Proving the automatic benchtop electrochemical station for the development of dopamine and paracetamol sensors
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
VEGA No. 1/0036/24
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
2023-010-2-500
IUPAC
Contract No. SK-PL-23-0013
Slovak Research and Development Agency
41794
National Scholarship Program
No. CZ.02.1.01/0.0/0.0/16_025/0007314
ERFD
PubMed
38898321
PubMed Central
PMC11186920
DOI
10.1007/s00604-024-06454-6
PII: 10.1007/s00604-024-06454-6
Knihovny.cz E-zdroje
- Klíčová slova
- Acetaminophen, Differential pulse voltammetry, Electrodeposition, Electroplating, Screen-printed electrode, Sensor array,
- MeSH
- biosenzitivní techniky metody MeSH
- dopamin * analýza MeSH
- elektrochemické techniky * metody přístrojové vybavení MeSH
- elektrody MeSH
- kovové nanočástice * chemie MeSH
- limita detekce MeSH
- paracetamol * analýza MeSH
- uhlík chemie MeSH
- zlato * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dopamin * MeSH
- paracetamol * MeSH
- uhlík MeSH
- zlato * MeSH
The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 μM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).
Zobrazit více v PubMed
Luo XL, et al. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis. 2006;18(4):319–326.
Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis. 2004;16(1–2):19–44.
Pillay J, et al. Monolayer-protected clusters of gold nanoparticles: impacts of stabilizing ligands on the heterogeneous electron transfer dynamics and voltammetric detection. Langmuir. 2010;26(11):9061–9068. PubMed
Li Y, Schluesener HJ, Xu S. Gold nanoparticle-based biosensors. Gold Bull. 2010;43(1):29–41.
Yeh F-Y, et al. Gold nanoparticles conjugates-amplified aptamer immunosensing screen-printed carbon electrode strips for thrombin detection. Biosens Bioelectron. 2014;61:336–343. PubMed
Zhang K, et al. Fabrication of a sensitive impedance biosensor of DNA hybridization based on gold nanoparticles modified gold electrode. Electroanalysis. 2008;20(19):2127–2133.
Tajik S, Beitollahi H, Torkzadeh-Mahani M. Electrochemical immunosensor for the detection of anti-thyroid peroxidase antibody by gold nanoparticles and ionic liquid-modified carbon paste electrode. J Nanostruct Chem. 2022;12(4):581–588.
Uygun ZO, Tasoglu S. Impedimetric antimicrobial peptide biosensor for the detection of human immunodeficiency virus envelope protein gp120. iScience. 2024;27(3):109190. PubMed PMC
Song P, et al. A novel electrochemical sensor of DNAzyme/AuNPs/Fe/ZIF-8/GCE for Pb2+ detection in the soil solution with enhanced sensitivity, anti-interference and stability. J Environ Chem Eng. 2024;12(2):112349.
Gervais E, et al. Study of an AuNPs functionalized electrode using different diazonium salts for the ultra-fast detection of Hg(II) traces in water. Electrochim Acta. 2018;261:346–355.
Li J, Xie H, Chen L. A sensitive hydrazine electrochemical sensor based on electrodeposition of gold nanoparticles on choline film modified glassy carbon electrode. Sens Actuators, B Chem. 2011;153(1):239–245.
Khan ZUH, et al. Photo catalytic applications of gold nanoparticles synthesized by green route and electrochemical degradation of phenolic Azo dyes using AuNPs/GC as modified paste electrode. J Alloy Compd. 2017;725:869–876.
Farquhar AK, et al. Controlled electrodeposition of gold nanoparticles onto copper-supported few-layer graphene in non-aqueous conditions. Electrochim Acta. 2017;237:54–60.
Gholivand M-B, et al. Surface exploration of a room-temperature ionic liquid-chitin composite film decorated with electrochemically deposited PdFeNi trimetallic alloy nanoparticles by pattern recognition: an elegant approach to developing a novel biotin biosensor. Talanta. 2015;131:249–258. PubMed
Qiu C, Zhang J, Ma H. Fabrication of monometallic (Co, Pd, Pt, Au) and bimetallic (Pt/Au, Au/Pt) thin films with hierarchical architectures as electrocatalysts. Solid State Sci. 2010;12(5):822–828.
