly six decades. Initial investigations revealed remarkable efficacy in preclinical studies and promising outcomes in early clinical trials. However, further advancement of DON was hindered due to dose-limiting gastrointestinal (GI) toxicities as the GI system is highly dependent on glutamine for regulating growth and repair. In an effort to repurpose DON and mitigate gastrointestinal (GI) toxicity concerns, prodrug strategies were utilized. These strategies aimed to enhance the delivery of DON to specific target tissues, such as tumors and the central nervous system (CNS), while sparing DON delivery to normal tissues, particularly the GI tract. When administered at low daily doses, optimized for metabolic inhibition, these prodrugs exhibit remarkable effectiveness without inducing significant toxicity to normal tissues. This approach holds promise for overcoming past challenges associated with DON, offering an avenue for its successful utilization in cancer treatment.
- MeSH
- Diazooxonorleucine * pharmacology therapeutic use MeSH
- Glutamine metabolism MeSH
- Humans MeSH
- Neoplasms * drug therapy metabolism MeSH
- Prodrugs * pharmacology therapeutic use MeSH
- Antineoplastic Agents pharmacology therapeutic use MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
PURPOSE OF THE STUDY: This manuscript aims to present the method of arthroscopic assisted subtalar arthrodesis and to evaluate the benefi ts of this surgery on our study population. MATERIAL AND METHODS: In the period from 9/2007 to 1/2020, a total of 33 subtalar arthrodesis were performed in 31 patients aged 19-66 years (mean 48 years, median 50 years). The indication for arthrodesis was subtalar arthritis causing pain and gait disorders, or hindfoot deformities (most commonly after a calcaneus bone fracture). The arthroscopic assisted subtalar arthrodesis was performed with autologous tricortical bone block graft harvesting from the pelvis, supplemented by autologous cancellous bone graft. Stabilization was achieved by cannulated screws inserted in neutral ankle position. Patients in our retrospective study were followed up for a mean of 48 months (range, 24-130 months). The patients were evaluated preoperatively and at 2 years after surgery. The hindfoot angles and height (TCA - talocalcaneal angle, CIA - calcaneal inclination angle, TCH - talocalcaneal height) were evaluated on radiographs, bone union was assessed on radiographs and CT scans. The clinical assessment was performed using the ankle-hindfoot scale (AHS) of AOFAS (AOFAS score). RESULTS: The preoperative AOFAS score was 35-68 points (mean 52, median 54), the postoperative AOFAS score at 2 years after arthrodesis was 58-94 points (mean 82, median 82). Both the mean and median values of AOFAS score showed a signifi - cant progress from the poor result to the good and excellent result. After 2 years the TCA value decreased in 18 patients (56%) by no more than 3°. The CIA decrease observed in 21 patients (64%) was by 1° on average. The TCH decrease of 1-5 mm after 2 years since the surgery was seen in 16 patients. In 2 patients incomplete healing of arthrodesis was observed, manifested as a clinically asymptomatic non-union. No deep infection was reported. DISCUSSION: In agreement with the current literature, the arthroscopic subtalar arthrodesis has been confi rmed to be a safe method for the management of consequences of hindfoot fractures, with minimum complications and leading to accelerated bone fusion. Differences can be found in the approach, position, use of cancellous bone graft and surgical techniques. In recent years, prone position, posterior approaches, use of cancellous bone graft, distraction and fi xation with 2-3 screws divergently inserted into the bone prevail. The degree of healing of the bone fusion is generally an important factor. In our study population, non-healing was recorded in 2 patients, namely in the form of a clinically silent non-union. Neurological or early complications and/or osteosynthesis material failure occurred in up to a maximum of 10% of cases. The conclusive results of minimally invasive arthrodesis based on the AOFAS score have been confi rmed by us as well as by most authors. CONCLUSSIONS: Our study confi rmed that the arthroscopic assisted subtalar arthrodesis is a successful, reliable and safe minimally invasive method, with minimum complications, leading to stable arthrodesis. KEY WORDS: subtalar arthrodesis, subtalar arthroscopy.
