Platinum nanoparticles induce damage to DNA and inhibit DNA replication

. 2017 ; 12 (7) : e0180798. [epub] 20170712

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28704436

Sparsely tested group of platinum nanoparticles (PtNPs) may have a comparable effect as complex platinum compounds. The aim of this study was to observe the effect of PtNPs in in vitro amplification of DNA fragment of phage λ, on the bacterial cultures (Staphylococcus aureus), human foreskin fibroblasts and erythrocytes. In vitro synthesized PtNPs were characterized by dynamic light scattering (PtNPs size range 4.8-11.7 nm), zeta potential measurements (-15 mV at pH 7.4), X-ray fluorescence, UV/vis spectrophotometry and atomic absorption spectrometry. The PtNPs inhibited the DNA replication and affected the secondary structure of DNA at higher concentrations, which was confirmed by polymerase chain reaction, DNA sequencing and DNA denaturation experiments. Further, cisplatin (CisPt), as traditional chemotherapy agent, was used in all parallel experiments. Moreover, the encapsulation of PtNPs in liposomes (LipoPtNPs) caused an approximately 2.4x higher of DNA damage in comparison with CisPt, LipoCisPt and PtNPs. The encapsulation of PtNPs in liposomes also increased their antibacterial, cytostatic and cytotoxic effect, which was determined by the method of growth curves on S. aureus and HFF cells. In addition, both the bare and encapsulated PtNPs caused lower oxidative stress (determined by GSH/GSSG ratio) in the human erythrocytes compared to the bare and encapsulated CisPt. CisPt was used in all parallel experiments as traditional chemotherapy agent.

Zobrazit více v PubMed

Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature. 1965;205:698–9. PubMed

Cepeda V, Fuertes MA, Castilla J, Alonso C, Quevedo C, Perez JM. Biochemical Mechanisms of Cisplatin Cytotoxicity. Anti-Cancer Agents Med Chem. 2007;7(1):3–18. doi: 10.2174/187152007779314044 PubMed DOI

Ali I, Wani WA, Saleem K, Haque A. Platinum Compounds: A Hope for Future Cancer Chemotherapy. Anti-Cancer Agents Med Chem. 2013;13(2):296–306. PubMed

Pekarik V, Gumulec J, Masarik M, Kizek R, Adam V. Prostate cancer, miRNAs, metallothioneins and resistance to cytostatic drugs. Curr Med Chem. 2013;20(4):534–44. PubMed

Hrabeta J, Adam V, Eckschlager T, Frei E, Stiborova M, Kizek R. Metal containing cytostatics and their interaction with cellular thiol compounds causing chemoresistance. Anti-Cancer Agents Med Chem. 2016;16(6):686–98. PubMed

Edwards KA, Bolduc OR, Baeumner AJ. Miniaturized bioanalytical systems: enhanced performance through liposomes. Curr Opin Chem Biol. 2012;16(3–4):444–52. doi: 10.1016/j.cbpa.2012.05.182 PubMed DOI

Boulikas T. Low toxicity and anticancer activity of a novel liposomal cisplatin (Lipoplatin) in mouse xenografts. Oncol Rep. 2004;12(1):3–12. PubMed

Stathopoulos GP, Boulikas T, Kourvetaris A, Stathopoulos J. Liposomal oxaliplatin in the treatment of advanced cancer: A phase I study. Anticancer Res. 2006;26(2B):1489–93. PubMed

Paraskar A, Soni S, Basu S, Amarasiriwardena CJ, Lupoli N, Srivats S, et al. Rationally engineered polymeric cisplatin nanoparticles for improved antitumor efficacy. Nanotechnology. 2011;22(26):1–13. doi: 10.1088/0957-4484/22/26/265101 PubMed DOI PMC

Paraskar AS, Soni S, Chin KT, Chaudhuri P, Muto KW, Berkowitz J, et al. Harnessing structure-activity relationship to engineer a cisplatin nanoparticle for enhanced antitumor efficacy. Proc Natl Acad Sci U S A. 2010;107(28):12435–40. doi: 10.1073/pnas.1007026107 PubMed DOI PMC

Park EJ, Kim H, Kim Y, Park K. Intratracheal Instillation of Platinum Nanoparticles May Induce Inflammatory Responses in Mice. Arch Pharm Res. 2010;33(5):727–35. doi: 10.1007/s12272-010-0512-y PubMed DOI

