Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25558996
PubMed Central
PMC4327037
DOI
10.3390/s150100592
PII: s150100592
Knihovny.cz E-zdroje
- MeSH
- automatizace MeSH
- elektrochemie metody MeSH
- elektrody MeSH
- geologické sedimenty chemie MeSH
- ionty MeSH
- kadmium krev MeSH
- kalibrace MeSH
- kur domácí MeSH
- lidé MeSH
- měď krev MeSH
- neuronové sítě * MeSH
- olovo krev MeSH
- regresní analýza MeSH
- robotika MeSH
- rtuť chemie MeSH
- těžké kovy analýza krev MeSH
- zinek krev MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ionty MeSH
- kadmium MeSH
- měď MeSH
- olovo MeSH
- rtuť MeSH
- těžké kovy MeSH
- zinek MeSH
In this study a device for automatic electrochemical analysis was designed. A three electrodes detection system was attached to a positioning device, which enabled us to move the electrode system from one well to another of a microtitre plate. Disposable carbon tip electrodes were used for Cd(II), Cu(II) and Pb(II) ion quantification, while Zn(II) did not give signal in this electrode configuration. In order to detect all mentioned heavy metals simultaneously, thin-film mercury electrodes (TFME) were fabricated by electrodeposition of mercury on the surface of carbon tips. In comparison with bare electrodes the TMFEs had lower detection limits and better sensitivity. In addition to pure aqueous heavy metal solutions, the assay was also performed on mineralized rock samples, artificial blood plasma samples and samples of chicken embryo organs treated with cadmium. An artificial neural network was created to evaluate the concentrations of the mentioned heavy metals correctly in mixture samples and an excellent fit was observed (R2 = 0.9933).
Zobrazit více v PubMed
Kleckerova A., Docekalova H. Dandelion Plants as a Biomonitor of Urban Area Contamination by Heavy Metals. Int. J. Environ. Res. 2014;8:157–164.
Vega F.A., Weng L.P. Speciation of heavy metals in River Rhine. Water Res. 2013;47:363–372. PubMed
Basha S., Jhala J., Thorat R., Goel S., Trivedi R., Shah K., Menon G., Gaur P., Mody K.H., Jha B. Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmos. Res. 2010;97:257–265.
Chen C., Xie Q.J., Wang L.H., Qin C., Xie F.Y., Yao S.Z., Chen J.H. Experimental Platform to Study Heavy Metal Ion-Enzyme Interactions and Amperometric Inhibitive Assay of Ag+ Based on Solution State and Immobilized Glucose Oxidase. Anal. Chem. 2011;83:2660–2666. PubMed
Witkiewicz-Kucharczyk A., Bal W. Damage of zinc fingers in DNA repair proteins, a novel molecular mechanism in carcinogenesis. Toxicol. Lett. 2006;162:29–42. PubMed
Nations U. World Urbanization Prospects. Volume 2014 United Nations Department of Economic and Social Affairs; New York, NY, USA: 2011. Data on Urban and Rural Populations.
Kenawy I.M.M., Hafez M.A.H., Akl M.A., Lashein R.R. Determination by AAS of some trace heavy metal ions in some natural and biological samples after their preconcentration using newly chemically modified chloromethylated polystyrene-PAN ion-exchanger. Anal. Sci. 2000;16:493–500.
Karami H., Mousavi M.F., Yamini Y., Shamsipur M. On-line preconcentration and simultaneous determination of heavy metal ions by inductively coupled plasma-atomic emission spectrometry. Anal. Chim. Acta. 2004;509:89–94.
Faraji M., Yamini Y., Saleh A., Rezaee M., Ghambarian M., Hassani R. A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal. Chim. Acta. 2010;659:172–177. PubMed
Hynek D., Prasek J., Businova P., Zak J., Drbohlavova J., Chomoucka J., Kynicky J., Konecna M., Brtnicky M., Hubalek J., et al. Automated voltammetric determination of lead(II) ions using sensor array. Int. J. Electrochem. Sci. 2013;8:4441–4456.
Petrlova J., Potesil D., Zehnalek J., Sures B., Adam V., Trnkova L., Kizek R. Cisplatin electrochemical biosensor. Electrochim. Acta. 2006;51:5169–5173.
Adam V., Petrlova J., Potesil D., Zehnalek J., Sures B., Trnkova L., Jelen F., Kizek R. Study of metallothionein modified electrode surface behaviour in the presence of heavy metal ions-biosensor. Electroanalysis. 2005;17:1649–1657.
Nejdl L., Kudr J., Cihalova K., Chudobova D., Zurek M., Zalud L., Kopecny L., Burian F., Ruttkay-Nedecky B., Krizkova S., et al. Remote-controlled robotic platform Orpheus as a new tool for detection of bacteria in the environment. Electrophoresis. 2014 in press. PubMed
Nejdl L., Ruttkay-Nedecky B., Kudr J., Kremplova M., Cernei N., Prasek J., Konecna M., Hubalek J., Zitka O., Kynicky J., et al. Behaviour of Zinc Complexes and Zinc Sulphide Nanoparticles Revealed by Using Screen Printed Electrodes and Spectrometry. Sensors. 2013;13:14417–14437. PubMed PMC
Locatelli C., Melucci D. Voltammetric method for ultra-trace determination of total mercury and toxic metals in vegetables. Comparison with spectroscopy. Cent. Eur. J. Chem. 2013;11:790–800.
