Liposomal nanotransporter for targeted binding based on nucleic acid anchor system
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23868417
DOI
10.1002/elps.201300197
Knihovny.cz E-zdroje
- Klíčová slova
- Gold nanoparticles, Liposome, Microfluidic, Nanomedicine, Nucleic acids, Paramagnetic particles,
- MeSH
- kovové nanočástice chemie MeSH
- liposomy chemie metabolismus ultrastruktura MeSH
- mikrofluidní analytické techniky MeSH
- nanomedicína přístrojové vybavení MeSH
- nanostruktury chemie ultrastruktura MeSH
- nukleové kyseliny chemie metabolismus MeSH
- zinek chemie MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- liposomy MeSH
- nukleové kyseliny MeSH
- zinek MeSH
- zlato MeSH
Microfluidic techniques have been developed intensively in recent years due to lower reagent consumption, faster analysis, and possibility of the integration of several analytical detectors into one chip. Electrochemical detectors are preferred in microfluidic systems, whereas liposomes can be used for amplification of the electrochemical signals. The aim of this study was to design a nanodevice for targeted anchoring of liposome as transport device. In this study, liposome with encapsulated Zn(II) was prepared. Further, gold nanoparticles were anchored onto the liposome surface allowing binding of thiol moiety-modified molecules (DNA). For targeted capturing of the transport device, DNA loops were used. DNA loops were represented by paramagnetic microparticles with oligo(DT)25 chain, on which a connecting DNA was bound. Capturing of transport device was subsequently done by hybridization to the loop. The individual steps were analyzed by electrochemistry and UV/Vis spectrometry. For detection of Zn(II) encapsulated in liposome, a microfluidic system was used. The study succeeded in demonstrating that liposome is suitable for the transport of Zn(II) and nucleic acids. Such transporter may be used for targeted binding using DNA anchor system.
Citace poskytuje Crossref.org
Platinum nanoparticles induce damage to DNA and inhibit DNA replication