Paraskar A, Soni S, Roy B, Papa AL, Sengupta S. Rationally designed oxaliplatin-nanoparticle for enhanced antitumor efficacy. Nanotechnology. 2012;23(7):1–17. doi: 10.1088/0957-4484/23/7/075103 PubMed DOI PMC

Conlin AK, Seidman AD, Bach A, Lake D, Dickler M, D'Andrea G, et al. Phase II Trial of Weekly Nanoparticle Albumin-Bound Paclitaxel With Carboplatin and Trastuzumab as First-line Therapy for Women With HER2-Overexpressing Metastatic Breast Cancer. Clin Breast Cancer. 2010;10(4):281–7. doi: 10.3816/CBC.2010.n.036 PubMed DOI PMC

Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov. 2005;4(4):307–20. doi: 10.1038/nrd1691 PubMed DOI

Ho YP, Au-Yeung SCF, To KKW. Platinum-based anticancer agents: Innovative design strategies and biological perspectives. Med Res Rev. 2003;23(5):633–55. doi: 10.1002/med.10038 PubMed DOI

Jung YW, Lippard SJ. Direct cellular responses to platinum-induced DNA damage. Chem Rev. 2007;107(5):1387–407. doi: 10.1021/cr068207j PubMed DOI

Hamasaki T, Kashiwagi T, Imada T, Nakamichi N, Aramaki S, Toh K, et al. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles. Langmuir. 2008;24(14):7354–64. doi: 10.1021/la704046f PubMed DOI

Kajita M, Hikosaka K, Iitsuka M, Kanayama A, Toshima N, Miyamoto Y. Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radic Res. 2007;41(6):615–26. doi: 10.1080/10715760601169679 PubMed DOI

Zhang LB, Laug L, Munchgesang W, Pippel E, Gosele U, Brandsch M, et al. Reducing Stress on Cells with Apoferritin-Encapsulated Platinum Nanoparticles. Nano Letters. 2010;10(1):219–23. doi: 10.1021/nl903313r PubMed DOI

Fan J, Yin JJ, Ning B, Wu XC, Hu Y, Ferrari M, et al. Direct evidence for catalase and peroxidase activities of ferritin-platinum nanoparticles. Biomaterials. 2011;32(6):1611–8. doi: 10.1016/j.biomaterials.2010.11.004 PubMed DOI

Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Abe K. Strong Neuroprotection with a Novel Platinum Nanoparticle against Ischemic Stroke- and Tissue Plasminogen Activator-related Brain Damages in Mice. Neuroscience. 2012;221:47–55. doi: 10.1016/j.neuroscience.2012.06.060 PubMed DOI

Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Ikeda Y, et al. Neurological and Pathological Improvements of Cerebral Infarction in Mice With Platinum Nanoparticles. J Neurosci Res. 2011;89(7):1125–33. doi: 10.1002/jnr.22622 PubMed DOI

Gehrke H, Pelka J, Hartinger CG, Blank H, Bleimund F, Schneider R, et al. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch Toxicol. 2011;85(7):799–812. doi: 10.1007/s00204-010-0636-3 PubMed DOI

Palchoudhury S, Xu YL, Rushdi A, Bao YP. DNA Interaction of Pt-Attached Iron Oxide Nanoparticles. IEEE Trans Magn. 2013;49(1):373–6. doi: 10.1109/tmag.2012.2223660 DOI

Fenske AE, Glaesener S, Bokemeyer C, Thomale J, Dahm-Daphi J, Honecker F, et al. Cisplatin resistance induced in germ cell tumour cells is due to reduced susceptibility towards cell death but not to altered DNA damage induction or repair. Cancer Lett. 2012;324(2):171–8. doi: 10.1016/j.canlet.2012.05.009 PubMed DOI

Chwalibog A, Sawosz E, Hotowy A, Szeliga J, Mitura S, Mitura K, et al. Visualization of interaction between inorganic nanoparticles and bacteria or fungi. Int J Nanomed. 2010;5:1085–94. doi: 10.2147/ijn.s13532 PubMed DOI PMC

Sawosz E, Chwalibog A, Szeliga J, Sawosz F, Grodzik M, Rupiewicz M, et al. Visualization of gold and platinum nanoparticles interacting with Salmonella Enteritidis and Listeria monocytogenes. Int J Nanomed. 2010;5:631–7. PubMed PMC

