Magnetic Nanoparticles: From Design and Synthesis to Real World Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28850089
PubMed Central
PMC5618354
DOI
10.3390/nano7090243
PII: nano7090243
Knihovny.cz E-zdroje
- Klíčová slova
- magnetic resonance imaging, nanocarrier, nanoscale, preconcentration, separation, silica, theranostics, therapeutic agents,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy.
Zobrazit více v PubMed
Pankhurst Q.A., Connolly J., Jones S.K., Dobson J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003;36:167–181. doi: 10.1088/0022-3727/36/13/201. DOI
Katz E., Willner I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 2004;43:6042–6108. doi: 10.1002/anie.200400651. PubMed DOI
Brigger I., Dubernet C., Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv. Drug Deliv. Rev. 2002;54:631–651. doi: 10.1016/S0169-409X(02)00044-3. PubMed DOI
Caruthers S.D., Wickline S.A., Lanza G.M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 2007;18:26–30. doi: 10.1016/j.copbio.2007.01.006. PubMed DOI
Bessalova V., Perov N., Rodionova V. New approaches in the design of magnetic tweezers-current magnetic tweezers. J. Magn. Magn. Mater. 2016;415:66–71. doi: 10.1016/j.jmmm.2016.03.038. DOI
Saha S., Loo S.C.J. Application-driven multi-layered particles—The role of polymers in the architectural design of particles. Polymer. 2015;71:A1–A11. doi: 10.1016/j.polymer.2015.06.033. DOI
Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Mura S., Nicolas J., Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013;12:991–1003. doi: 10.1038/nmat3776. PubMed DOI
Danhier F., Feron O., Preat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Blazkova I., Nguyen H.V., Dostalova S., Kopel P., Stanisavljevic M., Vaculovicova M., Stiborova M., Eckschlager T., Kizek R., Adam V. Apoferritin modified magnetic particles as doxorubicin carriers for anticancer drug delivery. Int. J. Mol. Sci. 2013;14:13391–13402. doi: 10.3390/ijms140713391. PubMed DOI PMC
Nasongkla N., Bey E., Ren J.M., Ai H., Khemtong C., Guthi J.S., Chin S.F., Sherry A.D., Boothman D.A., Gao J.M. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–2430. doi: 10.1021/nl061412u. PubMed DOI
Shubayev V.I., Pisanic T.R., Jin S.H. Magnetic nanoparticles for theragnostics. Adv. Drug Deliv. Rev. 2009;61:467–477. doi: 10.1016/j.addr.2009.03.007. PubMed DOI PMC
Skalickova S., Nejdl L., Kudr J., Ruttkay-Nedecky B., Jimenez A.M.J., Kopel P., Kremplova M., Masarik M., Stiborova M., Eckschlager T., et al. Fluorescence characterization of gold modified liposomes with antisense N-myc DNA bound to the magnetisable particles with encapsulated anticancer drugs (doxorubicin, ellipticine and etoposide) Sensors. 2016;16:290. doi: 10.3390/s16030290. PubMed DOI PMC
Zitka O., Cernei N., Heger Z., Matousek M., Kopel P., Kynicky J., Masarik M., Kizek R., Adam V. Microfluidic chip coupled with modified paramagnetic particles for sarcosine isolation in urine. Electrophoresis. 2013;34:2639–2647. doi: 10.1002/elps.201300114. PubMed DOI
Heger Z., Zitka J., Cernei N., Krizkova S., Sztalmachova M., Kopel P., Masarik M., Hodek P., Zitka O., Adam V., et al. 3D-printed biosensor with poly(dimethylsiloxane) reservoir for magnetic separation and quantum dots-based immunolabeling of metallothionein. Electrophoresis. 2015;36:1256–1264. doi: 10.1002/elps.201400559. PubMed DOI
Zitka O., Krizkova S., Krejcova L., Hynek D., Gumulec J., Masarik M., Sochor J., Adam V., Hubalek J., Trnkova L., et al. Microfluidic tool based on the antibody-modified paramagnetic particles for detection of 8-hydroxy-2′-deoxyguanosine in urine of prostate cancer patients. Electrophoresis. 2011;32:3207–3220. doi: 10.1002/elps.201100430. PubMed DOI
Merlos Rodrigo M.A., Krejcova L., Kudr J., Cernei N., Kopel P., Richtera L., Moulick A., Hynek D., Adam V., Stiborova M., et al. Fully automated two-step assay for detection of metallothionein through magnetic isolation using functionalized γ-Fe2O3 particles. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016;1039:17–27. doi: 10.1016/j.jchromb.2016.10.018. PubMed DOI
Jimenez A.M.J., Rodrigo M.A.M., Milosavljevic V., Krizkova S., Kopel P., Heger Z., Adam V. Gold nanoparticles-modified nanomaghemite and quantum dots-based hybridization assay for detection of HPV. Sens. Actuators B Chem. 2017;240:503–510. doi: 10.1016/j.snb.2016.08.091. DOI
Michalek P., Dostalova S., Buchtelova H., Cernei N., Krejcova L., Hynek D., Milosavljevic V., Jimenez A.M.J., Kopel P., Heger Z., et al. A two-step protocol for isolation of influenza a (H7N7) virions and their RNA for PCRdiagnostics based on modified paramagnetic particles. Electrophoresis. 2016;37:2025–2035. doi: 10.1002/elps.201600044. PubMed DOI
Cihalova K., Hegerova D., Jimenez A.M., Milosavljevic V., Kudr J., Skalickova S., Hynek D., Kopel P., Vaculovicova M., Adam V. Antibody-free detection of infectious bacteria using quantum dots-based barcode assay. J. Pharm. Biomed. Anal. 2017;134:325–332. doi: 10.1016/j.jpba.2016.10.025. PubMed DOI
Cihalova K., Hegerova D., Dostalova S., Jelinkova P., Krejcova L., Milosavljevic V., Krizkova S., Kopel P., Adam V. Particle-based immunochemical separation of methicillin resistant staphylococcus aureus with indirect electrochemical detection of labeling oligonucleotides. Anal. Methods. 2016;8:5123–5128. doi: 10.1039/C6AY01296E. DOI
Lee J.H., Jang J.T., Choi J.S., Moon S.H., Noh S.H., Kim J.W., Kim J.G., Kim I.S., Park K.I., Cheon J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nat. Nanotechnol. 2011;6:418–422. doi: 10.1038/nnano.2011.95. PubMed DOI
Yoo D., Lee J.H., Shin T.H., Cheon J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 2011;44:863–874. doi: 10.1021/ar200085c. PubMed DOI
Sun S.H., Zeng H. Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 2002;124:8204–8205. doi: 10.1021/ja026501x. PubMed DOI
Sun S.H., Zeng H., Robinson D.B., Raoux S., Rice P.M., Wang S.X., Li G.X. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004;126:273–279. doi: 10.1021/ja0380852. PubMed DOI
Baaziz W., Pichon B.P., Fleutot S., Liu Y., Lefevre C., Greneche J.M., Toumi M., Mhiri T., Begin-Colin S. Magnetic iron oxide nanoparticles: Reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J. Phys. Chem. C. 2014;118:3795–3810. doi: 10.1021/jp411481p. DOI
Ho D., Sun X.L., Sun S.H. Monodisperse magnetic nanoparticles for theranostic applications. Acc. Chem. Res. 2011;44:875–882. doi: 10.1021/ar200090c. PubMed DOI PMC
Gao J.H., Gu H.W., Xu B. Multifunctional magnetic nanoparticles: Design, synthesis, and biomedical applications. Acc. Chem. Res. 2009;42:1097–1107. doi: 10.1021/ar9000026. PubMed DOI
Dutz S., Hergt R. Magnetic particle hyperthermia—A promising tumour therapy? Nanotechnology. 2014;25:28. doi: 10.1088/0957-4484/25/45/452001. PubMed DOI
Ito A., Shinkai M., Honda H., Kobayashi T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng. 2005;100:1–11. doi: 10.1263/jbb.100.1. PubMed DOI
Ulbrich K., Hola K., Subr V., Bakandritsos A., Tucek J., Zboril R. Targeted drug delivery with polymers and magnetic nanoparticles: Covalent and noncovalent approaches, release control, and clinical studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Kohler N., Sun C., Wang J., Zhang M.Q. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir. 2005;21:8858–8864. doi: 10.1021/la0503451. PubMed DOI
N’Guyen T.T.T., Duong H.T.T., Basuki J., Montembault V., Pascual S., Guibert C., Fresnais J., Boyer C., Whittaker M.R., Davis T.P., et al. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. Int. Ed. 2013;52:14152–14156. doi: 10.1002/anie.201306724. PubMed DOI
