Improved Electrochemical Detection of Zinc Ions Using Electrode Modified with Electrochemically Reduced Graphene Oxide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28787832
PubMed Central
PMC5456574
DOI
10.3390/ma9010031
PII: ma9010031
Knihovny.cz E-zdroje
- Klíčová slova
- carbon, cyclic voltammetry, electrochemical impedance spectroscopy, electrochemistry, graphene oxide, heavy metal detection, reduced graphene oxide,
- Publikační typ
- časopisecké články MeSH
Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to -1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL-1 was obtained.
Zobrazit více v PubMed
Haider S., Anis L., Batool Z., Sajid I., Naqvi F., Khaliq S., Ahmed S. Short term cadmium administration dose dependently elicits immediate biochemical, neurochemical and neurobehavioral dysfunction in male rats. Metab. Brain Dis. 2015;30:83–92. doi: 10.1007/s11011-014-9578-4. PubMed DOI
Mazzei V., Longo G., Brundo M.V., Sinatra F., Copat C., Conti G.O., Ferrante M. Bioaccumulation of cadmium and lead and its effects on hepatopancreas morphology in three terrestrial isopod crustacean species. Ecotoxical. Environ. Saf. 2014;110:269–279. doi: 10.1016/j.ecoenv.2014.09.015. PubMed DOI
Blazovics A., Szentmihalyi K., Vinkler P., Kovacs A. Zn overdose may cause disturbance in iron metabolism in inactive inflammatory bowel diseases. Trace Elem. Electrolytes. 2004;21:240–247. doi: 10.5414/TEP21240. DOI
Murakami M., Hirano T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 2008;99:1515–1522. doi: 10.1111/j.1349-7006.2008.00854.x. PubMed DOI PMC
Yang Y., Jing X.P., Zhang S.P., Gu R.X., Tang F.X., Wang X.L., Xiong Y., Qiu M., Sun X.Y., Ke D., et al. High dose zinc supplementation induces hippocampal zinc deficiency and memory impairment with inhibition of BDNF signaling. PLoS ONE. 2013;8:e55384. doi: 10.1371/journal.pone.0055384. PubMed DOI PMC
Krizkova S., Ryvolova M., Hynek D., Eckschlager T., Hodek P., Masarik M., Adam V., Kizek R. Immunoextraction of zinc proteins from human plasma using chicken yolk antibodies immobilized onto paramagnetic particles and their electrophoretic analysis. Electrophoresis. 2012;33:1824–1832. doi: 10.1002/elps.201100638. PubMed DOI
Ryvolova M., Hynek D., Skutkova H., Adam V., Provaznik I., Kizek R. Structural changes in metallothionein isoforms revealed by capillary electrophoresis and Brdicka reaction. Electrophoresis. 2012;33:270–279. doi: 10.1002/elps.201100312. PubMed DOI
Frederickson C.J., Koh J.Y., Bush A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005;6:449–462. doi: 10.1038/nrn1671. PubMed DOI
Masarik M., Gumulec J., Sztalmachova M., Hlavna M., Babula P., Krizkova S., Ryvolova M., Jurajda M., Sochor J., Adam V., et al. Isolation of metallothionein from cells derived from aggressive form of high-grade prostate carcinoma using paramagnetic antibody-modified microbeads off-line coupled with electrochemical and electrophoretic analysis. Electrophoresis. 2011;32:3576–3588. doi: 10.1002/elps.201100301. PubMed DOI
Krizkova S., Ryvolova M., Gumulec J., Masarik M., Adam V., Majzlik P., Hubalek J., Provaznik I., Kizek R. Electrophoretic fingerprint metallothionein analysis as a potential prostate cancer biomarker. Electrophoresis. 2011;32:1952–1961. doi: 10.1002/elps.201000519. PubMed DOI
Krizkova S., Ryvolova M., Hrabeta J., Adam V., Stiborova M., Eckschlager T., Kizek R. Metallothioneins and zinc in cancer diagnosis and therapy. Drug Metab. Rev. 2012;44:287–301. doi: 10.3109/03602532.2012.725414. PubMed DOI
