Electrochemical Evaluation of Selenium (IV) Removal from Its Aqueous Solutions by Unmodified and Modified Graphene Oxide
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CEITEC 2020 (LQ 1601)
Central European Institute of Technology
IP 20/2017
IGA MENDELU
PubMed
30889907
PubMed Central
PMC6470742
DOI
10.3390/molecules24061063
PII: molecules24061063
Knihovny.cz E-zdroje
- Klíčová slova
- differential pulse cathodic stripping voltammetry, electrochemistry, graphene oxide, selenium removal, water purification,
- MeSH
- adsorpce MeSH
- časové faktory MeSH
- chemické látky znečišťující vodu izolace a purifikace MeSH
- elektrochemické techniky metody MeSH
- elektrody MeSH
- grafit chemie MeSH
- koncentrace vodíkových iontů MeSH
- mikrosféry MeSH
- roztoky MeSH
- selen izolace a purifikace MeSH
- statická elektřina MeSH
- teplota MeSH
- velikost částic MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chemické látky znečišťující vodu MeSH
- grafit MeSH
- graphene oxide MeSH Prohlížeč
- roztoky MeSH
- selen MeSH
The removal of selenium from superficial and waste water is a worldwide problem. The maximum limit according to the World Health Organization (WHO) for the selenium in the water is set at a concentration of 10 μg/L. Carbon based adsorbents have attracted much attention and recently demonstrated promising performance in removal of selenium. In this work, several materials (iron oxide based microparticles and graphene oxides materials) and their composites were prepared to remove Se(IV) from water. The graphene oxides were prepared according to the simplified Hummer's method. In addition, the effect of pH, contact time and initial Se(IV) concentration was tested. An electrochemical method such as the differential pulse cathodic stripping voltammetry was used to determine the residual selenium concentration. From the experimental data, Langmuir adsorption model was used to calculate the maximum adsorption capacity. Graphene oxide particles modified by iron oxide based microparticles was the most promising material for the removal of Se(IV) from its aqueous solution at pH 2.0. Its adsorption efficiency reached more than 90% for a solution with given Se(IV) concentration, meanwhile its maximal recorded adsorption capacity was 18.69 mg/g.
Zobrazit více v PubMed
Jamil M., Zia M.S., Qasim M. Contamination of Agro-Ecosystem and Human Health Hazards from Wastewater used for Irrigation. J. Chem. Soc. Pak. 2010;32:370–378.
Khan S., Cao Q., Zheng Y.M., Huang Y.Z., Zhu Y.G. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environ. Pollut. 2008;152:686–692. doi: 10.1016/j.envpol.2007.06.056. PubMed DOI
Singh A., Sharma R.K., Agrawal M., Marshall F.M. Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India. Food Chem. Toxicol. 2010;48:611–619. doi: 10.1016/j.fct.2009.11.041. PubMed DOI
Schomburg L., Schweizer U., Kohrle J. Selenium and selenoproteins in mammals: Extraordinary, essential, enigmatic. Cell. Mol. Life Sci. 2004;61:1988–1995. doi: 10.1007/s00018-004-4114-z. PubMed DOI PMC
Underwood E.J., Suttle N.F. The Mineral Nutrition of Livestock. CABI Publishing; Wallingford, UK: New York, NY, USA: 1999.
Mehdi Y., Hornick J.L., Istasse L., Dufrasne I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules. 2013;18:3292–3311. doi: 10.3390/molecules18033292. PubMed DOI PMC
Vinceti M., Dennert G., Crespi C.M., Zwahlen M., Brinkman M., Zeegers M.P.A., Horneber M., D’Amico R., Del Giovane C. Selenium for preventing cancer. Cochrane Database Syst. Rev. 2014;3:CD005195. doi: 10.1002/14651858.CD005195.pub3. PubMed DOI PMC
Brown K.M., Arthur J. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001;4:593–599. doi: 10.1079/PHN2001143. PubMed DOI
Gromadzinska J., Reszka E., Bruzelius K., Wasowicz W., Akesson B. Selenium and cancer: Biomarkers of selenium status and molecular action of selenium supplements. Eur. J. Nutr. 2008;47:29–50. doi: 10.1007/s00394-008-2005-z. PubMed DOI
Méplan C. Selenium and chronic diseases: A nutritional genomics perspective. Nutrients. 2015;7:3621–3651. doi: 10.3390/nu7053621. PubMed DOI PMC
Papp L.V., Holmgren A., Khanna K.K. Selenium and selenoproteins in health and disease. Antioxid. Redox Signal. 2010;12:793–795. doi: 10.1089/ars.2009.2973. PubMed DOI
Tan L.C., Nancharaiah Y.V., van Hullebusch E.D., Lens P.N. Selenium: Environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 2016;34:886–907. doi: 10.1016/j.biotechadv.2016.05.005. PubMed DOI
WHO . Guidelines for Drinking-Water Quality. 4th ed. WHO; Geneva, Switzerland: 2011.
Lemly A.D. Selenium impacts on fish: An insidious time bomb. Hum. Ecol. Risk Assess. Int. J. 1999;5:1139–1151. doi: 10.1080/10807039.1999.10518883. DOI
Lemly A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004;59:44–56. doi: 10.1016/S0147-6513(03)00095-2. PubMed DOI
Fu Y., Wang J.Y., Liu Q.X., Zeng H.B. Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon. 2014;77:710–721. doi: 10.1016/j.carbon.2014.05.076. DOI
Reid M.E., Stratton M.S., Lillico A.J., Fakih M., Natarajan R., Clark L.C. A report of high-dose selenium supplementation: Response and toxicities. J. Trace Elem. Med. Biol. 2004;18:69–74. doi: 10.1016/j.jtemb.2004.03.004. PubMed DOI
Zwolak I., Zaporowska H. Selenium interactions and toxicity: A review Selenium interactions and toxicity. Cell Biol. Toxicol. 2012;28:31–46. doi: 10.1007/s10565-011-9203-9. PubMed DOI
Klayman D.L. In: Organic Selenium Compounds: Their Chemistry and Biology. Klayman D.L., Gunther W.H.H., editors. Wiley-Interscience; New York, NY, USA: 1973.
Barceloux D.G., Barceloux D. Selenium. J. Toxicol. Clin. Toxicol. 1999;37:145–172. doi: 10.1081/CLT-100102417. PubMed DOI
Halder A., Zhang M., Chi Q. Electroactive and biocompatible functionalization of graphene for the development of biosensing platforms. Biosens. Bioelectron. 2017;87:764–771. doi: 10.1016/j.bios.2016.09.030. PubMed DOI
Suvarnaphaet P., Pechprasarn S. Graphene-based materials for biosensors: A review. Sensors. 2017;17:2161. doi: 10.3390/s17102161. PubMed DOI PMC
Cao Y., Li X.B. Adsorption of graphene for the removal of inorganic pollutants in water purification: A review. Adsorpt. J. Int. Adsorpt. Soc. 2014;20:713–727. doi: 10.1007/s10450-014-9615-y. DOI
Wang B., Zhang F., He S.F., Huang F., Peng Z.Y. Adsorption Behaviour of Reduced Graphene Oxide for Removal of Heavy Metal Ions. Asian J. Chem. 2014;26:4901–4906. doi: 10.14233/ajchem.2014.17024. DOI
Wang H., Yuan X.Z., Wu Y., Huang H.J., Zeng G.M., Liu Y., Wang X.L., Lin N.B., Qi Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013;279:432–440. doi: 10.1016/j.apsusc.2013.04.133. DOI
Tripathi P.K., Gan L.H., Liu M.X., Rao N.N. Mesoporous Carbon Nanomaterials as Environmental Adsorbents. J. Nanosci. Nanotechnol. 2014;14:1823–1837. doi: 10.1166/jnn.2014.8763. PubMed DOI
Kudr J., Haddad Y., Richtera L., Heger Z., Cernak M., Adam V., Zitka O. Magnetic nanoparticles: From design and synthesis to real world applications. Nanomaterials. 2017;7:243. doi: 10.3390/nano7090243. PubMed DOI PMC
Petala E., Georgiou Y., Kostas V., Dimos K., Karakassides M.A., Deligiannakis Y., Aparicio C., Tuček J.í., Zbořil R. Magnetic carbon nanocages: An advanced architecture with surface-and morphology-enhanced removal capacity for arsenites. ACS Sustain. Chem. Eng. 2017;5:5782–5792. doi: 10.1021/acssuschemeng.7b00394. DOI
Katz E., Willner I., Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004;16:19–44. doi: 10.1002/elan.200302930. DOI
Wondracek M.H.P., Jorgetto A.O., Silva A.C.P., do Rocio Ivassechen J., Schneider J.F., Saeki M.J., Pedrosa V.A., Yoshito W.K., Colauto F., Ortiz W.A. Synthesis of mesoporous silica-coated magnetic nanoparticles modified with 4-amino-3-hydrazino-5-mercapto-1, 2, 4-triazole and its application as Cu (II) adsorbent from aqueous samples. Appl. Surf. Sci. 2016;367:533–541. doi: 10.1016/j.apsusc.2016.01.172. DOI