Hwu J.R., Lin Y.S., Josephrajan T., Hsu M.H., Cheng F.Y., Yeh C.S., Su W.C., Shieh D.B. Targeted paclitaxel by conjugation to iron oxide and gold nanoparticles. J. Am. Chem. Soc. 2009;131:66–68. doi: 10.1021/ja804947u. PubMed DOI
Tietze R., Lyer S., Duerr S., Struffert T., Engelhorn T., Schwarz M., Eckert E., Goeen T., Vasylyev S., Peukert W., et al. Efficient drug-delivery using magnetic nanoparticles—Biodistribution and therapeutic effects in tumour bearing rabbits. Nanomed. Nanotechnol. Biol. Med. 2013;9:961–971. doi: 10.1016/j.nano.2013.05.001. PubMed DOI
Yu M.K., Jeong Y.Y., Park J., Park S., Kim J.W., Min J.J., Kim K., Jon S. Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angew. Chem. Int. Ed. 2008;47:5362–5365. doi: 10.1002/anie.200800857. PubMed DOI
Gautier J., Allard-Vannier E., Burlaud-Gaillard J., Domenech J., Chourpa I. Efficacy and hemotoxicity of stealth doxorubicin-loaded magnetic nanovectors on breast cancer xenografts. J. Biomed. Nanotechnol. 2015;11:177–189. doi: 10.1166/jbn.2015.1920. PubMed DOI
Haddad Y., Xhaxhiu K., Kopel P., Hynek D., Zitka O., Adam V. The isolation of DNA by polycharged magnetic particles: An analysis of the interaction by zeta potential and particle size. Int. J. Mol. Sci. 2016;17:550. doi: 10.3390/ijms17040550. PubMed DOI PMC
Mahmoudi M., Sant S., Wang B., Laurent S., Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev. 2011;63:24–46. doi: 10.1016/j.addr.2010.05.006. PubMed DOI
Wu W., He Q., Jiang C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett. 2008;3:397–415. doi: 10.1007/s11671-008-9174-9. PubMed DOI PMC
Sun C., Lee J.S.H., Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008;60:1252–1265. doi: 10.1016/j.addr.2008.03.018. PubMed DOI PMC
Veiseh O., Gunn J.W., Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010;62:284–304. doi: 10.1016/j.addr.2009.11.002. PubMed DOI PMC
Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. doi: 10.1016/j.phrs.2010.01.014. PubMed DOI
LaConte L., Nitin N., Bao G. Magnetic nanoparticle probes. Mater. Today. 2005;8:32–38. doi: 10.1016/S1369-7021(05)00893-X. DOI
Shinkai M. Functional magnetic particles for medical application. J. Biosci. Bioeng. 2002;94:606–613. doi: 10.1016/S1389-1723(02)80202-X. PubMed DOI
Pankhurst Q.A., Thanh N.T.K., Jones S.K., Dobson J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009;42:224001. doi: 10.1088/0022-3727/42/22/224001. DOI
Bae K.H., Kim Y.B., Lee Y., Hwang J., Park H., Park T.G. Bioinspired synthesis and characterization of gadolinium-labeled magnetite nanoparticles for dual contrast T1- and T2-weighted magnetic resonance imaging. Bioconjug. Chem. 2010;21:505–512. doi: 10.1021/bc900424u. PubMed DOI
Dong X.L., Zhang Z.D., Xiao Q.F., Zhao X.G., Chuang Y.C., Jin S.R., Sun W.M., Li Z.J., Zheng Z.X., Yang H. Characterization of ultrafine γ-Fe(C), α-Fe(C) and Fe3C particles synthesized by arc-discharge in methane. J. Mater. Sci. 1998;33:1915–1919. doi: 10.1023/A:1004369708540. DOI
Bychkova A.V., Sorokina O.N., Rosenfeld M.A., Kovarski A.L. Multifunctional biocompatible coatings on magnetic nanoparticles. Russ. Chem. Rev. 2012;81:1026. doi: 10.1070/RC2012v081n11ABEH004280. DOI
Berry C.C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2009;42:224003. doi: 10.1088/0022-3727/42/22/224003. DOI
Yu J., Huang D.Y., Muhammad Z.Y., Hou Y.L., Gao S. Magnetic nanoparticle-based cancer therapy. Chin. Phys. B. 2013;22:027506. doi: 10.1088/1674-1056/22/2/027506. DOI
Berry C.C., Adam S.G.C. Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003;36:R198. doi: 10.1088/0022-3727/36/13/203. DOI
Lu A.H., Salabas E.L., Schüth F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007;46:1222–1244. doi: 10.1002/anie.200602866. PubMed DOI
Sun E.Y., Josephson L., Weissleder R. “Clickable” nanoparticles for targeted imaging. Mol. Imaging. 2006;5 doi: 10.2310/7290.2006.00013. PubMed DOI
Nandivada H., Jiang X., Lahann J. Click chemistry: Versatility and control in the hands of materials scientists. Adv. Mater. 2007;19:2197–2208. doi: 10.1002/adma.200602739. DOI
Kouassi G.K., Irudayaraj J. Magnetic and gold-coated magnetic nanoparticles as a DNA sensor. Anal. Chem. 2006;78:3234–3241. doi: 10.1021/ac051621j. PubMed DOI
Robinson I., Tung L.D., Maenosono S., Walti C., Thanh N.T.K. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale. 2010;2:2624–2630. doi: 10.1039/c0nr00621a. PubMed DOI
Cheng K., Yang M., Zhang R., Qin C., Su X., Cheng Z. Hybrid nanotrimers for dual T1 and T2-weighted magnetic resonance imaging. ACS Nano. 2014;8:9884–9896. doi: 10.1021/nn500188y. PubMed DOI PMC
Grasset F., Mornet S., Demourgues A., Portier J., Bonnet J., Vekris A., Duguet E. Synthesis, magnetic properties, surface modification and cytotoxicity evaluation of Y3Fe5−xAlxO12 (0 ≤ x ≤ 2) garnet submicron particles for biomedical applications. J. Magn. Magn. Mater. 2001;234:409–418. doi: 10.1016/S0304-8853(01)00386-9. DOI
Taketomi S., Ozaki Y., Kawasaki K., Yuasa S., Miyajima H. Transparent magnetic fluid: Preparation of YIG ultrafine particles. J. Magn. Magn. Mater. 1993;122:6–9. doi: 10.1016/0304-8853(93)91027-5. DOI
Grosseau P., Bachiorrini A., Guilhot B. Elaboration de poudres de yig par coprecipitation. J. Therm. Anal. 1996;46:1633–1644. doi: 10.1007/BF01980769. DOI
Vaqueiro P., Lopez-Quintela M.A., Rivas J. Synthesis of yttrium iron garnet nanoparticlesvia coprecipitation in microemulsion. J. Mater. Chem. 1997;7:501–504. doi: 10.1039/a605403j. DOI
Inoue M., Nishikawa T., Inui T. Glycothermal synthesis of rare earth iron garnets. J. Mater. Res. 1998;13:856–860. doi: 10.1557/JMR.1998.0114. DOI
Bahadur D., Sharma B., Chakravorty D. Preparation of glass-ceramics containing YIG. J. Mater. Sci. Lett. 1982;1:106–108. doi: 10.1007/BF00724721. DOI
Vaqueiro P., Arturo Lopez-quintela M. Synthesis of yttrium aluminium garnet by the citrate gel process. J. Mater. Chem. 1998;8:161–163. doi: 10.1039/a705635d. DOI
Vaqueiro P., López-Quintela M.A. Influence of complexing agents and pH on yttrium-iron garnet synthesized by the sol-Gel method. Chem. Mater. 1997;9:2836–2841. doi: 10.1021/cm970165f. DOI
Vaqueiro P., López-Quintela M.A., Rivas J., Greneche J.M. Annealing dependence of magnetic properties in nanostructured particles of yttrium iron garnet prepared by citrate gel process. J. Magn. Magn. Mater. 1997;169:56–68. doi: 10.1016/S0304-8853(96)00728-7. DOI
Suresh K., Patil K.C. Combustion synthesis and properties of Ln3Fe5O12 and yttrium aluminium garnets. J. Alloys Compd. 1994;209:203–206. doi: 10.1016/0925-8388(94)91098-7. DOI
Gubin S.P., Koksharov Y.A., Khomutov G.B., Yurkov G.Y. Magnetic nanoparticles: Preparation methods, structure and properties. Usp. Khim. 2005;74:539–574. doi: 10.1070/RC2005v074n06ABEH000897. DOI
Stanicki D., Elst L.V., Muller R.N., Laurent S. Synthesis and processing of magnetic nanoparticles. Curr. Opin. Chem. Eng. 2015;8:7–14. doi: 10.1016/j.coche.2015.01.003. DOI
Faraji M., Yamini Y., Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J. Iran. Chem. Soc. 2010;7:1–37. doi: 10.1007/BF03245856. DOI
Osaka T., Matsunaga T., Nakanishi T., Arakaki A., Niwa D., Iida H. Synthesis of magnetic nanoparticles and their application to bioassays. Anal. Bioanal. Chem. 2006;384:593–600. doi: 10.1007/s00216-005-0255-7. PubMed DOI
Hao R., Xing R., Xu Z., Hou Y., Gao S., Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv. Mater. 2010;22:2729–2742. doi: 10.1002/adma.201000260. PubMed DOI
Boal A.K. Synthesis and applications of magnetic nanoparticles. In: Rotello V., editor. Nanoparticles: Building Blocks for Nanotechnology. Springer; Boston, MA, USA: 2004. pp. 1–27.