- MeSH
- Arthrodesis MeSH
- Lower Extremity MeSH
- Fractures, Bone * MeSH
- Humans MeSH
- Foot MeSH
- Calcaneus * surgery MeSH
- Ankle Injuries * MeSH
- Retrospective Studies MeSH
- Check Tag
- Humans MeSH
- Publication type
- English Abstract MeSH
- Journal Article MeSH
Sudden cardiac arrest remains a relevant problem with a significant number of deaths worldwide. Although survival rates have more than tripled over the last 20 years (4% in 2001 vs. 14% in 2020), survival rates with good neurological outcomes remain persistently low, representing a major socioeconomic problem. Every minute of delay from patient collapse to start cardiopulmonary resuscitation (CPR) and early defibrillation reduces the chance of survival by approximately 10-12%. Therefore, the time to treatment is a crucial factor in the prognosis of patients with out-of-hospital cardiac arrest (OHCA). Research teams working in the pre-hospital setting are therefore looking for ways to improve the transmission of information from the site of an emergency event and to make it easier for emergency medical dispatch centres (EMDC) to recognise life-threatening conditions with minimal deviation. For emergency unit procedures already at the scene of the event, methods are being sought to efficiently and temporarily replace a non-functioning cardiopulmonary system. In the case of traumatic cardiac arrest (TCA), the focus is mainly on effective affecting non-compressible haemorrhage.
- MeSH
- Time-to-Treatment MeSH
- Cardiopulmonary Resuscitation * methods MeSH
- Humans MeSH
- Emergency Medical Services * MeSH
- Out-of-Hospital Cardiac Arrest * therapy MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The aim of this study was to determine the effects of Tarantula cubensis alcoholic extract (TCAE) on tumour development pathways in azoxymethane (AOM)-induced colorectal cancer in rats by molecular methods. Eighteen paraffin-embedded intestinal tissues, six from each group, were studied in the healthy control (C), cancer control (CC), cancer + TCAE (C-TCAE) groups. Sections of 5 μm thickness were taken from the paraffin blocks and submitted to staining with haematoxylin-eosin. In the histopathological examination, the number of crypts forming aberrant crypt foci (ACF) and the degree of dysplasia in the crypts were scored. Real-time PCR analysis was completed to determine β-catenin, KRAS (Kirsten rat sarcoma virus), APC (adenomatous polyposis coli) and P53 expressions on samples from each paraffin block. The grading scores of the number of crypts forming ACF and dysplasia in the crypts showed an evident decrease in the C-TCAE group in comparison to the CC group (P < 0.05). In real-time PCR analysis, mRNA expression levels of P53 (P > 0.05) and APC (P < 0.001) genes were found to be increased in the C-TCAE group according to the CC group. The expression levels of KRAS (P < 0.01) and β-catenin (P < 0.005) mRNA were found significantly decreased in the C-TCAE group. In conclusion, the effects of TCAE on AOM-induced colorectal cancer (CRC) in rats were evaluated molecularly; TCAE was found to modulate some changes in CRC developmental pathways, inhibiting tumour development and proliferation, and stimulating non-mutagenic tumour suppressor genes. Thus, it can be stated that TCAE is an effective chemopreventive agent.
6-Diazo-5-oxo-l-norleucine (DON) is a glutamine antagonist that suppresses cancer cell metabolism but concurrently enhances the metabolic fitness of tumor CD8+ T cells. DON showed promising efficacy in clinical trials; however, its development was halted by dose-limiting gastrointestinal (GI) toxicities. Given its clinical potential, we designed DON peptide prodrugs and found DRP-104 [isopropyl(S)-2-((S)-2-acetamido-3-(1H-indol-3-yl)-propanamido)-6-diazo-5-oxo-hexanoate] that was preferentially bioactivated to DON in tumor while bioinactivated to an inert metabolite in GI tissues. In drug distribution studies, DRP-104 delivered a prodigious 11-fold greater exposure of DON to tumor versus GI tissues. DRP-104 affected multiple metabolic pathways in tumor, including decreased glutamine flux into the TCA cycle. In efficacy studies, both DRP-104 and DON caused complete tumor regression; however, DRP-104 had a markedly improved tolerability profile. DRP-104's effect was CD8+ T cell dependent and resulted in robust immunologic memory. DRP-104 represents a first-in-class prodrug with differential metabolism in target versus toxicity tissue. DRP-104 is now in clinical trials under the FDA Fast Track designation.
- MeSH
- CD8-Positive T-Lymphocytes metabolism MeSH
- Diazooxonorleucine pharmacology therapeutic use MeSH
- Glutamine metabolism MeSH
- Enzyme Inhibitors therapeutic use MeSH
- Humans MeSH
- Neoplasms * drug therapy MeSH
- Prodrugs * pharmacology therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH