Fluorescence Characterization of Gold Modified Liposomes with Antisense N-myc DNA Bound to the Magnetisable Particles with Encapsulated Anticancer Drugs (Doxorubicin, Ellipticine and Etoposide)

. 2016 Feb 25 ; 16 (3) : 290. [epub] 20160225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26927112

Liposome-based drug delivery systems hold great potential for cancer therapy. The aim of this study was to design a nanodevice for targeted anchoring of liposomes (with and without cholesterol) with encapsulated anticancer drugs and antisense N-myc gene oligonucleotide attached to its surface. To meet this main aim, liposomes with encapsulated doxorubicin, ellipticine and etoposide were prepared. They were further characterized by measuring their fluorescence intensity, whereas the encapsulation efficiency was estimated to be 16%. The hybridization process of individual oligonucleotides forming the nanoconstruct was investigated spectrophotometrically and electrochemically. The concentrations of ellipticine, doxorubicin and etoposide attached to the nanoconstruct in gold nanoparticle-modified liposomes were found to be 14, 5 and 2 µg·mL(-1), respectively. The study succeeded in demonstrating that liposomes are suitable for the transport of anticancer drugs and the antisense oligonucleotide, which can block the expression of the N-myc gene.

Zobrazit více v PubMed

Akbarzadeh A., Rezaei-Sadabady R., Davaran S., Joo S.W., Zarghami N., Hanifehpour Y., Samiei M., Kouhi M., Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013;8:1–9. doi: 10.1186/1556-276X-8-102. PubMed DOI PMC

Schafer J., Hobel S., Bakowsky U., Aigner A. Liposome-polyethylenimine complexes for enhanced DNA and sirna delivery. Biomaterials. 2010;31:6892–6900. doi: 10.1016/j.biomaterials.2010.05.043. PubMed DOI

Chen X.A., Wang X.H., Wang Y.S., Yang L., Hu J., Xiao W.J., Fu A., Cai L.L., Li X., Ye X., et al. Improved tumor-targeting drug delivery and therapeutic efficacy by cationic liposome modified with truncated bfgf peptide. J. Control. Release. 2010;145:17–25. PubMed

Villares G.J., Zigler M., Wang H., Melnikova V.O., Wu H., Friedman R., Leslie M.C., Vivas-Mejia P.E., Lopez-Berestein G., Sood A.K., et al. Targeting melanoma growth and metastasis with systemic delivery of liposome-incorporated protease-activated receptor-1 small interfering rna. Cancer Res. 2008;68:9078–9086. PubMed PMC

Martins S., Sarmento B., Ferreira D.C., Souto E.B. Lipid-based colloidal carriers for peptide and protein delivery-liposomes versus lipid nanoparticles. Int. J. Nanomed. 2007;2:595–607. PubMed PMC

Milla P., Dosio F., Cattel L. Pegylation of proteins and liposomes: A powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab. 2012;13:105–119. doi: 10.2174/138920012798356934. PubMed DOI

Bochot A., Fattal E. Liposomes for intravitreal drug delivery: A state of the art. J. Control. Release. 2012;161:628–634. doi: 10.1016/j.jconrel.2012.01.019. PubMed DOI

Gregoriadis G. The carrier potential of liposomes in biology and medicine. N. Engl. J. Med. 1976;295:765–770. doi: 10.1056/NEJM197609302951406. PubMed DOI

Allen T.M. Long-circulating (sterically stabilized) liposomes for targeted drug-delivery. Trends Pharmacol. Sci. 1994;15:215–220. doi: 10.1016/0165-6147(94)90314-X. PubMed DOI

Bangham A.D. Review of lasic, liposomes: From physics to applications. Biophys. J. 1994;67:1358–1359. doi: 10.1016/S0006-3495(94)80607-1. DOI

Ding Z.Y., Zhou L., Liu Y.M., Lu Y. Safety and efficacy of paclitaxel liposome for elderly patients with advanced non-small cell lung cancer: A multi-center prospective study. Thorac. Cancer. 2013;4:14–19. doi: 10.1111/j.1759-7714.2012.00134.x. PubMed DOI

Xu X., Wang L., Xu H.Q., Huang X.E., Qian Y.D., Xiang J. Clinical comparison between paclitaxel liposome (lipusu®) and paclitaxel for treatment of patients with metastatic gastric cancer. Asian Pac. J. Cancer Prev. 2013;14:2591–2594. doi: 10.7314/APJCP.2013.14.4.2591. PubMed DOI

Zhao C., Feng Q., Dou Z.P., Yuan W., Sui C.G., Zhang X.H., Xia G.M., Sun H.F., Ma J. Local targeted therapy of liver metastasis from colon cancer by galactosylated liposome encapsulated with doxorubicin. PLoS ONE. 2013;8:290. doi: 10.1371/journal.pone.0073860. PubMed DOI PMC

Gabizon A., Shmeeda H., Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin—Review of animal and human studies. Clin. Pharmacokinet. 2003;42:419–436. doi: 10.2165/00003088-200342050-00002. PubMed DOI

Dick R.A., Goh S.L., Feigenson G.W., Vogt V.M. Hiv-1 gag protein can sense the cholesterol and acyl chain environment in model membranes. Proc. Natl. Acad. Sci. USA. 2012;109:18761–18766. doi: 10.1073/pnas.1209408109. PubMed DOI PMC

Jonsson F., Beke-Somfai T., Andreasson J., Norden B. Interactions of a photochromic spiropyran with liposome model membranes. Langmuir. 2013;29:2099–2103. doi: 10.1021/la304867d. PubMed DOI

Bhuvana M., Narayanan J.S., Dharuman V., Teng W., Hahn J.H., Jayakumar K. Gold surface supported spherical liposome-gold nano-particle nano-composite for label free DNA sensing. Biosens. Bioelectron. 2013;41:802–808. doi: 10.1016/j.bios.2012.10.017. PubMed DOI

Dilimon V.S., Rajalingam S., Delhalle J., Mekhalif Z. Self-assembly mechanism of thiol, dithiol, dithiocarboxylic acid, disulfide and diselenide on gold: An electrochemical impedance study. Phys. Chem. Chem. Phys. 2013;15:16648–16656. doi: 10.1039/c3cp51804c. PubMed DOI

Nejdl L., Rodrigo M.A.R., Kudr J., Ruttkay-Nedecky B., Konecna M., Kopel P., Zitka O., Hubalek J., Kizek R., Adam V. Liposomal nanotransporter for targeted binding based on nucleic acid anchor system. Electrophoresis. 2014;35:393–404. doi: 10.1002/elps.201300197. PubMed DOI

Kimling J., Maier M., Okenve B., Kotaidis V., Ballot H., Plech A. Turkevich method for gold nanoparticle synthesis revisited. J. Phys. Chem. B. 2006;110:15700–15707. doi: 10.1021/jp061667w. PubMed DOI

Polte J., Ahner T.T., Delissen F., Sokolov S., Emmerling F., Thunemann A.F., Kraehnert R. Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ xanes and saxs evaluation. J. Am. Chem. Soc. 2010;132:1296–1301. doi: 10.1021/ja906506j. PubMed DOI

Kunjachan S., Blauz A., Mockel D., Theek B., Kiessling F., Etrych T., Ulbrich K., van Bloois L., Storm G., Bartosz G., et al. Overcoming cellular multidrug resistance using classical nanomedicine formulations. Eur. J. Pharm. Sci. 2012;45:421–428. PubMed

Huska D., Hubalek J., Adam V., Vajtr D., Horna A., Trnkova L., Havel L., Kizek R. Automated nucleic acids isolation using paramagnetic microparticles coupled with electrochemical detection. Talanta. 2009;79:402–411. doi: 10.1016/j.talanta.2009.04.007. PubMed DOI

Krejcova L., Dospivova D., Ryvolova M., Kopel P., Hynek D., Krizkova S., Hubalek J., Adam V., Kizek R. Paramagnetic particles coupled with an automated flow injection analysis as a tool for influenza viral protein detection. Electrophoresis. 2012;33:3195–3204. doi: 10.1002/elps.201200304. PubMed DOI

Krizkova S., Jilkova E., Krejcova L., Cernei N., Hynek D., Ruttkay-Nedecky B., Sochor J., Kynicky J., Adam V., Kizek R. Rapid superparamagnetic-beads-based automated immunoseparation of zn-proteins from staphylococcus aureus with nanogram yield. Electrophoresis. 2013;34:224–234. doi: 10.1002/elps.201200234. PubMed DOI

Krizkova S., Ryvolova M., Hynek D., Eckschlager T., Hodek P., Masarik M., Adam V., Kizek R. Immunoextraction of zinc proteins from human plasma using chicken yolk antibodies immobilized onto paramagnetic particles and their electrophoretic analysis. Electrophoresis. 2012;33:1824–1832. doi: 10.1002/elps.201100638. PubMed DOI