Anastasiadou Z.D., Jannakoudakis P.D., Girousi S.T. Square wave anodic stripping voltammetry determination of eco-toxic metals in samples of biological and environmental importance. Cent. Eur. J. Chem. 2010;8:999–1008.
Kensova R., Hynek D., Kynicky J., Konecna M., Eckschlager T., Adam V., Hubalek J., Kizek R. Determination of Metal Ions in the Plasma of Children with Tumour Diseases by Differential Pulse Voltammetry. Int. J. Electrochem. Sci. 2014;9:4675–4691.
Fialova D., Kremplova M., Hynek D., Konecna M., Kaiser J., Malina R., Kynicky J., Krystofova O., Kizek R., Adam V. Sosedka Pegmatite Metal Ions Composition Determined by Voltammetry. Int. J. Electrochem. Sci. 2013;8:7853–7867.
Bahr J. The Chicken as a Model Organism. In: Conn P.M., editor. Sourcebook of Models for Biomedical Research. Humana Press; New York, NY, USA: 2008. pp. 161–167.
Shagirtha K., Muthumani M., Prabu S.M. Melatonin abrogates cadmium induced oxidative stress related neurotoxicity in rats. Eur. Rev. Med. Pharmacol. Sci. 2011;15:1039–1050. PubMed
Xu H., Zeng L.P., Xing S.J., Xian Y.Z., Shi G.Y. Ultrasensitive Voltammetric Detection of Trace Lead(II) and Cadmium(II) Using MWCNTs-Nafion/Bismuth Composite Electrodes. Electroanalysis. 2008;20:2655–2662.
Rico M.A. G., Olivares-Marin M., Gil E.P. Modification of carbon screen-printed electrodes by adsorption of chemically synthesized Bi nanoparticles for the voltammetric stripping detection of Zn(II), Cd(II) and Pb(II) Talanta. 2009;80:631–635. PubMed
Rocha L.S., Pinheiro J.P., Carapuca H.M. Evaluation of nanometer thick mercury film electrodes for stripping chronopotentiometry. J. Electroanal. Chem. 2007;610:37–45.
Huang H., Chen T., Liu X.Y., Ma H.Y. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal. Chim. Acta. 2014;852:45–54. PubMed
Zhao D.L., Guo X.F., Wang T.T., Alvarez N., Shanov V.N., Heineman W.R. Simultaneous Detection of Heavy Metals by Anodic Stripping Voltammetry Using Carbon Nanotube Thread. Electroanalysis. 2014;26:488–496.
Pujol L., Evrard D., Groenen-Serrano K., Freyssinier M., Ruffien-Cizsak A., Gros P. Electrochemical sensors and devices for heavy metals assay in water: The French groups' contribution. Front. Chem. 2014;2:19. PubMed PMC
Pauliukaite R., Hocevar S.B., Ogorevc B., Wang J. Characterization and applications of a bismuth bulk electrode. Electroanalysis. 2004;16:719–723.
Suteerapataranon S., Jakmunee J., Vaneesorn Y., Grudpan K. Exploiting flow injection and sequential injection anodic stripping voltammetric systems for simultaneous determination of some metals. Talanta. 2002;58:1235–1242. PubMed
Ninwong B., Chuanuwatanakul S., Chailapakul O., Dungchai W., Motomizu S. On-line preconcentration and determination of lead and cadmium by sequential injection/anodic stripping voltammetry. Talanta. 2012;96:75–81. PubMed
Intarakamhang S., Schuhmann W., Schulte A. Robotic heavy metal anodic stripping voltammetry: Ease and efficacy for trace lead and cadmium electroanalysis. J. Solid State Electrochem. 2013;17:1535–1542.
Ruhlig D., Schulte A., Schuhmann W. An electrochemical robotic system for routine cathodic adsorptive stripping analysis of Ni2+ ion release from corroding NiTi shape memory alloys. Electroanalysis. 2006;18:53–58.
Adam V., Zehnalek J., Petrlova J., Potesil D., Sures B., Trnkova L., Jelen F., Vitecek J., Kizek R. Phytochelatin modified electrode surface as a sensitive heavy-metal ion biosensor. Sensors. 2005;5:70–84.
Despagne F., Massart D.L. Neural networks in multivariate calibration. Analyst. 1998;123:157R–178R. PubMed
Wilson D., Gutierrez J.M., Alegret S., del Valle M. Simultaneous Determination of Zn(II), Cu(II), Cd(II) and Pb(II) in Soil Samples Employing an Array of Potentiometric Sensors and an Artificial Neural Network Model. Electroanalysis. 2012;24:2249–2256.
