Substrate Specificity, Inhibitor Selectivity and Structure-Function Relationships of Aldo-Keto Reductase 1B15: A Novel Human Retinaldehyde Reductase
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26222439
PubMed Central
PMC4519324
DOI
10.1371/journal.pone.0134506
PII: PONE-D-15-14008
Knihovny.cz E-zdroje
- MeSH
- aldehydreduktasa antagonisté a inhibitory genetika metabolismus MeSH
- aldo-keto reduktasy MeSH
- diterpeny MeSH
- inhibitory enzymů farmakologie MeSH
- katalytická doména genetika MeSH
- kinetika MeSH
- konformace proteinů MeSH
- lidé MeSH
- molekulární modely MeSH
- oxidoreduktasy působící na aldehydy nebo donory oxo-skupin antagonisté a inhibitory genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- retinaldehyd metabolismus MeSH
- sekvence aminokyselin MeSH
- strukturní homologie proteinů MeSH
- substituce aminokyselin MeSH
- substrátová specifita MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 9-cis-retinal MeSH Prohlížeč
- AKR1B10 protein, human MeSH Prohlížeč
- AKR1B15 protein, human MeSH Prohlížeč
- aldehydreduktasa MeSH
- aldo-keto reduktasy MeSH
- diterpeny MeSH
- inhibitory enzymů MeSH
- oxidoreduktasy působící na aldehydy nebo donory oxo-skupin MeSH
- rekombinantní proteiny MeSH
- retinaldehyd MeSH
Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling. AKR1B15 is active towards a variety of carbonyl substrates, including retinoids, with lower kcat and Km values than AKR1B10. In contrast to AKR1B10, which strongly prefers all-trans-retinaldehyde, AKR1B15 exhibits superior catalytic efficiency with 9-cis-retinaldehyde, the best substrate found for this enzyme. With ketone and dicarbonyl substrates, AKR1B15 also shows higher catalytic activity than AKR1B10. Several typical AKR inhibitors do not significantly affect AKR1B15 activity. Amino acid substitutions clustered in loops A and C result in a smaller, more hydrophobic and more rigid active site in AKR1B15 compared with the AKR1B10 pocket, consistent with distinct substrate specificity and narrower inhibitor selectivity for AKR1B15.
Zobrazit více v PubMed
Jin Y, Penning TM. Aldo-keto reductases and bioactivation/detoxication. Annu Rev Pharmacol Toxicol. 2007;47: 263–292. PubMed
Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev. 2008;40: 553–624. PubMed PMC
Ruiz FX, Gallego O, Ardèvol A, Moro A, Domínguez M, Alvarez S, et al. Aldo-keto reductases from the AKR1B subfamily: retinoid specificity and control of cellular retinoic acid levels. Chem Biol Interact. 2009;178: 171–177. 10.1016/j.cbi.2008.10.027 PubMed DOI
Matsunaga T, Wada Y, Endo S, Soda M, El-Kabbani O, Hara A. Aldo-Keto Reductase 1B10 and Its Role in Proliferation Capacity of Drug-Resistant Cancers. Front Pharmacol. 2012;3: 5 10.3389/fphar.2012.00005 PubMed DOI PMC
Ruiz FX, Moro A, Gallego O, Ardèvol A, Rovira C, Petrash JM, et al. Human and rodent aldo-keto reductases from the AKR1B subfamily and their specificity with retinaldehyde. Chem Biol Interact. 2011;191: 199–205. 10.1016/j.cbi.2011.02.007 PubMed DOI PMC
Salabei JK, Li X-P, Petrash JM, Bhatnagar A, Barski OA. Functional expression of novel human and murine AKR1B genes. Chem Biol Interact. 2011;191: 177–184. 10.1016/j.cbi.2011.01.020 PubMed DOI PMC
Oates PJ. Aldose reductase, still a compelling target for diabetic neuropathy. Curr Drug Targets. 2008;9: 14–36. PubMed
Ma J, Luo DX, Huang C, Shen Y, Bu Y, Markwell S, et al. AKR1B10 overexpression in breast cancer: association with tumor size, lymph node metastasis and patient survival and its potential as a novel serum marker. Int J Cancer. 2012;131: 862–871. PubMed