Akbarzadeh A., Samiei M., Davaran S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012;7:144. doi: 10.1186/1556-276X-7-144. PubMed DOI PMC
Willard M.A., Kurihara L.K., Carpenter E.E., Calvin S., Harris V.G. Chemically prepared magnetic nanoparticles. Int. Mater. Rev. 2004;49:125–170. doi: 10.1179/095066004225021882. DOI
Park J., An K., Hwang Y., Park J.G., Noh H.J., Kim J.Y., Park J.H., Hwang N.M., Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004;3:891–895. doi: 10.1038/nmat1251. PubMed DOI
Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012. PubMed DOI
Laurent S., Forge D., Port M., Roch A., Robic C., Vander Elst L., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem.Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI
Wu W., Wu Z.H., Yu T., Jiang C.Z., Kim W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015;16 doi: 10.1088/1468-6996/16/2/023501. PubMed DOI PMC
Ghosh M., Biswas K., Sundaresan A., Rao C.N.R. MnO and NiO nanoparticles: Synthesis and magnetic properties. J. Mater. Chem. 2006;16:106–111. doi: 10.1039/B511920K. DOI
Yang L., Cao Z., Sajja H.K., Mao H., Wang L., Geng H., Xu H., Jiang T., Wood W.C., Nie S., et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J. Biomed. Nanotechnol. 2008;4:439–449. doi: 10.1166/jbn.2008.007. PubMed DOI PMC
Lee N., Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem. Soc. Rev. 2012;41:2575–2589. doi: 10.1039/C1CS15248C. PubMed DOI
Arbab A.S., Bashaw L.A., Miller B.R., Jordan E.K., Lewis B.K., Kalish H., Frank J.A. Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology. 2003;229:838–846. doi: 10.1148/radiol.2293021215. PubMed DOI
Pankhurst Q., Jones S., Dobson J. Applications of magnetic nanoparticles in biomedicine: The story so far. J. Phys. D Appl. Phys. 2016;49:501002. doi: 10.1088/0022-3727/49/50/501002. DOI
Gupta A.K., Wells S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci. 2004;3:66–73. doi: 10.1109/TNB.2003.820277. PubMed DOI
Charles S.W. Magnetic fluids (ferrofluids) A2. In: Dormann J.L., Fiorani D., editors. Magnetic Properties of Fine Particles. Elsevier; Amsterdam, The Netherlands: 1992. pp. 267–276.
Gupta A.K., Curtis A.S.G. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials. 2004;25:3029–3040. doi: 10.1016/j.biomaterials.2003.09.095. PubMed DOI
Reimers G.W., Khalafalla S.E. Preparing Magnetic Fluids by a Peptizing Method. U.S. Deparment of the Interior, Bureau of Mines; Washington, DC, USA: 1972. p. 13.
Sjøgren C.E., Briley-Sæbø K., Hanson M., Johansson C. Magnetic characterization of iron oxides for magnetic resonance imaging. Magn. Reson. Med. 1994;31:268–272. doi: 10.1002/mrm.1910310305. PubMed DOI
Jain T.K., Richey J., Strand M., Leslie-Pelecky D.L., Flask C.A., Labhasetwar V. Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials. 2008;29:4012–4021. doi: 10.1016/j.biomaterials.2008.07.004. PubMed DOI PMC
Stolnik S., Illum L., Davis S.S. Long circulating microparticulate drug carriers. Adv. Drug Deliv. Rev. 1995;16:195–214. doi: 10.1016/0169-409X(95)00025-3. DOI
Gurav A., Kodas T., Pluym T., Xiong Y. Aerosol processing of materials. Aerosol Sci. Technol. 1993;19:411–452. doi: 10.1080/02786829308959650. DOI
Lee C.S., Lee H., Westervelt R.M. Microelectromagnets for the control of magnetic nanoparticles. Appl. Phys. Lett. 2001;79:3308–3310. doi: 10.1063/1.1419049. DOI
Rishton S.A., Lu Y., Altman R.A., Marley A.C., Bian X.P., Jahnes C., Viswanathan R., Xiao G., Gallagher W.J., Parkin S.S.P. Magnetic tunnel junctions fabricated at tenth-micron dimensions by electron beam lithography. Microelectron. Eng. 1997;35:249–252. doi: 10.1016/S0167-9317(96)00107-4. DOI
Kennedy J., Leveneur J., Williams G.V.M., Mitchell D.R.G., Markwitz A. Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing. Nanotechnology. 2011;22:115602. doi: 10.1088/0957-4484/22/11/115602. PubMed DOI
Leveneur J., Kennedy J., Williams G.V.M., Metson J., Markwitz A. Large room temperature magnetoresistance in ion beam synthesized surface fe nanoclusters on SiO2. Appl. Phys. Lett. 2011;98 doi: 10.1063/1.3553274. DOI
Pedro T., María del Puerto M., Sabino V.V., Teresita G.C., Carlos J.S. The preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2003;36:R182.