Podesva P, et al. Tailorable nanostructured mercury/gold amalgam electrode arrays with varied surface areas and compositions. Sens Actuators, B Chem. 2020;302:127175.
El-Deab MS, Sotomura T, Ohsaka T. Morphological selection of gold nanoparticles electrodeposited on various substrates. J Electrochem Soc. 2005;152(11):C730.
Mohanty US. Electrodeposition: a versatile and inexpensive tool for the synthesis of nanoparticles, nanorods, nanowires, and nanoclusters of metals. J Appl Electrochem. 2011;41(3):257–270.
Plowman BJ, Bhargava SK, O’Mullane AP. Electrochemical fabrication of metallic nanostructured electrodes for electroanalytical applications. Analyst. 2011;136(24):5107–5119. PubMed
Podešva P, Gablech I, Neužil P. Nanostructured gold microelectrode array for ultrasensitive detection of heavy metal contamination. Anal Chem. 2018;90(2):1161–1167. PubMed
Thurow K. Strategies for automating analytical and bioanalytical laboratories. Anal Bioanal Chem. 2023;415(21):5057–5066. PubMed PMC
Armbruster DA, Overcash DR, Reyes J. Clinical chemistry laboratory automation in the 21st century - Amat Victoria curam (Victory loves careful preparation) Clin Biochem Rev. 2014;35(3):143–153. PubMed PMC
Wills AG, et al. High-throughput electrochemistry: state of the art, challenges, and perspective. Org Process Res Dev. 2021;25(12):2587–2600.
Fleischauer MD, et al. Design and testing of a 64-channel combinatorial electrochemical cell. J Electrochem Soc. 2003;150(11):A1465.
Lin X, et al. Electrochemiluminescence imaging-based high-throughput screening platform for electrocatalysts used in fuel cells. Anal Chem. 2012;84(18):7700–7707. PubMed
Squissato AL, et al. An overview of recent electroanalytical applications utilizing screen-printed electrodes within flow systems. ChemElectroChem. 2020;7(10):2211–2221.
Navrátil T, Yosypchuk B, Barek J. A multisensor for electrochemical sequential autonomous automatic measurements. Chem Anal (Warsaw) 2009;54(1):3–17.
Nazari Z, et al. Magnetic perlite based molecularly imprinted polymer on screen printed carbon electrode as a new tyramine electrochemical sensor. Microchem J. 2024;196:109539.
Karthika P, et al. Selective detection of salivary cortisol using screen-printed electrode coated with molecularly imprinted polymer. Talanta. 2024;272:9. PubMed
Wojciechowski M, et al. Multichannel electrochemical detection system for quantitative monitoring of PCR amplification. Clin Chem. 1999;45(9):1690–1693. PubMed
Simon U, et al. Design strategies for multielectrode arrays applicable for high-throughput impedance spectroscopy on novel gas sensor materials. J Comb Chem. 2002;4(5):511–515. PubMed
Abdellaoui S, et al. A 96-well electrochemical method for the screening of enzymatic activities. Anal Chem. 2013;85(7):3690–3697. PubMed
Piermarini S, et al. Electrochemical immunosensor array using a 96-well screen-printed microplate for aflatoxin B1 detection. Biosens Bioelectron. 2007;22(7):1434–1440. PubMed
Xiao DL, et al. A novel thin-layer flow cell sensor system based on BDD electrode for heavy metal ion detection. Micromachines. 2024;15(3):15. PubMed PMC
Yang QY, et al. Development of a heavy metal sensing boat for automatic analysis in natural waters utilizing anodic stripping voltammetry. Acs Es&T Water. 2021;1(12):2470–2476. PubMed PMC
Zitka J, et al. Fully automated station for testing, characterizing and modifying screen-printed electrodes. Anal Methods. 2022;14(39):3824–3830. PubMed
Nejdl L, et al. Remote-controlled robotic platform ORPHEUS as a new tool for detection of bacteria in the environment. Electrophoresis. 2014;35(16):2333–2345. PubMed
Kudr J, et al. Simultaneous automatic electrochemical detection of zinc, cadmium, copper and lead ions in environmental samples using a thin-film mercury electrode and an artificial neural network. Sensors. 2015;15(1):592–610. PubMed PMC
Hebié S et al (2016) Electrochemical reactivity at free and supported gold nanocatalysts surface. In: Mishra NK (ed) Catalytic application of nano-gold catalysts. IntechOpen, Rijeka
Kader MA, et al. Recent advances in gold nanoparticles modified electrodes in electrochemical nonenzymatic sensing of chemical and biological compounds. Inorg Chem Commun. 2023;153:110767.