Zitka O., Krizkova S., Krejcova L., Hynek D., Gumulec J., Masarik M., Sochor J., Adam V., Hubalek J., Trnkova L., et al. Microfluidic tool based on the antibody-modified paramagnetic particles for detection of 8-hydroxy-2′-deoxyguanosine in urine of prostate cancer patients. Electrophoresis. 2011;32:3207–3220. PubMed

Blazkova I., Nguyen V.H., Dostalova S., Kopel P., Stanisavljevic M., Vaculovicova M., Stiborova M., Eckschlager T., Kizek R., Adam V. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int. J. Mol. Sci. 2013;14:13391–13402. doi: 10.3390/ijms140713391. PubMed DOI PMC

Sikorski M., Krystkowiak E., Steer R.P. The kinetics of fast fluorescence quenching processes. J. Photochem. Photobiol. A Chem. 1998;117:1–16. doi: 10.1016/S1010-6030(98)00318-9. DOI

Narang A.S., Delmarre D., Gao D. Stable drug encapsulation in micelles and microemulsions. Int. J. Pharm. 2007;345:9–25. doi: 10.1016/j.ijpharm.2007.08.057. PubMed DOI

Cagdas F.M., Ertugral N., Bucak S., Atay N.Z. Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes. Pharm. Dev. Technol. 2011;16:408–414. doi: 10.3109/10837451003774401. PubMed DOI

Kominkova M., Guran R., Rodrigo M.A.R., Kopel P., Blazkova I., Chudobova D., Nejdl L., Heger Z., Ruttkay-Nedecky B., Zitka O., et al. Study of functional qualities of different types of tailored liposomes with encapsulated doxorubicin using electrochemical and optical methods. Int. J. Electrochem. Sci. 2014;9:2993–3007.

Peng L., Minbo H., Fang C., Xi L., Chaocan Z. The interaction between cholesterol and human serum albumin. Protein Pept. Lett. 2008;15:360–364. doi: 10.2174/092986608784246542. PubMed DOI

Smerkova K., Dostalova S., Skutkova H., Ryvolova M., Adam V., Provaznik I., Kizek R. Isolation of xis gen fragment of lambda phage from agarose gel using magnetic particles for subsequent enzymatic DNA sequencing. Chromatographia. 2013;76:329–334. doi: 10.1007/s10337-012-2326-1. DOI

Kremplova M., Fialova D., Nejdl L., Hynek D., Trnkova L., Hubalek J., Kizek R., Adam V. Influence of magnetic microparticles isolation on adenine homonucleotides structure. Materials. 2014;7:1455–1472. doi: 10.3390/ma7031455. PubMed DOI PMC

Zitka O., Skalickova S., Merlos M.A.R., Krejcova L., Kopel P., Adam V., Kizek R. Sequences of pandemic-causing viruses isolated and detected by paramagnetic particles coupled with microfluidic system and electrochemical detector. Int. J. Electrochem. Sci. 2013;8:12628–12642.

Saiyed Z.M., Bochiwal C., Gorasia H., Telang S.D., Ramchand C.N. Application of magnetic particles (Fe3O4) for isolation of genomic DNA from mammalian cells. Anal. Biochem. 2006;356:306–308. doi: 10.1016/j.ab.2006.06.027. PubMed DOI

Gai L.G., Han X.Y., Hou Y.H., Chen J., Jiang H.H., Chen X.C. Surfactant-free synthesis of Fe3O4@pani and Fe3O4@ppy microspheres as adsorbents for isolation of pcr-ready DNA. Dalton Trans. 2013;42:1820–1826. doi: 10.1039/C2DT32164E. PubMed DOI

Chen X.W., Mao Q.X., Liu J.W., Wang J.H. Isolation/separation of plasmid DNA using hemoglobin modified magnetic nanocomposites as solid-phase adsorbent. Talanta. 2012;100:107–112. doi: 10.1016/j.talanta.2012.07.095. PubMed DOI

Prodelalova J., Rittich B., Spanova A., Petrova K., Benes M.J. Isolation of genomic DNA using magnetic cobalt ferrite and silica particles. J. Chromatogr. A. 2004;1056:43–48. doi: 10.1016/S0021-9673(04)01448-7. PubMed DOI

Dai X.W., Yue Z.L., Eccleston M.E., Swartling J., Slater N.K.H., Kaminski C.F. Fluorescence intensity and lifetime imaging of free and micellar-encapsulated doxorubicin in living cells. Nanomed. Nanotechnol. Biol. Med. 2008;4:49–56. doi: 10.1016/j.nano.2007.12.002. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Magnetic Nanoparticles: From Design and Synthesis to Real World Applications

. 2017 Aug 29 ; 7 (9) : . [epub] 20170829

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...