McCarthy J.R., Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Deliv. Rev. 2008;60:1241–1251. doi: 10.1016/j.addr.2008.03.014. PubMed DOI PMC
Mornet S., Vasseur S., Grasset F., Veverka P., Goglio G., Demourgues A., Portier J., Pollert E., Duguet E. Magnetic nanoparticle design for medical applications. Prog. Solid State Chem. 2006;34:237–247. doi: 10.1016/j.progsolidstchem.2005.11.010. DOI
Wu S., Sun A., Zhai F., Wang J., Xu W., Zhang Q., Volinsky A.A. Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater. Lett. 2011;65:1882–1884. doi: 10.1016/j.matlet.2011.03.065. DOI
Hong R.Y., Pan T.T., Li H.Z. Microwave synthesis of magnetic Fe3O4 nanoparticles used as a precursor of nanocomposites and ferrofluids. J. Magn. Magn. Mater. 2006;303:60–68. doi: 10.1016/j.jmmm.2005.10.230. DOI
Patel D., Moon J.Y., Chang Y., Kim T.J., Lee G.H. Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as mri contrast agent. Colloids Surf. A Physicochem. Eng. Asp. 2008;313–314:91–94. doi: 10.1016/j.colsurfa.2007.04.078. DOI
Peng J., Zou F., Liu L., Tang L., Yu L., Chen W., Liu H., Tang J.B., Wu L.X. Preparation and characterization of PEG-PEI/Fe3O4 nano-magnetic fluid by co-precipitation method. Trans. Nonferrous Met. Soc. China. 2008;18:393–398. doi: 10.1016/S1003-6326(08)60069-2. DOI
Lee J.H., Huh Y.M., Jun Y.W., Seo J.W., Jang J.T., Song H.T., Kim S., Cho E.J., Yoon H.G., Suh J.S., et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007;13:95–99. doi: 10.1038/nm1467. PubMed DOI
Hyeon T., Chung Y., Park J., Lee S.S., Kim Y.W., Park B.H. Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals. J. Phys. Chem. B. 2002;106:6831–6833. doi: 10.1021/jp026042m. DOI
Tang Q.S., Zhang D.S., Cong X.M., Wan M.L., Jin L.Q. Using thermal energy produced by irradiation of Mn–Zn ferrite magnetic nanoparticles (MZF-NPS) for heat-inducible gene expression. Biomaterials. 2008;29:2673–2679. doi: 10.1016/j.biomaterials.2008.01.038. PubMed DOI
Hanini A., Lartigue L., Gavard J., Kacem K., Wilhelm C., Gazeau F., Chau F., Ammar S. Zinc substituted ferrite nanoparticles with Zn0.9Fe2.1O4 formula used as heating agents for in vitro hyperthermia assay on glioma cells. J. Magn. Magn. Mater. 2016;416:315–320. doi: 10.1016/j.jmmm.2016.05.016. DOI
Mandal M., Kundu S., Ghosh S.K., Panigrahi S., Sau T.K., Yusuf S.M., Pal T. Magnetite nanoparticles with tunable gold or silver shell. J. Colloid Interface Sci. 2005;286:187–194. doi: 10.1016/j.jcis.2005.01.013. PubMed DOI
Huber D.L. Synthesis, properties, and applications of iron nanoparticles. Small. 2005;1:482–501. doi: 10.1002/smll.200500006. PubMed DOI
Peng S., Wang C., Xie J., Sun S. Synthesis and stabilization of monodisperse fe nanoparticles. J. Am. Chem. Soc. 2006;128:10676–10677. doi: 10.1021/ja063969h. PubMed DOI
Qiang Y., Antony J., Sharma A., Nutting J., Sikes D., Meyer D. Iron/iron oxide core-shell nanoclusters for biomedical applications. J. Nanopart. Res. 2006;8:489–496. doi: 10.1007/s11051-005-9011-3. DOI
Sun S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Adv. Mater. 2006;18:393–403. doi: 10.1002/adma.200501464. DOI
Sun S., Murray C.B., Weller D., Folks L., Moser A. Monodisperse fept nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science. 2000;287:1989–1992. doi: 10.1126/science.287.5460.1989. PubMed DOI
Hong R., Fischer N.O., Emrick T., Rotello V.M. Surface pegylation and ligand exchange chemistry of FePt nanoparticles for biological applications. Chem. Mater. 2005;17:4617–4621. doi: 10.1021/cm0507819. DOI
Gao J., Zhang B., Gao Y., Pan Y., Zhang X., Xu B. Fluorescent magnetic nanocrystals by sequential addition of reagents in a one-pot reaction: A simple preparation for multifunctional nanostructures. J. Am. Chem. Soc. 2007;129:11928–11935. doi: 10.1021/ja0731017. PubMed DOI
Gao J., Liang G., Zhang B., Kuang Y., Zhang X., Xu B. FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 2007;129:1428–1433. doi: 10.1021/ja067785e. PubMed DOI
De La Presa P., Multigner M., Morales M.P., Rueda T., Fernández-Pinel E., Hernando A. Synthesis and characterization of FePt/Au core-shell nanoparticles. J. Magn. Magn. Mater. 2007;316:753–755. doi: 10.1016/j.jmmm.2007.03.084. DOI
Reiss G., Hutten A. Magnetic nanoparticles: Applications beyond data storage. Nat. Mater. 2005;4:725–726. doi: 10.1038/nmat1494. PubMed DOI
Bai J., Wang J.P. High-magnetic-moment core-shell-type FeCo–Au/Ag nanoparticles. Appl. Phys. Lett. 2005;87:152502. doi: 10.1063/1.2089171. DOI
Seo W.S., Lee J.H., Sun X., Suzuki Y., Mann D., Liu Z., Terashima M., Yang P.C., McConnell M.V., Nishimura D.G., et al. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 2006;5:971–976. doi: 10.1038/nmat1775. PubMed DOI
Xu H.K., Sorensen C.M., Klabunde K.J., Hadjipanayis G.C. Aerosol synthesis of gadolinium iron-garnet particles. J. Mater. Res. 1992;7:712–716. doi: 10.1557/JMR.1992.0712. DOI
Kainz Q.M., Fernandes S., Eichenseer C.M., Besostri F., Korner H., Muller R., Reiser O. Synthesis of functionalized, dispersible carbon-coated cobalt nanoparticles for potential biomedical applications. Faraday Discuss. 2014;175:27–40. doi: 10.1039/C4FD00108G. PubMed DOI
Stevenson J.P., Rutnakornpituk M., Vadala M., Esker A.R., Charles S.W., Wells S., Dailey J.P., Riffle J.S. Magnetic cobalt dispersions in poly(dimethylsiloxane) fluids. J. Magn. Magn. Mater. 2001;225:47–58. doi: 10.1016/S0304-8853(00)01227-0. DOI
Osorio-Cantillo C., Santiago-Miranda A.N., Perales-Perez O., Xin Y. Size- and phase-controlled synthesis of cobalt nanoparticles for potential biomedical applications. J. Appl. Phys. 2012;111 doi: 10.1063/1.3676620. DOI
Connolly J., St Pierre T., Rutnakornpituk M., Riffle J. Silica coating of cobal nanoparticles increases their magnetic and chemical stability for biomedical applications. Eur. Cells Mater. 2002;3:106–109.
Dailey J.P., Phillips J.P., Li C., Riffle J.S. Synthesis of silicone magnetic fluid for use in eye surgery. J. Magn. Magn. Mater. 1999;194:140–148. doi: 10.1016/S0304-8853(98)00562-9. DOI
Rutnakornpituk M., Baranauskas V., Riffle J., Connolly J., St Pierre T., Dailey J. Polysiloxane fluid dispersions of cobalt nanoparticles in silica spheres for use in ophthalmic applications. Eur. Cells Mater. 2002;3:102–105.
Vaucher S., Fielden J., Li M., Dujardin E., Mann S. Molecule-based magnetic nanoparticles: Synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett. 2002;2:225–229. doi: 10.1021/nl0156538. DOI
Sun S.H., Murray C.B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices (invited) J. Appl. Phys. 1999;85:4325–4330. doi: 10.1063/1.370357. DOI
Joubert J.C. Magnetic micro composites as vectors for bioactive agents: The state of art. Multilingue. 1997;93:70–76.
Sun X.C., Dong X.L. Magnetic properties and microstructure of carbon encapsulated Ni nanoparticles and pure Ni nanoparticles coated with NiO layer. Mater. Res. Bull. 2002;37:991–1004. doi: 10.1016/S0025-5408(02)00702-X. DOI
Zhou W., Zheng K., He L., Wang R.M., Guo L., Chen C.P., Han X., Zhang Z. Ni/Ni3C core-shell nanochains and its magnetic properties: One-step synthesis at low temperature. Nano Lett. 2008;8:1147–1152. doi: 10.1021/nl073291j. PubMed DOI
Rinaldi-Montes N., Gorria P., Martinez-Blanco D., Amghouz Z., Fuertes A.B., Barquin L.F., De Pedro I., Olivi L., Blanco J.A. Unravelling the onset of the exchange bias effect in Ni(core)@NiO(shell) nanoparticles embedded in a mesoporous carbon matrix. J. Mater. Chem. C. 2015;3:5674–5682. doi: 10.1039/C5TC01095K. DOI
Liu S.F., Wu C.Y., Han X.Z. Preparation of nanoscale nio powders by polymer-network gel process. Chin. J. Inorg. Chem. 2003;19:624–626.
Liu K.C., Anderson M.A. Porous nickel oxide/nickel films for electrochemical capacitors. J. Electrochem. Soc. 1996;143:124–130. doi: 10.1149/1.1836396. DOI
Deki S., Yanagimoto H., Hiraoka S., Akamatsu K., Gotoh K. NH2-terminated poly(ethylene oxide) containing nanosized NiO particles: Synthesis, characterization, and structural considerations. Chem. Mater. 2003;15:4916–4922. doi: 10.1021/cm021754a. DOI
Xiang L., Deng X.Y., Jin Y. Experimental study on synthesis of NiO nano-particles. Scr. Mater. 2002;47:219–224. doi: 10.1016/S1359-6462(02)00108-2. DOI
Rahal H.T., Awad R., Abdel-Gaber A.M., Bakeer D.E.S. Synthesis, characterization, and magnetic properties of pure and EDTA-capped NiO nanosized particles. J. Nanomater. 2017;2017:9. doi: 10.1155/2017/7460323. DOI
Rahdar A., Aliahmad M., Azizi Y. NiO nanoparticles: Synthesis and characterization. J. Nanostruct. 2015;5:145–151.