Gumulec J., Masarik M., Krizkova S., Adam V., Hubalek J., Hrabeta J., Eckschlager T., Stiborova M., Kizek R. Insight to physiology and pathology of zinc(II) ions and their actions in breast and prostate carcinoma. Curr. Med. Chem. 2011;18:5041–5051. doi: 10.2174/092986711797636126. PubMed DOI
Adam V., Petrlova J., Wang J., Eckschlager T., Trnkova L., Kizek R. Zeptomole electrochemical detection of metallothioneins. PLoS ONE. 2010;5:e11441. doi: 10.1371/journal.pone.0011441. PubMed DOI PMC
Babula P., Masarik M., Adam V., Eckschlager T., Stiborova M., Trnkova L., Skutkova H., Provaznik I., Hubalek J., Kizek R. Mammalians’ metallothioneins and their properties and functions. Metallomics. 2012;4:739–750. doi: 10.1039/c2mt20081c. PubMed DOI
Sobrova P., Vyslouzilova L., Stepankova O., Ryvolova M., Anyz J., Trnkova L., Adam V., Hubalek J., Kizek R. Tissue specific electrochemical fingerprinting. PLoS ONE. 2012;7:e49654. doi: 10.1371/journal.pone.0049654. PubMed DOI PMC
Bonaventura P., Benedetti G., Albarede F., Miossec P. Zinc and its role in immunity and inflammation. Autoimmun. Rev. 2015;14:277–285. doi: 10.1016/j.autrev.2014.11.008. PubMed DOI
Haase H., Rink L. Zinc signals and immune function. Biofactors. 2014;40:27–40. doi: 10.1002/biof.1114. PubMed DOI
Zalewska M., Trefon J., Milnerowicz H. The role of metallothionein interactions with other proteins. Proteomics. 2014;14:1343–1356. doi: 10.1002/pmic.201300496. PubMed DOI
Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Zalud L., Kopecny L., Burian F., Ruttkay-Nedecky B., Krizkova S., et al. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35:2333–2345. doi: 10.1002/elps.201300576. PubMed DOI
Prasek J., Adamek M., Hubalek J., Adam V., Trnkova L., Kizek R. New hydrodynamic electrochemical arrangement for cadmium ions detection using thick-film chemical sensor electrodes. Sensors. 2006;6:1498–1512. doi: 10.3390/s6111498. DOI
Krystofova O., Trnkova L., Adam V., Zehnalek J., Hubalek J., Babula P., Kizek R. Electrochemical microsensors for the detection of cadmium(II) and lead(II) ions in plants. Sensors. 2010;10:5308–5328. doi: 10.3390/s100605308. PubMed DOI PMC
Krizkova S., Krystofova O., Trnkova L., Hubalek J., Adam V., Beklova M., Horna A., Havel L., Kizek R. Silver(I) ions ultrasensitive detection at carbon electrodes—Analysis of waters, tobacco cells and fish tissues. Sensors. 2009;9:6934–6950. doi: 10.3390/s90906934. PubMed DOI PMC
Nejdl L., Ruttkay-Nedecky B., Kudr J., Kremplova M., Cernei N., Prasek J., Konecna M., Hubalek J., Zitka O., Kynicky J., et al. Behaviour of zinc complexes and zinc sulphide nanoparticles revealed by using screen printed electrodes and spectrometry. Sensors. 2013;13:14417–14437. doi: 10.3390/s131114417. PubMed DOI PMC
Adam V., Baloun J., Fabrik I., Trnkova L., Kizek R. An electrochemical detection of metallothioneins at the zeptomole level in nanolitre volumes. Sensors. 2008;8:2293–2305. doi: 10.3390/s8042293. PubMed DOI PMC
Zhang W., Ou J.Z., Tang S.Y., Sivan V., Yao D.D., Latham K., Khoshmanesh K., Mitchell A., O’Mullane A.P., Kalantar-zadeh K. Liquid metal/metal oxide frameworks. Adv. Funct. Mater. 2014;24:3799–3807. doi: 10.1002/adfm.201304064. DOI
Cincotto F.H., Martinez-Garcia G., Yanez-Sedeno P., Canevari T.C., Machado S.A.S., Pingarron J.M. Electrochemical immunosensor for ethinylestradiol using diazonium salt grafting onto silver nanoparticles-silica-graphene oxide hybrids. Talanta. 2016;147:328–334. doi: 10.1016/j.talanta.2015.09.061. PubMed DOI