Wang L., Yang D., Chen Z.L., Lesniewski P.J., Naidu R. Application of neural networks with novel independent component analysis methodologies for the simultaneous determination of cadmium, copper, and lead using an ISE array. J. Chemom. 2014;28:491–498.
Gutierrez J.M., Moreno-Baron L., Cespedes F., Munoz R., del Valle M. Resolution of Heavy Metal Mixtures from Highly Overlapped ASV Voltammograms Employing a Wavelet Neural Network. Electroanalysis. 2009;21:445–451.
Motalleb G. Artificial Neural Network Analysis in Preclinical Breast Cancer. Cell J. 2014;15:324–331. PubMed PMC
Khajeh M., Golzary A.R. Synthesis of zinc oxide nanoparticles-chitosan for extraction of methyl orange from water samples: Cuckoo optimization algorithm-artificial neural network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014;131:189–194. PubMed
Garkani-Nejad Z., Rashidi-Nodeh H. Comparison of conventional artificial neural network and wavelet neural network in modeling the half-wave potential of aldehydes and ketones. Electrochim. Acta. 2010;55:2597–2605.
Efendioglu H.S., Yildirim T., Fidanboylu K. Prediction of Force Measurements of a Microbend Sensor Based on an Artificial Neural Network. Sensors. 2009;9:7167–7176. PubMed PMC
Panteli V.S., Kanellopoulou D.G., Gartaganis S.P., Koutsoukos P.G. Application of Anodic Stripping Voltammetry for Zinc, Copper, and Cadmium Quantification in the Aqueous Humor: Implications of Pseudoexfoliation Syndrome. Biol. Trace Elem. Res. 2009;132:9–18. PubMed
Chan H., Butler A., Falck D.M., Freund M.S. Artificial neural network processing of stripping analysis responses for identifying and quantifying heavy metals in the presence of intermetallic compound formation. Anal. Chem. 1997;69:2373–2378. PubMed
Chow C.W. K., Davey D.E., Mulcahy D.E. A neural network approach to zinc and copper interferences in potentiometric stripping analysis. J. Intell. Mater. Syst. Struct. 1997;8:177–183.
Farias P.A. M., Castro A.A., Wagener A.D. R., Miguel E.M. Adenine determination in the presence of copper in diluted alkaline electrolyte by adsorptive stripping voltammetry at the mercury film electrode. Electroanalysis. 2008;20:1445–1453.
Alves G.M.S., Magalhaes J.M.C.S., Soares H.M.V.M. Voltammetric Quantification of Zn and Cu, Together with Hg and Pb, Based on a Gold Microwire Electrode, in a Wider Spectrum of Surface Waters. Electroanalysis. 2013;25:493–502.
Gallardo J., Alegret S., Munoz R., De-Roman M., Leija L., Hernandez P.R., del Valle M. An electronic tongue using potentiometric all-solid-state PVC-membrane sensors for the simultaneous quantification of ammonium and potassium ions in water. Anal. Bioanal. Chem. 2003;377:248–256. PubMed
Laguarda-Miro N., Ferreira F.W., Garcia-Breijo E., Ibanez-Civera J., Gil-Sanchez L., Garrigues-Baixauli J. Glyphosacte detection by voltammetric techniques. A comparison between statistical methods and an artificial neural network. Sens. Actuator B Chem. 2012;171:528–536.
Ariza-Avidad M., Cuellar M.P., Salinas-Castillo A., Pegalajar M.C., Vukovic J., Capitan-Vallvey L.F. Feasibility of the use of disposable optical tongue based on neural networks for heavy metal identification and determination. Anal. Chim. Acta. 2013;783:56–64. PubMed
Ariza-Avidad M., Salinas-Castillo A., Cuellar M.P., Agudo-Acemel M., Pegalajar M.C., Capitan-Vallvey L.F. Printed Disposable Colorimetric Array for Metal Ion Discrimination. Anal. Chem. 2014;86:8634–8641. PubMed
Gutes A., Cespedes F., Cartas R., Alegret S., del Valle M., Gutierrez J.M., Munoz R. Multivariate calibration model from overlapping voltammetric signals employing wavelet neural networks. Chemom. Intell. Lab. Syst. 2006;83:169–179.
Gutierrez J.M., Gutes A., Cespedes F., del Valle M., Munoz R. Wavelet neural networks to resolve the overlapping signal in the voltammetric determination of phenolic compounds. Talanta. 2008;76:373–381. PubMed
Dordevic S., Stancin S., Meglic A., Milutinovic V., Tomazic S. MC Sensor—A Novel Method for Measurement of Muscle Tension. Sensors. 2011;11:9411–9425. PubMed PMC
Zinc-Modified Nanotransporter of Doxorubicin for Targeted Prostate Cancer Delivery
Inhaled Cadmium Oxide Nanoparticles: Their in Vivo Fate and Effect on Target Organs