Safarikova M., Safarik I. Magnetic solid-phase extraction. J. Magn. Magn. Mater. 1999;194:108–112. doi: 10.1016/S0304-8853(98)00566-6. DOI
Towler P.H., Smith J.D., Dixon D.R. Magnetic recovery of radium, lead and polonium from seawater samples after preconcentration on a magnetic adsorbent of manganese dioxide coated magnetite. Anal. Chim. Acta. 1996;328:53–59. doi: 10.1016/0003-2670(96)00080-3. DOI
Wondracek M.H.P., Jorgetto A.O., Silva A.C.P., Ivassechen J.D., Schneider J.F., Saeki M.J., Pedrosa V.A., Yoshito W.K., Colauto F., Ortiz W.A., et al. Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole and its application as Cu(II) adsorbent from aqueous samples. Appl. Surf. Sci. 2016;367:533–541. doi: 10.1016/j.apsusc.2016.01.172. DOI
Li J., Chen C.L., Zhao Y., Hu J., Shao D.D., Wang X.K. Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment. Chem. Eng. J. 2013;229:296–303. doi: 10.1016/j.cej.2013.06.016. DOI
Zong P.F., Gou J.Y. Rapid and economical synthesis of magnetic multiwalled carbon nanotube/iron oxide composite and its application in preconcentration of U(VI) J. Mol. Liq. 2014;195:92–98. doi: 10.1016/j.molliq.2014.02.002. DOI
Gatabi M.P., Moghaddam H.M., Ghorbani M. Efficient removal of cadmium using magnetic multiwalled carbon nanotube nanoadsorbents: Equilibrium, kinetic, and thermodynamic study. J. Nanopart. Res. 2016;18:189. doi: 10.1007/s11051-016-3487-x. DOI
Chen B., Zhu Z.L., Ma J., Yang M.X., Hong J., Hu X.H., Qiu Y.L., Chen J.H. One-pot, solid-phase synthesis of magnetic multiwalled carbon nanotube/iron oxide composites and their application in arsenic removal. J. Colloid Interface Sci. 2014;434:9–17. doi: 10.1016/j.jcis.2014.07.046. PubMed DOI
Gouda A.A., Al Ghannam S.M. Impregnated multiwalled carbon nanotubes as efficient sorbent for the solid phase extraction of trace amounts of heavy metal ions in food and water samples. Food Chem. 2016;202:409–416. doi: 10.1016/j.foodchem.2016.02.006. PubMed DOI
Bagheri H., Asgharinezhad A.A., Ebrahimzadeh H. Determination of trace amounts of Cd(II), Cu(II), and Ni(II) in food samples using a novel functionalized magnetic nanosorbent. Food Anal. Methods. 2016;9:876–888. doi: 10.1007/s12161-015-0264-x. DOI
Soylak M., Topalak Z. Multiwalled carbon nanotube impregnated with tartrazine: Solid phase extractant for Cd(II) and Pb(II) J. Ind. Eng. Chem. 2014;20:581–585. doi: 10.1016/j.jiec.2013.05.017. DOI
Anbia M., Kargosha K., Khoshbooei S. Heavy metal ions removal from aqueous media by modified magnetic mesoporous silica MCM-48. Chem. Eng. Res. Des. 2015;93:779–788. doi: 10.1016/j.cherd.2014.07.018. DOI
Yen C.H., Lien H.L., Chung J.S., Yeh H.D. Adsorption of precious metals in water by dendrimer modified magnetic nanoparticles. J. Hazard. Mater. 2017;322:215–222. doi: 10.1016/j.jhazmat.2016.02.029. PubMed DOI
Chou C.M., Lien H.L. Dendrimer-conjugated magnetic nanoparticles for removal of zinc (II) from aqueous solutions. J. Nanopart. Res. 2011;13:2099–2107. doi: 10.1007/s11051-010-9967-5. DOI
Khan M.A., Alam M.M., Naushad M., Alothman Z.A., Kumar M., Ahamad T. Sol-gel assisted synthesis of porous nano-crystalline CoFe2O4 composite and its application in the removal of brilliant blue-R from aqueous phase: An ecofriendly and economical approach. Chem. Eng. J. 2015;279:416–424. doi: 10.1016/j.cej.2015.05.042. DOI
Ramandi N.F., Shemirani F. Surfacted ferrofluid based dispersive solid phase extraction; a novel approach to preconcentration of cationic dye in shrimp and water samples. Food Chem. 2015;185:398–404. doi: 10.1016/j.foodchem.2015.03.042. PubMed DOI
Shahri F.B., Niazi A. Synthesis of modified maghemite nanoparticles and its application for removal of acridine orange from aqueous solutions by using Box-Behnken design. J. Magn. Magn. Mater. 2015;396:318–326. doi: 10.1016/j.jmmm.2015.08.054. DOI
Zhao Y., Chen H.L., Li J., Chen C.L. Hierarchical MWCNTs/Fe3O4/PANI magnetic composite as adsorbent for methyl orange removal. J. Colloid Interface Sci. 2015;450:189–195. doi: 10.1016/j.jcis.2015.03.015. PubMed DOI
Tolmacheva V.V., Apyari V.V., Furletov A.A., Dmitrienko S.G., Zolotov Y.A. Facile synthesis of magnetic hypercrosslinked polystyrene and its application in the magnetic solid-phase extraction of sulfonamides from water and milk samples before their HPLC determination. Talanta. 2016;152:203–210. doi: 10.1016/j.talanta.2016.02.010. PubMed DOI
Sukchuay T., Kanatharana P., Wannapob R., Thavarungkul P., Bunkoed O. Polypyrrole/silica/magnetite nanoparticles as a sorbent for the extraction of sulfonamides from water samples. J. Sep. Sci. 2015;38:3921–3927. doi: 10.1002/jssc.201500766. PubMed DOI
Tolmacheva V.V., Apyari V.V., Ibragimova B.N., Kochuk E.V., Dmitrienko S.G., Zolotov Y.A. A polymeric magnetic adsorbent based on Fe3O4 nanoparticles and hypercrosslinked polystyrene for the preconcentration of tetracycline antibiotics. J. Anal. Chem. 2015;70:1313–1321. doi: 10.1134/S1061934815110155. DOI
Niu M.C., Chuong P.H., He H. Core-shell nanoparticles coated with molecularly imprinted polymers: A review. Microchim. Acta. 2016;183:2677–2695. doi: 10.1007/s00604-016-1930-4. DOI
Wei S.L., Li J.W., Liu Y., Ma J.K. Development of magnetic molecularly imprinted polymers with double templates for the rapid and selective determination of amphenicol antibiotics in water, blood, and egg samples. J. Chromatogr. A. 2016;1473:19–27. doi: 10.1016/j.chroma.2016.10.067. PubMed DOI
Gao R.X., Cui X.H., Hao Y., Zhang L.L., Liu D.C., Tang Y.H. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17 β-estradiol in milk. Food Chem. 2016;194:1040–1047. doi: 10.1016/j.foodchem.2015.08.112. PubMed DOI
Dai J.D., Zhou Z.P., Zhao C.Y., Wei X., Dai X.H., Gao L., Cao Z.J., Yan Y.S. Versatile method to obtain homogeneous imprinted polymer thin film at surface of superparamagnetic nanoparticles for tetracycline binding. Ind. Eng. Chem. Res. 2014;53:7157–7166. doi: 10.1021/ie404140y. DOI
Wang J., Chen Z.Y., Li Z.M., Yang Y.L. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples. Food Chem. 2016;204:135–140. doi: 10.1016/j.foodchem.2016.02.016. PubMed DOI
Safdarian M., Ramezani Z., Ghadiri A.A. Facile synthesis of magnetic molecularly imprinted polymer: Perphenazine template and its application in urine and plasma analysis. J. Chromatogr. A. 2016;1455:28–36. doi: 10.1016/j.chroma.2016.05.083. PubMed DOI
Xie X.Y., Chen L., Pan X.Y., Wang S.C. Synthesis of magnetic molecularly imprinted polymers by reversible addition fragmentation chain transfer strategy and its application in the sudan dyes residue analysis. J. Chromatogr. A. 2015;1405:32–39. doi: 10.1016/j.chroma.2015.05.068. PubMed DOI
Li S.H., Xu M.Z., Wu X.J., Luo J.H. Synergetic recognition and separation of kelthane and pyridaben base on magnetic molecularly imprinted polymer nanospheres. J. Sep. Sci. 2016;39:4019–4026. doi: 10.1002/jssc.201600699. PubMed DOI
Green M.R., Sambrook J. Molecular Cloning. 4th ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2012.