Pelka J, Gehrke H, Esselen M, Turk M, Crone M, Brase S, et al. Cellular Uptake of Platinum Nanoparticles in Human Colon Carcinoma Cells and Their Impact on Cellular Redox Systems and DNA Integrity. Chem Res Toxicol. 2009;22(4):649–59. doi: 10.1021/tx800354g PubMed DOI

Oh JG, Kim H. Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell. Curr Appl Phys. 2013;13(1):130–6. doi: 10.1016/j.cap.2012.06.025 DOI

Barabas R, Cziko M, Dekany I, Bizo L, Bogya ES. Comparative study of particle size analysis of hydroxyapatite-based nanomaterials. Chem Pap. 2013;67(11):1414–23. doi: 10.2478/s11696-013-0409-6 DOI

Kunjachan S, Blauz A, Mockel D, Theek B, Kiessling F, Etrych T, et al. Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur J Pharm Sci. 2012;45(4):421–8. doi: 10.1016/j.ejps.2011.08.028 PubMed DOI

Nejdl L, Rodrigo MAM, Kudr J, Ruttkay-Nedecky B, Konecna M, Kopel P, et al. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system. Electrophoresis. 2014;35(2–3):393–404. doi: 10.1002/elps.201300197 PubMed DOI

Smerkova K, Dostalova S, Skutkova H, Ryvolova M, Adam V, Provaznik I, et al. Isolation of Xis Gen Fragment of lambda Phage from Agarose Gel Using Magnetic Particles for Subsequent Enzymatic DNA Sequencing. Chromatographia. 2013;76(7–8):329–34. doi: 10.1007/s10337-012-2326-1 DOI

Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low-levels of DNA damage in individual cells Exp Cell Res. 1988;175(1):184–91. doi: 10.1016/0014-4827(88)90265-0 PubMed DOI

Mouron SA, Golijow CD, Dulout FN. DNA damage by cadmium and arsenic salts assessed by the single cell gel electrophoresis assay. Mutat Res Genet Toxicol Environ Mutagen. 2001;498(1–2):47–55. doi: 10.1016/s1383-5718(01)00266-2 PubMed DOI

Chudobova D, Dostalova S, Blazkova I, Michalek P, Ruttkay-Nedecky B, Sklenar M, et al. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus. Int J Environ Res Public Health. 2014;11(3):3233–55. doi: 10.3390/ijerph110303233 PubMed DOI PMC

Chudobova D, Dobes J, Nejdl L, Maskova D, Rodrigo MAM, Nedecky BR, et al. Oxidative Stress in Staphylococcus aureus Treated with Silver(I) Ions Revealed by Spectrometric and Voltammetric Assays. Int J Electrochem Sci. 2013;8(4):4422–40.

Chudobova D, Nejdl L, Gumulec J, Krystofova O, Rodrigo MAM, Kynicky J, et al. Complexes of Silver(I) Ions and Silver Phosphate Nanoparticles with Hyaluronic Acid and/or Chitosan as Promising Antimicrobial Agents for Vascular Grafts. Int J Mol Sci. 2013;14(7):13592–614. doi: 10.3390/ijms140713592 PubMed DOI PMC

Chudobova D, Dostalova S, Ruttkay-Nedecky B, Guran R, Rodrigo MAM, Tmejova K, et al. The effect of metal ions on Staphylococcus aureus revealed by biochemical and mass spectrometric analyses. Microbiol Res. 2015;170:147–56. doi: 10.1016/j.micres.2014.08.003 PubMed DOI

Kleckerova A, Sobrova P, Krystofova O, Sochor J, Zitka O, Babula P, et al. Cadmium(II) and Zinc(II) Ions Effects on Maize Plants revealed by Spectroscopy and Electrochemistry. Int J Electrochem Sci. 2011;6(12):6011–31.

Skladanka J, Adam V, Zitka O, Krystofova O, Beklova M, Kizek R, et al. Investigation into the Effect of Molds in Grasses on Their Content of Low Molecular Mass Thiols. Int J Environ Res Public Health. 2012;9(11):3789–805. doi: 10.3390/ijerph9113789 PubMed DOI PMC

Bednarski PJ, Korpis K, Westendorf AF, Perfahl S, Grunert R. Effects of light-activated diazido-Pt-IV complexes on cancer cells in vitro. Philos Trans R Soc A-Math Phys Eng Sci. 2013;371(1995):1–6. doi: 10.1098/rsta.2012.0118 PubMed DOI