Hui N., Wang S.Y., Xie H.B., Xu S.H., Niu S.Y., Luo X.L. Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sens. Actuators B Chem. 2015;221:606–613. doi: 10.1016/j.snb.2015.07.011. DOI
Campbell J.L., Breedon M., Latham K., Kalantar-Zadeh K. Electrowetting of superhydrophobic ZnO nanorods. Langmuir. 2008;24:5091–5098. doi: 10.1021/la7030413. PubMed DOI
Li D., Kaner R.B. Materials science—Graphene-based materials. Science. 2008;320:1170–1171. doi: 10.1126/science.1158180. PubMed DOI
Le T.X.H., Bechelany M., Lacour S., Oturan N., Oturan M.A., Cretin M. High removal efficiency of dye pollutants by electron-Fenton process using a graphene based cathode. Carbon. 2015;94:1003–1011. doi: 10.1016/j.carbon.2015.07.086. DOI
Li B., Pan G.H., Avent N.D., Lowry R.B., Madgett T.E., Waines P.L. Graphene electrode modified with electrochemically reduced graphene oxide for label-free DNA detection. Biosens. Bioelectron. 2015;72:313–319. doi: 10.1016/j.bios.2015.05.034. PubMed DOI
Le T.X.H., Bechelany M., Champavert J., Cretin M. A highly active based graphene cathode for the electro-Fenton reaction. RSC Adv. 2015;5:42536–42539. doi: 10.1039/C5RA04811G. DOI
Kim Y.R., Bong S., Kang Y.J., Yang Y., Mahajan R.K., Kim J.S., Kim H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes. Biosens. Bioelectron. 2010;25:2366–2369. doi: 10.1016/j.bios.2010.02.031. PubMed DOI
Chen L.Y., Tang Y.H., Wang K., Liu C.B., Luo S.L. Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem. Commun. 2011;13:133–137. doi: 10.1016/j.elecom.2010.11.033. DOI
Cheemalapati S., Palanisamy S., Chen S.M. Electrochemical determination of isoniazid at electrochemically reduced graphene oxide modified electrode. Int. J. Electrochem. Sci. 2013;8:3953–3962.
Sehat A.A., Khodadadi A.A., Shemirani F., Mortazavi Y. Fast immobilization of glucose oxidase on graphene oxide for highly sensitive glucose biosensor fabrication. Int. J. Electrochem. Sci. 2015;10:272–286.
Ping J.F., Wang Y.X., Fan K., Wu J., Ying Y.B. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens. Bioelectron. 2011;28:204–209. doi: 10.1016/j.bios.2011.07.018. PubMed DOI
Cui F., Zhang X.L. A method based on electrodeposition of reduced graphene oxide on glassy carbon electrode for sensitive detection of theophylline. J. Solid State Electrochem. 2013;17:167–173. doi: 10.1007/s10008-012-1867-4. DOI
Li G.N., Li T.T., Deng Y., Cheng Y., Shi F., Sun W., Sun Z.F. Electrodeposited nanogold decorated graphene modified carbon ionic liquid electrode for the electrochemical myoglobin biosensor. J. Solid State Electrochem. 2013;17:2333–2340. doi: 10.1007/s10008-013-2098-z. DOI
Wang F., Wu Y.J., Lu K., Ye B.X. A sensitive voltammetric sensor for taxifolin based on graphene nanosheets with certain orientation modified glassy carbon electrode. Sens. Actuator B Chem. 2015;208:188–194. doi: 10.1016/j.snb.2014.11.008. DOI
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behavior in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657. doi: 10.1002/elan.200403264. DOI
Kudr J., Nguyen V.H., Gumulec J., Nejdl L., Blazkova I., Ruttkay-Nedecky B., Hynek D., Kynicky J., Adam V., Kizek R. Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network. Sensors. 2015;15:592–610. doi: 10.3390/s150100592. PubMed DOI PMC
Chao M.Y., Ma X.Y., Li X. Graphene-modified electrode for the selective determination of uric acid under coexistence of dopamine and ascorbic acid. Int. J. Electrochem. Sci. 2012;7:2201–2213.