Li X., Zhang J.X., Gu H.C. Adsorption and desorption behaviors of DNA with magnetic mesoporous silica nanoparticles. Langmuir. 2011;27:6099–6106. doi: 10.1021/la104653s. PubMed DOI
Vandeventer P.E., Lin J.S., Zwang T.J., Nadim A., Johal M.S., Niemz A. Multiphasic DNA adsorption to silica surfaces under varying buffer, pH, and ionic strength conditions. J. Phys. Chem. B. 2012;116:5661–5670. doi: 10.1021/jp3017776. PubMed DOI PMC
Sheng W., Wei W., Li J.J., Qi X.L., Zuo G.C., Chen Q., Pan X.H., Dong W. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation. Appl. Surf. Sci. 2016;387:1116–1124. doi: 10.1016/j.apsusc.2016.07.061. DOI
Bai Y.L., Cui Y., Paoli G.C., Shi C.L., Wang D.P., Zhou M., Zhang L.D., Shi X.M. Synthesis of amino-rich silica-coated magnetic nanoparticles for the efficient capture of DNA for PCR. Colloid Surf. B Biointerfaces. 2016;145:257–266. doi: 10.1016/j.colsurfb.2016.05.003. PubMed DOI
Lee H., Hwang N.R., Hwang S.H., Cho Y. Magnetic nanowires for rapid and ultrasensitive isolation of DNA from cervical specimens for the detection of multiple human papillomaviruses genotypes. Biosens. Bioelectron. 2016;86:864–870. doi: 10.1016/j.bios.2016.07.066. PubMed DOI
Kudr J., Nejdl L., Skalickova S., Zurek M., Milosavljevic V., Kensova R., Ruttkay-Nedecky B., Kopel P., Hynek D., Novotna M., et al. Use of nucleic acids anchor system to reveal apoferritin modification by cadmium telluride nanoparticles. J. Mater. Chem. B. 2015;3:2109–2118. doi: 10.1039/C4TB01336K. PubMed DOI
Dai S.L., Wu S.J., Duan N., Wang Z.P. A near-infrared magnetic aptasensor for ochratoxin a based on near-infrared upconversion nanoparticles and magnetic nanoparticles. Talanta. 2016;158:246–253. doi: 10.1016/j.talanta.2016.05.063. PubMed DOI
Adams N.M., Bordelon H., Wang K.K.A., Albert L.E., Wright D.W., Haselton F.R. Comparison of three magnetic bead surface functionalities for RNA extraction and detection. ACS Appl. Mater. Interfaces. 2015;7:6062–6069. doi: 10.1021/am506374t. PubMed DOI
Tarigh G.D., Shemirani F. Simultaneous in situ derivatization and ultrasound-assisted dispersive magnetic solid phase extraction for thiamine determination by spectrofluorimetry. Talanta. 2014;123:71–77. doi: 10.1016/j.talanta.2014.01.045. PubMed DOI
Chen H.M., Deng C.H., Li Y., Dai Y., Yang P.Y., Zhang X.M. A facile synthesis approach to C-8-functionalized magnetic carbonaceous polysaccharide microspheres for the highly efficient and rapid enrichment of peptides and direct maldi-tof-ms analysis. Adv. Mater. 2009;21:2200–2205. doi: 10.1002/adma.200802260. DOI
Zhang B., Xie M.H., Bruschweiler-Li L., Bruschweiler R. Nanoparticle-assisted removal of protein in human serum for metabolomics studies. Anal. Chem. 2016;88:1003–1007. doi: 10.1021/acs.analchem.5b03889. PubMed DOI PMC
Cheng G., Zhou M.D., Zheng S.Y. Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides. ACS Appl. Mater. Interfaces. 2014;6:12719–12728. doi: 10.1021/am502712a. PubMed DOI PMC
Horak D., Hlidkova H., Hiraoui M., Taverna M., Proks V., Mazl Chanova E., Smadja C., Kucerova Z. Monodisperse carboxyl-functionalized poly(ethylene glycol)-coated magnetic poly(glycidyl methacrylate) microspheres: Application to the immunocapture of β-amyloid peptides. Macromol. Biosci. 2014;14:1590–1599. doi: 10.1002/mabi.201400249. PubMed DOI
Yang S., Zhang X., Zhao W.T., Sun L.Q., Luo A.Q. Preparation and evaluation of Fe3O4 nanoparticles incorporated molecularly imprinted polymers for protein separation. J. Mater. Sci. 2016;51:937–949. doi: 10.1007/s10853-015-9423-0. DOI
Qi X.Y., Chen L., Zhang C.Q., Xu X.Y., Zhang Y.D., Bai Y., Liu H.W. NiCoMnO4: A bifunctional affinity probe for his-tagged protein purification and phosphorylation sites recognition. ACS Appl. Mater. Interfaces. 2016;8:18675–18683. doi: 10.1021/acsami.6b04280. PubMed DOI
Rashid Z., Naeimi H., Zarnani A.H., Nazari M., Nejadmoghaddam M.R., Ghahremanzadeh R. Fast and highly efficient purification of 6×histidine-tagged recombinant proteins by Ni-decorated MnFe2O4@SiO2@NH2@2AB as novel and efficient affinity adsorbent magnetic nanoparticles. RSC Adv. 2016;6:36840–36848. doi: 10.1039/C5RA25949E. DOI
Meisenbichler C., Rauch J.S., Guzel Y., Wernig E.M., Schemeth D., Tribus M., Tessadri R., Rainer M. Development of magnetic ytterbium oxide core-shell particles for selectively trapping phosphopeptides. Anal. Methods. 2016;8:3061–3068. doi: 10.1039/C5AY03423J. DOI
Ma X.D., Ding C., Yao X., Jia L. Ethylene glycol assisted preparation of Ti4+-modified polydopamine coated magnetic particles with rough surface for capture of phosphorylated proteins. Anal. Chim. Acta. 2016;929:23–30. doi: 10.1016/j.aca.2016.04.058. PubMed DOI
Liu J.X., Yang K.G., Shao W.Y., Qu Y.Y., Li S.W., Wu Q., Zhang L.H., Zhang Y.K. Boronic acid-functionalized particles with flexible three-dimensional polymer branch for highly specific recognition of glycoproteins. ACS Appl. Mater. Interfaces. 2016;8:9552–9556. doi: 10.1021/acsami.6b01829. PubMed DOI
Caragata M., Shah A.K., Schulz B.L., Hill M.M., Punyadeera C. Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays. Anal. Biochem. 2016;497:76–82. doi: 10.1016/j.ab.2015.11.024. PubMed DOI
Li J.N., Wang F.J., Wan H., Liu J., Liu Z.Y., Cheng K., Zou H.F. Magnetic nanoparticles coated with maltose-functionalized polyethyleneimine for highly efficient enrichment of N-glycopeptides. J. Chromatogr. A. 2015;1425:213–220. doi: 10.1016/j.chroma.2015.11.044. PubMed DOI
Zhao X.C., Wang L., Sun J., Jiang B.W., Zhang E.L., Ye J. Isolating sperm from cell mixtures using magnetic beads coupled with an anti-pH-20 antibody for forensic DNA analysis. PLoS ONE. 2016;11:e0159401. doi: 10.1371/journal.pone.0159401. PubMed DOI PMC
Zhu Y.D., Qiao L., Prudent M., Bondarenko A., Gasilova N., Moller S.B., Lion N., Pick H., Gong T.Q., Chen Z.X., et al. Sensitive and fast identification of bacteria in blood samples by immunoaffinity mass spectrometry for quick BSI diagnosis. Chem. Sci. 2016;7:2987–2995. doi: 10.1039/C5SC04919A. PubMed DOI PMC
Nanduri V., Sorokulova I.B., Samoylov A.M., Simonian A.L., Petrenko V.A., Vodyanoy V. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 2007;22:986–992. doi: 10.1016/j.bios.2006.03.025. PubMed DOI
Chen J.H., Duncan B., Wang Z.Y., Wang L.S., Rotello V.M., Nugen S.R. Bacteriophage-based nanoprobes for rapid bacteria separation. Nanoscale. 2015;7:16230–16236. doi: 10.1039/C5NR03779D. PubMed DOI