Melnik M, Mikus P. Structural characterization of heterometallic platinum complexes with non-transition metals. Part II: heterotrimeric complexes. Main Group Met Chem. 2013;36(1–2):1–10. doi: 10.1515/mgmc-2012-0062 DOI

Sgarbossa P, Scarso A, Strukul G, Michelin RA. Platinum(II) Complexes with Coordinated Electron-Withdrawing Fluoroalkyl and Fluoroaryl Ligands: Synthesis, Reactivity, and Catalytic Activity. Organometallics. 2012;31(4):1257–70. doi: 10.1021/om200953z DOI

Chang CL, Lando DY, Fridman AS, Hu CK. Thermal stability of DNA with interstrand crosslinks. Biopolymers. 2012;97(10):807–17. doi: 10.1002/bip.22077 PubMed DOI

Brabec V, Kasparkova J. Modifications of DNA by platinum complexes—Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Update. 2005;8(3):131–46. doi: 10.1016/j.drup.2005.04.006 PubMed DOI

Boulikas T, Vougiouka M. Cisplatin and platinum drugs at the molecular level (review). Oncol Rep. 2003;10(6):1663–82. PubMed

Theile D, Detering JC, Herold-Mende C, Dyckhoff G, Haefeli WE, Weiss J, et al. Cellular Pharmacokinetic/Pharmacodynamic Relationship of Platinum Cytostatics in Head and Neck Squamous Cell Carcinoma Evaluated by Liquid Chromatography Coupled to Tandem Mass Spectrometry. J Pharmacol Exp Ther. 2012;341(1):51–8. doi: 10.1124/jpet.111.189621 PubMed DOI

Mitchell C, Kabolizadeh P, Ryan J, Roberts JD, Yacoub A, Curiel DT, et al. Low-dose BBR3610 toxicity in colon cancer cells is p53-independent and enhanced by inhibition of epidermal growth factor receptor (ERBB1)-Phosphatidyl inositol 3 kinase signaling. Mol Pharmacol. 2007;72(3):704–14. doi: 10.1124/mol.107.038406 PubMed DOI

Summa N, Maigut J, Puchta R, van Eldik R. Possible biotransformation reactions of polynuclear Pt(II) complexes. Inorg Chem. 2007;46(6):2094–104. doi: 10.1021/ic061990d PubMed DOI

Oehlsen ME, Hegmans A, Qu Y, Farrell N. Effects of geometric isomerism in dinuclear antitumor platinum complexes on their interactions with N-acetyl-L-methionine. J Biol Inorg Chem. 2005;10(5):433–42. doi: 10.1007/s00775-005-0009-1 PubMed DOI

Williams JW, Qu Y, Bulluss GH, Alvorado E, Farrell NP. Dinuclear platinum complexes with biological relevance based on the 1,2-diaminocyclohexane carrier ligand. Inorg Chem. 2007;46(15):5820–2. doi: 10.1021/ic700410y PubMed DOI

Konieczny P, Goralczyk AG, Szmyd R, Skalniak L, Koziel J, Filon FL, et al. Effects triggered by platinum nanoparticles on primary keratinocytes. Int J Nanomed. 2013;8:3963–75. doi: 10.2147/ijn.s49612 PubMed DOI PMC

Asharani PV, Xinyi N, Hande MP, Valiyaveettil S. DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine. 2010;5(1):51–64. doi: 10.2217/nnm.09.85 PubMed DOI

Vavrova M, Vokurkova. Two main routes induction of apoptosis in mammalian cells. Radiation oncology. 2003;(cxc):1–9.

Jia J, Zhu F, Ma XH, Cao ZWW, Li YXX, Chen YZ. Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov. 2009;8(2):111–28. doi: 10.1038/nrd2683 PubMed DOI

Wahab R, Yang YB, Umar A, Singh S, Hwang IH, Shin HS, et al. Platinum Quantum Dots and Their Cytotoxic Effect Towards Myoblast Cancer Cells (C2C12). J Biomed Nanotechnol. 2012;8(3):424–31. doi: 10.1166/jbn.2012.1448 PubMed DOI

Manikandan M, Hasan N, Wu HF. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials. 2013;34(23):5833–42. doi: 10.1016/j.biomaterials.2013.03.077 PubMed DOI

Kim WK, Kim JC, Park HJ, Sul OJ, Lee MH, Kim JS, et al. Platinum nanoparticles reduce ovariectomy-induced bone loss by decreasing osteoclastogenesis. Exp Mol Med. 2012;44(7):432–9. doi: 10.3858/emm.2012.44.7.048 PubMed DOI PMC

