Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26927112
PubMed Central
PMC4813865
DOI
10.3390/s16030290
PII: s16030290
Knihovny.cz E-zdroje
- Klíčová slova
- N-myc, doxorubicin, ellipticine, etoposide, gold nanoparticles, liposome,
- MeSH
- antisense DNA chemie terapeutické užití MeSH
- doxorubicin chemie terapeutické užití MeSH
- elipticiny chemie terapeutické užití MeSH
- etoposid chemie terapeutické užití MeSH
- fluorescence MeSH
- lidé MeSH
- liposomy chemie terapeutické užití MeSH
- magnetické nanočástice chemie terapeutické užití MeSH
- nádory farmakoterapie MeSH
- protoonkogen n-myc antagonisté a inhibitory genetika MeSH
- systémy cílené aplikace léků * MeSH
- zlato chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antisense DNA MeSH
- doxorubicin MeSH
- elipticiny MeSH
- etoposid MeSH
- liposomy MeSH
- magnetické nanočástice MeSH
- protoonkogen n-myc MeSH
- zlato MeSH
Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.
Zobrazit více v PubMed
Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:1–9. doi: 10.1186/1556-276X-8-102. PubMed DOI PMC
Schafer J., Hobel S., Bakowsky U., Aigner A. Liposome-polyethylenimine complexes for enhanced DNA and sirna delivery. Biomaterials. 2010;31:6892–6900. doi: 10.1016/j.biomaterials.2010.05.043. PubMed DOI
Chen X.A., Wang X.H., Wang Y.S., Yang L., Hu J., Xiao W.J., Fu A., Cai L.L., Li X., Ye X., et al. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bfgf peptide. J. Control. Release. 2010;145:17–25. PubMed
Villares G.J., Zigler M., Wang H., Melnikova V.O., Wu H., Friedman R., Leslie M.C., Vivas-Mejia P.E., Lopez-Berestein G., Sood A.K., et al. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering rna. Cancer Res. 2008;68:9078–9086. PubMed PMC
Martins S., Sarmento B., Ferreira D.C., Souto E.B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int. J. Nanomed. 2007;2:595–607. PubMed PMC
Milla P., Dosio F., Cattel L. Pegylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 2012;13:105–119. doi: 10.2174/138920012798356934. PubMed DOI
Bochot A., Fattal E. Liposomes for intravitreal drug delivery: A state of the art. J. Control. Release. 2012;161:628–634. doi: 10.1016/j.jconrel.2012.01.019. PubMed DOI
Gregoriadis G. The carrier potential of liposomes in biology and medicine. N. Engl. J. Med. 1976;295:765–770. doi: 10.1056/NEJM197609302951406. PubMed DOI
Allen T.M. Long-circulating (sterically stabilized) liposomes for targeted drug-delivery. Trends Pharmacol. Sci. 1994;15:215–220. doi: 10.1016/0165-6147(94)90314-X. PubMed DOI
Bangham A.D. Review of lasic, liposomes: From physics to applications. Biophys. J. 1994;67:1358–1359. doi: 10.1016/S0006-3495(94)80607-1. DOI
Ding Z.Y., Zhou L., Liu Y.M., Lu Y. Safety and efficacy of paclitaxel liposome for elderly patients with advanced non-small cell lung cancer: A multi-center prospective study. Thorac. Cancer. 2013;4:14–19. doi: 10.1111/j.1759-7714.2012.00134.x. PubMed DOI
Xu X., Wang L., Xu H.Q., Huang X.E., Qian Y.D., Xiang J. Clinical comparison between paclitaxel liposome (lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac. J. Cancer Prev. 2013;14:2591–2594. doi: 10.7314/APJCP.2013.14.4.2591. PubMed DOI
Zhao C., Feng Q., Dou Z.P., Yuan W., Sui C.G., Zhang X.H., Xia G.M., Sun H.F., Ma J. Local targeted therapy of liver metastasis from colon cancer by galactosylated liposome encapsulated with doxorubicin. PLoS ONE. 2013;8:290. doi: 10.1371/journal.pone.0073860. PubMed DOI PMC
Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin—Review of animal and human studies. Clin. Pharmacokinet. 2003;42:419–436. doi: 10.2165/00003088-200342050-00002. PubMed DOI
Dick R.A., Goh S.L., Feigenson G.W., Vogt V.M. Hiv-1 gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl. Acad. Sci. USA. 2012;109:18761–18766. doi: 10.1073/pnas.1209408109. PubMed DOI PMC
Jonsson F., Beke-Somfai T., Andreasson J., Norden B. Interactions of a photochromic spiropyran with liposome model membranes. Langmuir. 2013;29:2099–2103. doi: 10.1021/la304867d. PubMed DOI
Bhuvana M., Narayanan J.S., Dharuman V., Teng W., Hahn J.H., Jayakumar K. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing. Biosens. Bioelectron. 2013;41:802–808. doi: 10.1016/j.bios.2012.10.017. PubMed DOI
Dilimon V.S., Rajalingam S., Delhalle J., Mekhalif Z. Self-assembly mechanism of thiol, dithiol, dithiocarboxylic acid, disulfide and diselenide on gold: An electrochemical impedance study. Phys. Chem. Chem. Phys. 2013;15:16648–16656. doi: 10.1039/c3cp51804c. PubMed DOI
Nejdl L., Rodrigo M.A.R., Kudr J., Ruttkay-Nedecky B., Konecna M., Kopel P., Zitka O., Hubalek J., Kizek R., Adam V. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system. Electrophoresis. 2014;35:393–404. doi: 10.1002/elps.201300197. PubMed DOI
Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI
Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thunemann A.F., Kraehnert R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ xanes and saxs evaluation. J. Am. Chem. Soc. 2010;132:1296–1301. doi: 10.1021/ja906506j. PubMed DOI
Kunjachan S., Blauz A., Mockel D., Theek B., Kiessling F., Etrych T., Ulbrich K., van Bloois L., Storm G., Bartosz G., et al. Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur. J. Pharm. Sci. 2012;45:421–428. PubMed
Huska D., Hubalek J., Adam V., Vajtr D., Horna A., Trnkova L., Havel L., Kizek R. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta. 2009;79:402–411. doi: 10.1016/j.talanta.2009.04.007. PubMed DOI
Krejcova L., Dospivova D., Ryvolova M., Kopel P., Hynek D., Krizkova S., Hubalek J., Adam V., Kizek R. Paramagnetic particles coupled with an automated flow injection analysis as a tool for influenza viral protein detection. Electrophoresis. 2012;33:3195–3204. doi: 10.1002/elps.201200304. PubMed DOI
Krizkova S., Jilkova E., Krejcova L., Cernei N., Hynek D., Ruttkay-Nedecky B., Sochor J., Kynicky J., Adam V., Kizek R. Rapid superparamagnetic-beads-based automated immunoseparation of zn-proteins from staphylococcus aureus with nanogram yield. Electrophoresis. 2013;34:224–234. doi: 10.1002/elps.201200234. PubMed DOI
Krizkova S., Ryvolova M., Hynek D., Eckschlager T., Hodek P., Masarik M., Adam V., Kizek R. Immunoextraction of zinc proteins from human plasma using chicken yolk antibodies immobilized onto paramagnetic particles and their electrophoretic analysis. Electrophoresis. 2012;33:1824–1832. doi: 10.1002/elps.201100638. PubMed DOI
Zitka O., Krizkova S., Krejcova L., Hynek D., Gumulec J., Masarik M., Sochor J., Adam V., Hubalek J., Trnkova L., et al. Microfluidic tool based on the antibody-modified paramagnetic particles for detection of 8-hydroxy-2′-deoxyguanosine in urine of prostate cancer patients. Electrophoresis. 2011;32:3207–3220. PubMed