Liu T.Y., Tsai K.T., Wang H.H., Chen Y., Chen Y.H., Chao Y.C., Chang H.H., Lin C.H., Wang J.K., Wang Y.L. Functionalized arrays of raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2011;2:538. doi: 10.1038/ncomms1546. PubMed DOI
Hasan N., Guo Z.X., Wu H.F. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles. Anal. Bioanal. Chem. 2016;408:6269–6281. doi: 10.1007/s00216-016-9730-6. PubMed DOI
Carreira S.C., Spencer J., Schwarzacher W., Seddon A.M. Cationized magnetoferritin enables rapid labeling and concentration of gram-positive and gram-negative bacteria in magnetic cell separation columns. Appl. Environ. Microbiol. 2016;82:3599–3604. doi: 10.1128/AEM.00720-16. PubMed DOI PMC
Du X.W., Zhou J., Wu L.H., Sun S.H., Xu B. Enzymatic transformation of phosphate decorated magnetic nanoparticles for selectively sorting and inhibiting cancer cells. Bioconjugate Chem. 2014;25:2129–2133. doi: 10.1021/bc500516g. PubMed DOI PMC
Millan J.L., Fishman W.H. Biology of human alkaline-phosphatases with special reference ts cancer. Crit. Rev. Clin. Lab. Sci. 1995;32:1–39. doi: 10.3109/10408369509084680. PubMed DOI
Kashevsky B.E., Zholud A.M., Kashevsky S.B. Hydrodynamic instability in a magnetically driven suspension of paramagnetic red blood cells. Soft Matter. 2015;11:6547–6551. doi: 10.1039/C5SM01311A. PubMed DOI
Tajer-Mohammad-Ghazvini P., Kasra-Kermanshahi R., Nozad-Golikand A., Sadeghizadeh M., Ghorbanzadeh-Mashkani S., Dabbagh R. Cobalt separation by alphaproteobacterium MTB-KTN90: Magnetotactic bacteria in bioremediation. Bioprocess Biosyst. Eng. 2016;39:1899–1911. doi: 10.1007/s00449-016-1664-z. PubMed DOI
Lin R., Li Y.C., MacDonald T., Wu H., Provenzale J., Peng X.G., Huang J., Wang L.Y., Wang A.Y., Yang J.Y., et al. Improving sensitivity and specificity of capturing and detecting targeted cancer cells with anti-biofouling polymer coated magnetic iron oxide nanoparticles. Colloid Surf. B Biointerfaces. 2017;150:261–270. doi: 10.1016/j.colsurfb.2016.10.026. PubMed DOI PMC
Rocha-Santos T.A.P. Sensors and biosensors based on magnetic nanoparticles. TrAC Trends Anal. Chem. 2014;62:28–36. doi: 10.1016/j.trac.2014.06.016. DOI
Hsing I.M., Xu Y., Zhao W.T. Micro- and nano-magnetic particles for applications in biosensing. Electroanalysis. 2007;19:755–768. doi: 10.1002/elan.200603785. DOI
Schrittwieser S., Pelaz B., Parak W.J., Lentijo-Mozo S., Soulantica K., Dieckhoff J., Ludwig F., Guenther A., Tschope A., Schotter J. Homogeneous biosensing based on magnetic particle labels. Sensors. 2016;16:828. doi: 10.3390/s16060828. PubMed DOI PMC
Cancar H.D., Soylemez S., Akpinar Y., Kesik M., Goker S., Gunbas G., Volkan M., Toppare L. A novel acetylcholinesterase biosensor: Core-shell magnetic nanoparticles incorporating a conjugated polymer for the detection of organophosphorus pesticides. ACS Appl. Mater. Interfaces. 2016;8:8058–8067. doi: 10.1021/acsami.5b12383. PubMed DOI
Darvesh S., Darvesh K.V., McDonald R.S., Mataija D., Walsh R., Mothana S., Lockridge O., Martin E. Carbamates with differential mechanism of inhibition toward acetylcholinesterase and butyrylcholinesterase. J. Med. Chem. 2008;51:4200–4212. doi: 10.1021/jm8002075. PubMed DOI
Lang Q.L., Han L., Hou C.T., Wang F., Liu A.H. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta. 2016;156:34–41. doi: 10.1016/j.talanta.2016.05.002. PubMed DOI
Sarkar T., Rawat K., Bohidar H.B., Solanki P.R. Electrochemical immunosensor based on PEG capped iron oxide nanoparticles. J. Electroanal. Chem. 2016;783:208–216. doi: 10.1016/j.jelechem.2016.11.019. DOI
Leonardo S., Campas M. Electrochemical enzyme sensor arrays for the detection of the biogenic amines histamine, putrescine and cadaverine using magnetic beads as immobilisation supports. Microchim. Acta. 2016;183:1881–1890. doi: 10.1007/s00604-016-1821-8. DOI
Carinelli S., Ballesteros C.X., Marti M., Alegret S., Pividori M.I. Electrochemical magneto-actuated biosensor for CD4 count in aids diagnosis and monitoring. Biosens. Bioelectron. 2015;74:974–980. doi: 10.1016/j.bios.2015.07.053. PubMed DOI
Liu X., Hu Y.X., Zheng S., Liu Y., He Z., Luo F. Surface plasmon resonance immunosensor for fast, highly sensitive, and in situ detection of the magnetic nanoparticles-enriched salmonella enteritidis. Sens. Actuators B Chem. 2016;230:191–198. doi: 10.1016/j.snb.2016.02.043. DOI
Otieno B.A., Krause C.E., Jones A.L., Kremer R.B., Rusling J.F. Cancer diagnostics via ultrasensitive multiplexed detection of parathyroid hormone-related peptides with a microfluidic immunoarray. Anal. Chem. 2016;88:9269–9275. doi: 10.1021/acs.analchem.6b02637. PubMed DOI PMC
Iranifam M. Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. TrAC Trends Anal. Chem. 2013;51:51–70. doi: 10.1016/j.trac.2013.05.014. DOI
He Y.Z., Sun J., Wang X.X., Wang L. Detection of human leptin in serum using chemiluminescence immunosensor: Signal amplification by hemin/G-quadruplex DNAzymes and protein carriers by Fe3O4/polydopamine/Au nanocomposites. Sens. Actuators B Chem. 2015;221:792–798. doi: 10.1016/j.snb.2015.07.022. DOI
Fischer B., Huke B., Lucke M., Hempelmann R. Brownian relaxation of magnetic colloids. J. Magn. Magn. Mater. 2005;289:74–77. doi: 10.1016/j.jmmm.2004.11.021. DOI
Fock J., Parmvi M., Stromberg M., Svedlindh P., Donolato M., Hansen M.F. Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein. Biosens. Bioelectron. 2017;88:94–100. doi: 10.1016/j.bios.2016.07.088. PubMed DOI
Gao L.Z., Zhuang J., Nie L., Zhang J.B., Zhang Y., Gu N., Wang T.H., Feng J., Yang D.L., Perrett S., et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007;2:577–583. doi: 10.1038/nnano.2007.260. PubMed DOI
Wei H., Wang E. Fe3O4 magnetic nanoparticles as peroxidase mimetics and their applications in H2O2 and glucose detection. Anal. Chem. 2008;80:2250–2254. doi: 10.1021/ac702203f. PubMed DOI
Martinkova P., Opatrilova R., Kruzliak P., Styriak I., Pohanka M. Colorimetric glucose assay based on magnetic particles having pseudo-peroxidase activity and immobilized glucose oxidase. Mol. Biotechnol. 2016;58:373–380. doi: 10.1007/s12033-016-9936-z. PubMed DOI
Khun K., Ibupoto Z.H., Lu J., AlSalhi M.S., Atif M., Ansari A.A., Willander M. Potentiometric glucose sensor based on the glucose oxidase immobilized iron ferrite magnetic particle/chitosan composite modified gold coated glass electrode. Sens. Actuators B Chem. 2012;173:698–703. doi: 10.1016/j.snb.2012.07.074. DOI