Onizawa S, Aoshiba K, Kajita M, Miyamoto Y, Nagai A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulmonary Pharmacology & Therapeutics. 2009;22(4):340–9. http://dx.doi.org/10.1016/j.pupt.2008.12.015. PubMed DOI

Yan HX, Kinjo T, Tian HZ, Hamasaki T, Teruya K, Kabayama S, et al. Mechanism of the Lifespan Extension of Caenorhabditis elegans by Electrolyzed Reduced Water-Participation of Pt Nanoparticles. Biosci Biotechnol Biochem. 2011;75(7):1295–9. doi: 10.1271/bbb.110072 PubMed DOI

Rehman MU, Yoshihisa Y, Miyamoto Y, Shimizu T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm Res. 2012;61(11):1177–85. doi: 10.1007/s00011-012-0512-0 PubMed DOI

Zolotov YA, Petrukhin OM, Malofeeva GI, Marcheva EV, Shiryaeva OA, Shestakov VA, et al. Determination of platinum metals by X-ray-fluorescence, atomic emission and atomic-absorption spectrometry after pre-concentration with a polymeric thioether. Anal Chim Acta. 1983;148(APR):135–57. doi: 10.1016/s0003-2670(00)85160-0 DOI

Pelletier H, Sawaya MR, Wolfle W, Wilson SH, Kraut J. A structural basis for metal ion mutagenicity and nucleotide selectivity in human DNA polymerase beta. Biochemistry. 1996;35(39):12762–77. doi: 10.1021/bi9529566 PubMed DOI

Popenoe EA, Schmaeler MA. Interaction of human DNA polymerase β with ions of copper, lead, and cadmium. Arch Biochem Biophys. 1979;196(1):109–20. http://dx.doi.org/10.1016/0003-9861(79)90557-5. PubMed DOI

Gao JH, Liang GL, Zhang B, Kuang Y, Zhang XX, Xu B. FePt@CoS2 yolk-shell nanocrystals as a potent agent to kill HeLa cells. J Am Chem Soc. 2007;129(5):1428–33. doi: 10.1021/ja067785e PubMed DOI

Shukla R, Bansal V, Chaudhary M, Basu A, Bhonde RR, Sastry M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir. 2005;21(23):10644–54. doi: 10.1021/la0513712 PubMed DOI

Fikrova P, Stetina R, Hrnciarik M, Rehacek V, Jost P, Hronek M, et al. Detection of DNA crosslinks in peripheral lymphocytes isolated from patients treated with platinum derivates using modified comet assay. Neoplasma. 2013;60(4):413–8. doi: 10.4149/neo_2013_053 PubMed DOI

Brabec V, Kasparkova J. Molecular aspects of resistance to antitumor platinum drugs. Drug Resist Update. 2002;5(3–4):147–61. doi: 10.1016/s1368-7646(02)00047-x PubMed DOI

Kosmider B, Wyszynska K, Janik-Spiechowicz E, Osiecka R, Zyner E, Ochocki J, et al. Evaluation of the genotoxicity of cis-bis(3-aminoflavone)dichloroplatinum(II) in comparison with cis-DDP. Mutat Res Genet Toxicol Environ Mutagen. 2004;558(1–2):93–110. doi: 10.1016/j.mrgentox.2003.11.006 PubMed DOI

Li Y, Chen DH, Yan J, Chen Y, Mittelstaedt RA, Zhang YB, et al. Genotoxicity of silver nanoparticles evaluated using the Ames test and in vitro micronucleus assay. Mutat Res Genet Toxicol Environ Mutagen. 2012;745(1–2):4–10. doi: 10.1016/j.mrgentox.2011.11.010 PubMed DOI

Gopal J, Hasan N, Manikandan M, Wu HF. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers. Scientific Reports. 2013;3 doi: 10.1038/srep01260 PubMed DOI PMC

Paukner S, Kohl G, Jalava K, Lubitz W. Sealed bacterial ghosts—Novel targeting vehicles for advanced drug delivery of water-soluble substances. J Drug Target. 2003;11(3):151–61. PubMed

Mayr UB, Walcher P, Azimpour C, Riedmann E, Haller C, Lubitz W. Bacterial ghosts as antigen delivery vehicles. Adv Drug Deliv Rev. 2005;57(9):1381–91. doi: 10.1016/j.addr.2005.01.027 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...