Novoselov K.S., Fal’ko V.I., Colombo L., Gellert P.R., Schwab M.G., Kim K. A roadmap for graphene. Nature. 2012;490:192–200. doi: 10.1038/nature11458. PubMed DOI
Davies T.J., Hyde M.E., Compton R.G. Nanotrench arrays reveal insight into graphite electrochemistry. Angew. Chem. Int. Ed. 2005;44:5121–5126. doi: 10.1002/anie.200462750. PubMed DOI
Zhao J.P., Pei S.F., Ren W.C., Gao L.B., Cheng H.M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano. 2010;4:5245–5252. doi: 10.1021/nn1015506. PubMed DOI
Chen D., Feng H.B., Li J.H. Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 2012;112:6027–6053. doi: 10.1021/cr300115g. PubMed DOI
Castro S.S.L., de Oliveira M.F., Stradiotto N.R. Study of the electrochemical behavior of histamine using a Nafion (R)-Copper(II) hexacyanoferrate film-modified electrode. Int. J. Electrochem. Sci. 2010;5:1447–1456.
Gilje S., Han S., Wang M., Wang K.L., Kaner R.B. A chemical route to graphene for device applications. Nano Lett. 2007;7:3394–3398. doi: 10.1021/nl0717715. PubMed DOI
Ye W.C., Zhang X.J., Chen Y., Du Y.L., Zhou F., Wang C.M. Pulsed electrodeposition of reduced graphene oxide on glass carbon electrode as an effective support of electrodeposited Pt microspherical particles: Nucleation studies and the application for methanol electro-oxidation. Int. J. Electrochem. Sci. 2013;8:2122–2139.
Zhang Z.P., Yan J., Jin H.Z., Yin J.G. Tuning the reduction extent of electrochemically reduced graphene oxide electrode film to enhance its detection limit for voltammetric analysis. Electrochim. Acta. 2014;139:232–237. doi: 10.1016/j.electacta.2014.06.159. DOI
Guo H.L., Wang X.F., Qian Q.Y., Wang F.B., Xia X.H. A green approach to the synthesis of graphene nanosheets. ACS Nano. 2009;3:2653–2659. doi: 10.1021/nn900227d. PubMed DOI
Stankovich S., Dikin D.A., Piner R.D., Kohlhaas K.A., Kleinhammes A., Jia Y., Wu Y., Nguyen S.T., Ruoff R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon. 2007;45:1558–1565. doi: 10.1016/j.carbon.2007.02.034. DOI
Krishnamoorthy K., Veerapandian M., Mohan R., Kim S.J. Investigation of Raman and photoluminescence studies of reduced graphene oxide sheets. Appl. Phys. A Mater. Sci. Process. 2012;106:501–506. doi: 10.1007/s00339-011-6720-6. DOI
Eigler S., Dotzer C., Hirsch A. Visualization of defect densities in reduced graphene oxide. Carbon. 2012;50:3666–3673. doi: 10.1016/j.carbon.2012.03.039. DOI
Bi S., Zhao T.T., Jia X.Q., He P. Magnetic graphene oxide-supported hemin as peroxidase probe for sensitive detection of thiols in extracts of cancer cells. Biosens. Bioelectron. 2014;57:110–116. doi: 10.1016/j.bios.2014.01.025. PubMed DOI
Huang P., Xu C., Lin J., Wang C., Wang X.S., Zhang C.L., Zhou X.J., Guo S.W., Cui D.X. Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 2011;1:240–250. doi: 10.7150/thno/v01p0240. PubMed DOI PMC
Casero E., Parra-Alfambra A.M., Petit-Dominguez M.D., Pariente F., Lorenzo E., Alonso C. Differentiation between graphene oxide and reduced graphene by electrochemical impedance spectroscopy (EIS) Electrochem. Commun. 2012;20:63–66. doi: 10.1016/j.elecom.2012.04.002. DOI
Nejdl L., Kudr J., Ruttkay-Nedecky B., Heger Z., Zima L., Zalud L., Krizkova S., Adam V., Vaculovicova M., Kizek R. Remote-controlled robotic platform for electrochemical determination of water contaminated by heavy metal ions. Int. J. Electrochem. Sci. 2015;10:3635–3643.
Hummers W.S., Offeman R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958;80:1339–1339. doi: 10.1021/ja01539a017. DOI
Prathish K.P., Barsan M.M., Geng D.S., Sun X.L., Brett C.M.A. Chemically modified graphene and nitrogen-doped graphene: Electrochemical characterisation and sensing applications. Electrochim. Acta. 2013;114:533–542. doi: 10.1016/j.electacta.2013.10.080. DOI
Necas D., Klapetek P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012;10:181–188.