Hezard T, et al. Gold nanoparticles electrodeposited on glassy carbon using cyclic voltammetry: Application to Hg(II) trace analysis. J Electroanal Chem (Lausanne Switz) 2012;664:46–52.
Sakai N, et al. Electrodeposition of gold nanoparticles on ITO: Control of morphology and plasmon resonance-based absorption and scattering. J Electroanal Chem. 2009;628(1–2):7–15.
Hou CH, et al. Potentiostatic electrodeposition of gold nanoparticles: variation of electrocatalytic activity toward four targets. J Appl Electrochem. 2021;51(12):1721–1730.
Huang DQ, et al. The determination of dopamine using glassy carbon electrode pretreated by a simple electrochemical method. Int J Electrochem Sci. 2012;7(6):5510–5520.
Özcan A, et al. Development of a disposable and low-cost electrochemical sensor for dopamine detection based on poly(pyrrole-3-carboxylic acid)-modified electrochemically over-oxidized pencil graphite electrode. Talanta. 2017;165:489–495. PubMed
Brownson DAC, Banks CE (2016) The handbook of graphene electrochemistry. Springer, London, England
Alharthi FA, Hasan I. Screen-printed carbon electrode modified by δ-MnO2/S@g-C3N4 nanocomposite for dopamine sensing using linear sweep voltammetry. J Electron Mater. 2024;53(4):2115–2123.
Alba AF, et al. Laser-activated screen-printed carbon electrodes for enhanced dopamine determination in the presence of ascorbic and uric acid. Electrochim Acta. 2021;399:139374.
Chelly S, et al. Electrochemical detection of dopamine and riboflavine on a screen-printed carbon electrode modified by AuNPs derived from Rhanterium suaveolens plant extract. ACS Omega. 2021;6(37):23666–23675. PubMed PMC
Ahmad K, Kim H. Design and fabrication of WO3/SPE for dopamine sensing application. Mater Chem Phys. 2022;287:126298.
Thirumalai D, et al. Disposable voltammetric sensor modified with block copolymer-dispersed graphene for simultaneous determination of dopamine and ascorbic acid in ex vivo mouse brain tissue. Biosensors (Basel) 2021;11(10):368. PubMed PMC
Mohammadi S, Taher MA, Beitollahi H. Treated screen printed electrodes based on electrochemically reduced graphene nanoribbons for the sensitive voltammetric determination of dopamine in the presence of uric acid. Electroanalysis. 2022;32(9):2036–2044.
Abdi S, et al. Simultaneous determination of 4-aminophenol and paracetamol based on CS-Ni nanocomposite-modified screen-printed disposable electrodes. Monatsh Chem. 2023;154(6):563–575.
Sasal A, et al. Direct determination of paracetamol in environmental samples using screen-printed carbon/carbon nanofibers sensor – experimental and theoretical studies. Electroanalysis. 2020;32(7):1618–1628.
Serrano N, et al. Commercial screen-printed electrodes based on carbon nanomaterials for a fast and cost-effective voltammetric determination of paracetamol, ibuprofen and caffeine in water samples. Sensors (Basel) 2019;19(18):4039. PubMed PMC
Sasal A, et al. Simultaneous analysis of paracetamol and diclofenac using MWCNTs-COOH modified screen-printed carbon electrode and pulsed potential accumulation. Materials (Basel) 2020;13(14):3091. PubMed PMC
Kozak J, et al. Electrochemically activated screen-printed carbon sensor modified with anionic surfactant (aSPCE/SDS) for simultaneous determination of paracetamol, diclofenac and tramadol. Materials (Basel) 2021;14(13):3581. PubMed PMC
Zhang Y, et al. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosens Bioelectron. 2019;130:315–321. PubMed