Li J., Zhang S., Chen C., Zhao G., Yang X., Li J., Wang X. Removal of Cu (II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles. Acs Appl. Mater. Interfaces. 2012;4:4991–5000. doi: 10.1021/am301358b. PubMed DOI
Yang X., Chen C., Li J., Zhao G., Ren X., Wang X. Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv. 2012;2:8821–8826. doi: 10.1039/c2ra20885g. PubMed DOI PMC
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339. doi: 10.1021/ja01539a017. DOI
Richtera L., Chudobova D., Cihalova K., Kremplova M., Milosavljevic V., Kopel P., Blazkova I., Hynek D., Adam V., Kizek R. The composites of graphene oxide with metal or semimetal nanoparticles and their effect on pathogenic microorganisms. Materials. 2015;8:2994–3011. doi: 10.3390/ma8062994. DOI
Bakather O.Y., Kayvani Fard A., Khraisheh M., Nasser M.S., Atieh M.A. Enhanced adsorption of selenium ions from aqueous solution using iron oxide impregnated carbon nanotubes. Bioinorg. Chem. Appl. 2017;2017:4323619. doi: 10.1155/2017/4323619. PubMed DOI PMC
Dennis B., Moyers J., Wilson G. Determination of selenium as selenide by differential pulse cathodic stripping voltammetry. Anal. Chem. 1976;48:1611–1616. doi: 10.1021/ac50005a049. DOI
Locatelli C., Torsi G. Voltammetric trace metal determinations by cathodic and anodic stripping voltammetry in environmental matrices in the presence of mutual interference. J. Electroanal. Chem. 2001;509:80–89. doi: 10.1016/S0022-0728(01)00422-3. DOI
Kudr J., Richtera L., Nejdl L., Xhaxhiu K., Vitek P., Rutkay-Nedecky B., Hynek D., Kopel P., Adam V., Kizek R. Improved electrochemical detection of zinc ions using electrode modified with electrochemically reduced graphene oxide. Materials. 2016;9:31. doi: 10.3390/ma9010031. PubMed DOI PMC
Shih C.-J., Lin S., Sharma R., Strano M.S., Blankschtein D. Understanding the pH-dependent behavior of graphene oxide aqueous solutions: A comparative experimental and molecular dynamics simulation study. Langmuir. 2011;28:235–241. doi: 10.1021/la203607w. PubMed DOI
Liu J., Liu W., Wang Y., Xu M., Wang B. A novel reusable nanocomposite adsorbent, xanthated Fe3O4-chitosan grafted onto graphene oxide, for removing Cu (II) from aqueous solutions. Appl. Surf. Sci. 2016;367:327–334. doi: 10.1016/j.apsusc.2016.01.176. DOI
Liu Z., Wang X., Luo Z., Huo M., Wu J., Huo H., Yang W. Removing of disinfection by-product precursors from surface water by using magnetic graphene oxide. PLoS ONE. 2015;10:e0143819. doi: 10.1371/journal.pone.0143819. PubMed DOI PMC
Zhang S., Shao Y., Liu J., Aksay I.A., Lin Y. Graphene–polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchanger for removing ClO4− from wastewater. ACS Appl. Mater. Interfaces. 2011;3:3633–3637. doi: 10.1021/am200839m. PubMed DOI
Ngomsik A.-F., Bee A., Draye M., Cote G., Cabuil V. Magnetic nano-and microparticles for metal removal and environmental applications: A review. C. R. Chim. 2005;8:963–970. doi: 10.1016/j.crci.2005.01.001. DOI
Bleiman N., Mishael Y.G. Selenium removal from drinking water by adsorption to chitosan–clay composites and oxides: Batch and columns tests. J. Hazard. Mater. 2010;183:590–595. doi: 10.1016/j.jhazmat.2010.07.065. PubMed DOI
El-Shafey E. Sorption of Cd (II) and Se (IV) from aqueous solution using modified rice husk. J. Hazard. Mater. 2007;147:546–555. doi: 10.1016/j.jhazmat.2007.01.051. PubMed DOI
Zelmanov G., Semiat R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Sep. Purif. Technol. 2013;103:167–172. doi: 10.1016/j.seppur.2012.10.037. DOI