Issa B., Obaidat I.M., Albiss B.A., Haik Y. Magnetic nanoparticles: Surface effects and properties related to biomedicine applications. Int. J. Mol. Sci. 2013;14:21266–21305. doi: 10.3390/ijms141121266. PubMed DOI PMC
Wust P., Hildebrandt B., Sreenivasa G., Rau B., Gellermann J., Riess H., Felix R., Schlag P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3:487–497. doi: 10.1016/S1470-2045(02)00818-5. PubMed DOI
Milleron R.S., Bratton S.B. “Heated” debates in apoptosis. Cell. Mol. Life Sci. 2007;64:2329–2333. doi: 10.1007/s00018-007-7135-6. PubMed DOI PMC
Huff T.B., Tong L., Zhao Y., Hansen M.N., Cheng J.X., Wei A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine. 2007;2:125–132. doi: 10.2217/17435889.2.1.125. PubMed DOI PMC
Larumbe S., Gomez-Polo C., Perez-Landazabal J.I., Pastor J.M. Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. J. Phys. Condes. Matter. 2012;24:266007. doi: 10.1088/0953-8984/24/26/266007. PubMed DOI
Simeonidis K., Morales M.P., Marciello M., Angelakeris M., De La Presa P., Lazaro-Carrillo A., Tabero A., Villanueva A., Chubykalo-Fesenko O., Serantes D. In-situ particles reorientation during magnetic hyperthermia application: Shape matters twice. Sci. Rep. 2016;6:38382. doi: 10.1038/srep38382. PubMed DOI PMC
Sanz B., Calatayud M.P., Torres T.E., Fanarraga M.L., Ibarra M.R., Goya G.F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials. 2017;114:62–70. doi: 10.1016/j.biomaterials.2016.11.008. PubMed DOI
Das R., Rinaldi-Montes N., Alonso J., Amghouz Z., Garaio E., Garcia J.A., Gorria P., Blanco J.A., Phan M.H., Srikanth H. Boosted hyperthermia therapy by combined AC magnetic and photothermal exposures in Ag/Fe3O4 nanoflowers. ACS Appl. Mater. Interfaces. 2016;8:25162–25169. doi: 10.1021/acsami.6b09942. PubMed DOI
Lai J.J., Lai W.R., Chen C.Y., Chen S.W., Chiang C.L. Multifunctional magnetic plasmonic nanoparticles for applications of magnetic/photo-thermal hyperthermia and surface enhanced raman spectroscopy. J. Magn. Magn. Mater. 2013;331:204–207. doi: 10.1016/j.jmmm.2012.11.051. DOI
Balasubramanian S., Girija A.R., Nagaoka Y., Fukuda T., Iwai S., Kizhikkilot V., Kato K., Maekawa T., Nair S.D. An “all in one” approach for simultaneous chemotherapeutic, photothermal and magnetic hyperthermia mediated by hybrid magnetic nanoparticles. RSC Adv. 2015;5:25066–25078. doi: 10.1039/C5RA00168D. DOI
Verstappen C.C.P., Heimans J.J., Hoekman K., Postma T.J. Neurotoxic complications of chemotherapy in patients with cancer: Clinical signs and optimal management. Drugs. 2003;63:1549–1563. doi: 10.2165/00003495-200363150-00003. PubMed DOI
Del Pino P., Pelaz B., Zhang Q., Maffre P., Nienhaus G.U., Parak W.J. Protein corona formation around nanoparticles—From the past to the future. Mater. Horiz. 2014;1:301–313. doi: 10.1039/C3MH00106G. DOI
Nissinen T., Nakki S., Laakso H., Kuciauskas D., Kaupinis A., Kettunen M.I., Liimatainen T., Hyvonen M., Valius M., Grohn O., et al. Tailored dual pegylation of inorganic porous nanocarriers for extremely long blood circulation in vivo. ACS Appl. Mater. Interfaces. 2016;8:32723–32731. doi: 10.1021/acsami.6b12481. PubMed DOI
Karimi Z., Karimi L., Shokrollahi H. Nano-magnetic particles used in biomedicine: Core and coating materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2013;33:2465–2475. doi: 10.1016/j.msec.2013.01.045. PubMed DOI
McBain S.C., Griesenbach U., Xenariou S., Keramane A., Batich C.D., Alton E., Dobson J. Magnetic nanoparticles as gene delivery agents: Enhanced transfection in the presence of oscillating magnet arrays. Nanotechnology. 2008;19:405102. doi: 10.1088/0957-4484/19/40/405102. PubMed DOI
Patil R.M., Shete P.B., Thorat N.D., Otari S.V., Barick K.C., Prasad A., Ningthoujam R.S., Tiwale B.M., Pawar S.H. Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility. J. Magn. Magn. Mater. 2014;355:22–30. doi: 10.1016/j.jmmm.2013.11.033. DOI
Sattarahmady N., Azarpira N., Hosseinpour A., Heli H., Zare T. Albumin coated arginine-capped magnetite nanoparticles as a paclitaxel vehicle: Physicochemical characterizations and in vitro evaluation. J. Drug Deliv. Sci. Technol. 2016;36:68–74. doi: 10.1016/j.jddst.2016.07.004. DOI
Huang Y.P., Mao K.L., Zhang B.L., Zhao Y.Z. Superparamagnetic iron oxide nanoparticles conjugated with folic acid for dual target-specific drug delivery and mri in cancer theranostics. Mater. Sci. Eng. C Mater. Biol. Appl. 2017;70:763–771. doi: 10.1016/j.msec.2016.09.052. PubMed DOI
Li L., Zhang R., Guo Y., Zhang C., Zhao W., Xu Z.P., Whittaker A.K. Functional magnetic porous silica for T1-T2 dual-modal magnetic resonance imaging and pH-responsive drug delivery of basic drugs. Nanotechnology. 2016;27:485702. doi: 10.1088/0957-4484/27/48/485702. PubMed DOI
Yin P.T., Shah B.P., Lee K.B. Combined magnetic nanoparticle-based microrna and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small. 2014;10:4106–4112. doi: 10.1002/smll.201400963. PubMed DOI PMC
Miyagawa T., Saito H., Minamiya Y., Mitobe K., Takashima S., Takahashi N., Ito A., Imai K., Motoyama S., Ogawa J. Inhibition of Hsp90 and 70 sensitizes melanoma cells to hyperthermia using ferromagnetic particles with a low curie temperature. Int. J. Clin. Oncol. 2014;19:722–730. doi: 10.1007/s10147-013-0606-x. PubMed DOI
Chen Y.J., Gu H.C., Zhang D.S.Z., Li F., Liu T.Y., Xia W.L. Highly effective inhibition of lung cancer growth and metastasis by systemic delivery of siRNA via multimodal mesoporous silica-based nanocarrier. Biomaterials. 2014;35:10058–10069. doi: 10.1016/j.biomaterials.2014.09.003. PubMed DOI
Arami H., Khandhar A., Liggitt D., Krishnan K.M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 2015;44:8576–8607. doi: 10.1039/C5CS00541H. PubMed DOI PMC
Iatridi Z., Vamvakidis K., Tsougos I., Vassiou K., Dendrinou-Samara C., Bokias G. Multifunctional polymeric platform of magnetic ferrite colloidal superparticles for luminescence, imaging, and hyperthermia applications. ACS Appl. Mater. Interfaces. 2016;8:35059–35070. doi: 10.1021/acsami.6b13161. PubMed DOI
Yang Y., Guo Q.F., Peng J.R., Su J., Lu X.L., Zhao Y.X., Qian Z.Y. Doxorubicin-conjugated heparin-coated superparamagnetic iron oxide nanoparticles for combined anticancer drug delivery and magnetic resonance imaging. J. Biomed. Nanotechnol. 2016;12:1963–1974. doi: 10.1166/jbn.2016.2298. PubMed DOI
COVID-19: A challenge for electrochemical biosensors