Blazkova I., Nguyen V.H., Dostalova S., Kopel P., Stanisavljevic M., Vaculovicova M., Stiborova M., Eckschlager T., Kizek R., Adam V. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int. J. Mol. Sci. 2013;14:13391–13402. doi: 10.3390/ijms140713391. PubMed DOI PMC
Sikorski M., Krystkowiak E., Steer R.P. The kinetics of fast fluorescence quenching processes. J. Photochem. Photobiol. A Chem. 1998;117:1–16. doi: 10.1016/S1010-6030(98)00318-9. DOI
Narang A.S., Delmarre D., Gao D. Stable drug encapsulation in micelles and microemulsions. Int. J. Pharm. 2007;345:9–25. doi: 10.1016/j.ijpharm.2007.08.057. PubMed DOI
Cagdas F.M., Ertugral N., Bucak S., Atay N.Z. Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes. Pharm. Dev. Technol. 2011;16:408–414. doi: 10.3109/10837451003774401. PubMed DOI
Kominkova M., Guran R., Rodrigo M.A.R., Kopel P., Blazkova I., Chudobova D., Nejdl L., Heger Z., Ruttkay-Nedecky B., Zitka O., et al. Study of functional qualities of different types of tailored liposomes with encapsulated doxorubicin using electrochemical and optical methods. Int. J. Electrochem. Sci. 2014;9:2993–3007.
Peng L., Minbo H., Fang C., Xi L., Chaocan Z. The interaction between cholesterol and human serum albumin. Protein Pept. Lett. 2008;15:360–364. doi: 10.2174/092986608784246542. PubMed DOI
Smerkova K., Dostalova S., Skutkova H., Ryvolova M., Adam V., Provaznik I., Kizek R. Isolation of xis gen fragment of lambda phage from agarose gel using magnetic particles for subsequent enzymatic DNA sequencing. Chromatographia. 2013;76:329–334. doi: 10.1007/s10337-012-2326-1. DOI
Kremplova M., Fialova D., Nejdl L., Hynek D., Trnkova L., Hubalek J., Kizek R., Adam V. Influence of magnetic microparticles isolation on adenine homonucleotides structure. Materials. 2014;7:1455–1472. doi: 10.3390/ma7031455. PubMed DOI PMC
Zitka O., Skalickova S., Merlos M.A.R., Krejcova L., Kopel P., Adam V., Kizek R. Sequences of pandemic-causing viruses isolated and detected by paramagnetic particles coupled with microfluidic system and electrochemical detector. Int. J. Electrochem. Sci. 2013;8:12628–12642.
Saiyed Z.M., Bochiwal C., Gorasia H., Telang S.D., Ramchand C.N. Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal. Biochem. 2006;356:306–308. doi: 10.1016/j.ab.2006.06.027. PubMed DOI
Gai L.G., Han X.Y., Hou Y.H., Chen J., Jiang H.H., Chen X.C. Surfactant-free synthesis of Fe3O4@pani and Fe3O4@ppy microspheres as adsorbents for isolation of pcr-ready DNA. Dalton Trans. 2013;42:1820–1826. doi: 10.1039/C2DT32164E. PubMed DOI
Chen X.W., Mao Q.X., Liu J.W., Wang J.H. Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent. Talanta. 2012;100:107–112. doi: 10.1016/j.talanta.2012.07.095. PubMed DOI
Prodelalova J., Rittich B., Spanova A., Petrova K., Benes M.J. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J. Chromatogr. A. 2004;1056:43–48. doi: 10.1016/S0021-9673(04)01448-7. PubMed DOI
Dai X.W., Yue Z.L., Eccleston M.E., Swartling J., Slater N.K.H., Kaminski C.F. Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells. Nanomed. Nanotechnol. Biol. Med. 2008;4:49–56. doi: 10.1016/j.nano.2007.12.002. PubMed DOI
Magnetic Nanoparticles: From Design and Synthesis to Real World Applications