Tammali R, Reddy ABM, Saxena A, Rychahou PG, Evers BM, Qiu S, et al. Inhibition of aldose reductase prevents colon cancer metastasis. Carcinogenesis. 2011;32: 1259–1267. 10.1093/carcin/bgr102 PubMed DOI PMC
Endo S, Matsunaga T, Kuwata K, Zhao H-T, El-Kabbani O, Kitade Y, et al. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. Bioorg Med Chem. 2010;18: 2485–2490. 10.1016/j.bmc.2010.02.050 PubMed DOI
Chatzopoulou M, Alexiou P, Kotsampasakou E, Demopoulos VJ. Novel aldose reductase inhibitors: a patent survey (2006—present). Expert Opin Ther Pat. 2012;22: 1303–1323. 10.1517/13543776.2012.726615 PubMed DOI
Pathania S, Randhawa V, Bagler G. Prospecting for novel plant-derived molecules of Rauvolfia serpentina as inhibitors of Aldose Reductase, a potent drug target for diabetes and its complications. PLoS One. 2013;8: e61327 10.1371/journal.pone.0061327 PubMed DOI PMC
Soda M, Hu D, Endo S, Takemura M, Li J, Wada R, et al. Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo-keto reductase 1B10. Eur J Med Chem. 2012;48: 321–329. 10.1016/j.ejmech.2011.12.034 PubMed DOI
Zhang L, Zhang H, Zheng X, Zhao Y, Chen S, Chen Y, et al. Structural basis for the inhibition of AKR1B10 by caffeic acid phenethyl ester (CAPE). ChemMedChem. 2014;9: 706–709. 10.1002/cmdc.201300455 PubMed DOI
Cousido-Siah A, Ruiz FX, Mitschler A, Porté S, de Lera AR, Martín MJ, et al. Identification of a novel polyfluorinated compound as a lead to inhibit the human enzymes aldose reductase and AKR1B10: structure determination of both ternary complexes and implications for drug design. Acta Crystallogr D Biol Crystallogr. 2014;70: 889–903. 10.1107/S1399004713033452 PubMed DOI
Weber S, Salabei JK, Möller G, Kremmer E, Bhatnagar A, Adamski J, et al. Aldo-Keto Reductase 1B15 (AKR1B15): a Mitochondrial Human Aldo-Keto Reductase with Activity towards Steroids and 3-Keto-acyl-CoA Conjugates. J Biol Chem. 2015;209: 6531–6545 PubMed PMC
Hackett NR, Butler MW, Shaykhiev R, Salit J, Omberg L, Rodriguez-Flores JL, et al. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics. 2012;13: 82 10.1186/1471-2164-13-82 PubMed DOI PMC
Constantinescu S, Hecht K, Sobotzki N, Erzinger MM, Bovet C, Shay JW, et al. Transcriptomic responses of cancerous and noncancerous human colon cells to sulforaphane and selenium. Chem Res Toxicol. 2014;27: 377–386. 10.1021/tx400427t PubMed DOI
Calvo SE, Compton AG, Hershman SG, Lim SC, Lieber DS, Tucker EJ, et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing. Sci Transl Med. 2012;4: 118ra10 10.1126/scitranslmed.3003310 PubMed DOI PMC
Reumers J, De Rijk P, Zhao H, Liekens A, Smeets D, Cleary J, et al. Optimized filtering reduces the error rate in detecting genomic variants by short-read sequencing. Nat Biotechnol. 2012;30: 61–8. PubMed
Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. Joint influence of small-effect genetic variants on human longevity. Aging. 2010;2: 612–620. PubMed PMC
De Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli . BMC Biotechnol. 2007;7: 32 PubMed PMC
Gallego O, Ruiz FX, Ardèvol A, Domínguez M, Alvarez R, de Lera AR, et al. Structural basis for the high all-trans-retinaldehyde reductase activity of the tumor marker AKR1B10. Proc Natl Acad Sci USA. 2007;104: 20764–20769. PubMed PMC
Larroy C, Fernandez MR, Gonzalez E, Parés X, Biosca JA. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J. 2002;172: 163–172. PubMed PMC
Gallego O, Belyaeva OV, Porté S, Ruiz FX, Stetsenko AV, Shabrova EV, et al. Comparative functional analysis of human medium-chain dehydrogenases, short-chain dehydrogenases/reductases and aldo-keto reductases with retinoids. Biochem J. 2006;399: 101–109. PubMed PMC
