Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide

. 2019 Mar 18 ; 24 (6) : . [epub] 20190318

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30889907

Grantová podpora
CEITEC 2020 (LQ 1601) Central European Institute of Technology
IP 20/2017 IGA MENDELU

The removal of selenium from superficial and waste water is a worldwide problem. The maximum limit according to the World Health Organization (WHO) for the selenium in the water is set at a concentration of 10 μg/L. Carbon based adsorbents have attracted much attention and recently demonstrated promising performance in removal of selenium. In this work, several materials (iron oxide based microparticles and graphene oxides materials) and their composites were prepared to remove Se(IV) from water. The graphene oxides were prepared according to the simplified Hummer's method. In addition, the effect of pH, contact time and initial Se(IV) concentration was tested. An electrochemical method such as the differential pulse cathodic stripping voltammetry was used to determine the residual selenium concentration. From the experimental data, Langmuir adsorption model was used to calculate the maximum adsorption capacity. Graphene oxide particles modified by iron oxide based microparticles was the most promising material for the removal of Se(IV) from its aqueous solution at pH 2.0. Its adsorption efficiency reached more than 90% for a solution with given Se(IV) concentration, meanwhile its maximal recorded adsorption capacity was 18.69 mg/g.

Zobrazit více v PubMed

Jamil M., Zia M.S., Qasim M. Contamination of Agro-Ecosystem and Human Health Hazards from Wastewater used for Irrigation. J. Chem. Soc. Pak. 2010;32:370–378.

Khan S., Cao Q., Zheng Y.M., Huang Y.Z., Zhu Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008;152:686–692. doi: 10.1016/j.envpol.2007.06.056. PubMed DOI

Singh A., Sharma R.K., Agrawal M., Marshall F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010;48:611–619. doi: 10.1016/j.fct.2009.11.041. PubMed DOI

Schomburg L., Schweizer U., Kohrle J. Selenium and selenoproteins in mammals: Extraordinary, essential, enigmatic. Cell. Mol. Life Sci. 2004;61:1988–1995. doi: 10.1007/s00018-004-4114-z. PubMed DOI PMC

Underwood E.J., Suttle N.F. The Mineral Nutrition of Livestock. CABI Publishing; Wallingford, UK: New York, NY, USA: 1999.

Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules. 2013;18:3292–3311. doi: 10.3390/molecules18033292. PubMed DOI PMC

Vinceti M., Dennert G., Crespi C.M., Zwahlen M., Brinkman M., Zeegers M.P.A., Horneber M., D’Amico R., Del Giovane C. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2014;3:CD005195. doi: 10.1002/14651858.CD005195.pub3. PubMed DOI PMC

Brown K.M., Arthur J. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001;4:593–599. doi: 10.1079/PHN2001143. PubMed DOI

Gromadzinska J., Reszka E., Bruzelius K., Wasowicz W., Akesson B. Selenium and cancer: Biomarkers of selenium status and molecular action of selenium supplements. Eur. J. Nutr. 2008;47:29–50. doi: 10.1007/s00394-008-2005-z. PubMed DOI

Méplan C. Selenium and chronic diseases: A nutritional genomics perspective. Nutrients. 2015;7:3621–3651. doi: 10.3390/nu7053621. PubMed DOI PMC

Papp L.V., Holmgren A., Khanna K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal. 2010;12:793–795. doi: 10.1089/ars.2009.2973. PubMed DOI

Tan L.C., Nancharaiah Y.V., van Hullebusch E.D., Lens P.N. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016;34:886–907. doi: 10.1016/j.biotechadv.2016.05.005. PubMed DOI

WHO . Guidelines for Drinking-Water Quality. 4th ed. WHO; Geneva, Switzerland: 2011.

Lemly A.D. Selenium impacts on fish: An insidious time bomb. Hum. Ecol. Risk Assess. Int. J. 1999;5:1139–1151. doi: 10.1080/10807039.1999.10518883. DOI

Lemly A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004;59:44–56. doi: 10.1016/S0147-6513(03)00095-2. PubMed DOI

Fu Y., Wang J.Y., Liu Q.X., Zeng H.B. Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon. 2014;77:710–721. doi: 10.1016/j.carbon.2014.05.076. DOI

Reid M.E., Stratton M.S., Lillico A.J., Fakih M., Natarajan R., Clark L.C. A report of high-dose selenium supplementation: Response and toxicities. J. Trace Elem. Med. Biol. 2004;18:69–74. doi: 10.1016/j.jtemb.2004.03.004. PubMed DOI

Zwolak I., Zaporowska H. Selenium interactions and toxicity: A review Selenium interactions and toxicity. Cell Biol. Toxicol. 2012;28:31–46. doi: 10.1007/s10565-011-9203-9. PubMed DOI

Klayman D.L. In: Organic Selenium Compounds: Their Chemistry and Biology. Klayman D.L., Gunther W.H.H., editors. Wiley-Interscience; New York, NY, USA: 1973.

Barceloux D.G., Barceloux D. Selenium. J. Toxicol. Clin. Toxicol. 1999;37:145–172. doi: 10.1081/CLT-100102417. PubMed DOI

Halder A., Zhang M., Chi Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens. Bioelectron. 2017;87:764–771. doi: 10.1016/j.bios.2016.09.030. PubMed DOI

Suvarnaphaet P., Pechprasarn S. Graphene-based materials for biosensors: A review. Sensors. 2017;17:2161. doi: 10.3390/s17102161. PubMed DOI PMC

Cao Y., Li X.B. Adsorption of graphene for the removal of inorganic pollutants in water purification: A review. Adsorpt. J. Int. Adsorpt. Soc. 2014;20:713–727. doi: 10.1007/s10450-014-9615-y. DOI

Wang B., Zhang F., He S.F., Huang F., Peng Z.Y. Adsorption Behaviour of Reduced Graphene Oxide for Removal of Heavy Metal Ions. Asian J. Chem. 2014;26:4901–4906. doi: 10.14233/ajchem.2014.17024. DOI

Wang H., Yuan X.Z., Wu Y., Huang H.J., Zeng G.M., Liu Y., Wang X.L., Lin N.B., Qi Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013;279:432–440. doi: 10.1016/j.apsusc.2013.04.133. DOI

Tripathi P.K., Gan L.H., Liu M.X., Rao N.N. Mesoporous Carbon Nanomaterials as Environmental Adsorbents. J. Nanosci. Nanotechnol. 2014;14:1823–1837. doi: 10.1166/jnn.2014.8763. PubMed DOI

Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials. 2017;7:243. doi: 10.3390/nano7090243. PubMed DOI PMC

Petala E., Georgiou Y., Kostas V., Dimos K., Karakassides M.A., Deligiannakis Y., Aparicio C., Tuček J.í., Zbořil R. Magnetic carbon nanocages: An advanced architecture with surface-and morphology-enhanced removal capacity for arsenites. ACS Sustain. Chem. Eng. 2017;5:5782–5792. doi: 10.1021/acssuschemeng.7b00394. DOI

Katz E., Willner I., Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004;16:19–44. doi: 10.1002/elan.200302930. DOI

Wondracek M.H.P., Jorgetto A.O., Silva A.C.P., do Rocio Ivassechen J., Schneider J.F., Saeki M.J., Pedrosa V.A., Yoshito W.K., Colauto F., Ortiz W.A. Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole and its application as Cu (II) adsorbent from aqueous samples. Appl. Surf. Sci. 2016;367:533–541. doi: 10.1016/j.apsusc.2016.01.172. DOI

Li J., Zhang S., Chen C., Zhao G., Yang X., Li J., Wang X. Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. Acs Appl. Mater. Interfaces. 2012;4:4991–5000. doi: 10.1021/am301358b. PubMed DOI

Yang X., Chen C., Li J., Zhao G., Ren X., Wang X. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012;2:8821–8826. doi: 10.1039/c2ra20885g. PubMed DOI PMC

Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI

Richtera L., Chudobova D., Cihalova K., Kremplova M., Milosavljevic V., Kopel P., Blazkova I., Hynek D., Adam V., Kizek R. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganisms. Materials. 2015;8:2994–3011. doi: 10.3390/ma8062994. DOI

Bakather O.Y., Kayvani Fard A., Khraisheh M., Nasser M.S., Atieh M.A. Enhanced adsorption of selenium ions from aqueous solution using iron oxide impregnated carbon nanotubes. Bioinorg. Chem. Appl. 2017;2017:4323619. doi: 10.1155/2017/4323619. PubMed DOI PMC

Dennis B., Moyers J., Wilson G. Determination of selenium as selenide by differential pulse cathodic stripping voltammetry. Anal. Chem. 1976;48:1611–1616. doi: 10.1021/ac50005a049. DOI

Locatelli C., Torsi G. Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference. J. Electroanal. Chem. 2001;509:80–89. doi: 10.1016/S0022-0728(01)00422-3. DOI

Kudr J., Richtera L., Nejdl L., Xhaxhiu K., Vitek P., Rutkay-Nedecky B., Hynek D., Kopel P., Adam V., Kizek R. Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide. Materials. 2016;9:31. doi: 10.3390/ma9010031. PubMed DOI PMC

Shih C.-J., Lin S., Sharma R., Strano M.S., Blankschtein D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir. 2011;28:235–241. doi: 10.1021/la203607w. PubMed DOI

Liu J., Liu W., Wang Y., Xu M., Wang B. A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu (II) from aqueous solutions. Appl. Surf. Sci. 2016;367:327–334. doi: 10.1016/j.apsusc.2016.01.176. DOI

Liu Z., Wang X., Luo Z., Huo M., Wu J., Huo H., Yang W. Removing of disinfection by-product precursors from surface water by using magnetic graphene oxide. PLoS ONE. 2015;10:e0143819. doi: 10.1371/journal.pone.0143819. PubMed DOI PMC

Zhang S., Shao Y., Liu J., Aksay I.A., Lin Y. Graphene–polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4− from wastewater. ACS Appl. Mater. Interfaces. 2011;3:3633–3637. doi: 10.1021/am200839m. PubMed DOI

Ngomsik A.-F., Bee A., Draye M., Cote G., Cabuil V. Magnetic nano-and microparticles for metal removal and environmental applications: A review. C. R. Chim. 2005;8:963–970. doi: 10.1016/j.crci.2005.01.001. DOI

Bleiman N., Mishael Y.G. Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: Batch and columns tests. J. Hazard. Mater. 2010;183:590–595. doi: 10.1016/j.jhazmat.2010.07.065. PubMed DOI

El-Shafey E. Sorption of Cd (II) and Se (IV) from aqueous solution using modified rice husk. J. Hazard. Mater. 2007;147:546–555. doi: 10.1016/j.jhazmat.2007.01.051. PubMed DOI

Zelmanov G., Semiat R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013;103:167–172. doi: 10.1016/j.seppur.2012.10.037. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...