Kuksa V, Imanishi Y, Batten M, Palczewski K, Moise AR. Retinoid cycle in the vertebrate retina: experimental approaches and mechanisms of isomerization. Vision Res. 2003;43: 2959–2981. PubMed
Belyaeva OV, Korkina OV, Stetsenko AV, Kim T, Nelson PS, Kedishvili NY. Biochemical properties of purified human retinol dehydrogenase 12 (RDH12): catalytic efficiency toward retinoids and C9 aldehydes and effects of cellular retinol-binding protein type I (CRBPI) and cellular retinaldehyde-binding protein (CRALBP) on the oxidation and reduction of retinoids. Biochemistry. 2005;44: 7035–7047. PubMed PMC
Canutescu AA, Shelenkov AA, Dunbrack RL. A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci. 2003;12: 2001–2014. PubMed PMC
Pronk S, Páll S, Schulz R, Larsson P, Bjelkmar P, Apostolov R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29: 845–854. 10.1093/bioinformatics/btt055 PubMed DOI PMC
Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins. 2006;65: 712–725. PubMed PMC
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins. 2010;78: 1950–1958. 10.1002/prot.22711 PubMed DOI PMC
Holmberg N, Ryde U, Bülow L. Redesign of the coenzyme specificity in L-lactate dehydrogenase from bacillus stearothermophilus using site-directed mutagenesis and media engineering. Protein Eng. 1999;12: 851–856. PubMed
Hawkins GD, Cramer CJ, Truhlan DG. Parametrized Models of Aqueous Free Energies of Solvation Based on Pairwise Descreening of Solute Atomic Charges from a Dielectric Medium. J Phys Chem. 1996;100: 19824–19839.
Seeliger D, Haas J, de Groot BL. Geometry-based sampling of conformational transitions in proteins. Structure. 2007;15: 1482–1492. PubMed
De Groot BL, van Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJ. Prediction of protein conformational freedom from distance constraints. Proteins. 1997;29: 240–251. PubMed
Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr. International Union of Crystallography; 1993;26: 283–291.
Eisenberg D, Lüthy R, Bowie JU. VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol. 1997;277: 396–404. PubMed
Goodsell DS, Morris GM, Olson AJ. Automated docking of flexible ligands: applications of AutoDock. J Mol Recognit. 9: 1–5. PubMed
Porté S, Ruiz FX, Giménez J, Molist I, Alvarez S, Domínguez M, et al. Aldo-keto reductases in retinoid metabolism: search for substrate specificity and inhibitor selectivity. Chem Biol Interact. 2013;202: 186–194. 10.1016/j.cbi.2012.11.014 PubMed DOI
Řezáč J, Fanfrlík J, Salahub D, Hobza P. Semiempirical Quantum Chemical PM6 Method Augmented by Dispersion and H-Bonding Correction Terms Reliably Describes Various Types of Noncovalent Complexes. J Chem Theory Comput. 2009;5: 1749–1760. PubMed
Klamt A, Schüürmann G. COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc. 1993;2: 799–805.
Lepšík M, Řezáč J, Kolář M, Pecina A, Hobza P, Fanfrlík J. The Semiempirical Quantum Mechanical Scoring Function for In Silico Drug Design. Chempluschem. 2013;78: 921–931. PubMed
Fanfrlík J, Kolář M, Kamlar M, Hurný D, Ruiz FX, Cousido-Siah A, et al. Modulation of aldose reductase inhibition by halogen bond tuning. ACS Chem Biol. 2013;8: 2484–2492. 10.1021/cb400526n PubMed DOI
Benkert P, Tosatto SCE, Schomburg D. QMEAN: A comprehensive scoring function for model quality assessment. Proteins. 2008;71: 261–277. PubMed
Durrant JD, de Oliveira CAF, McCammon JA. POVME: an algorithm for measuring binding-pocket volumes. J Mol Graph Model. 2011;29: 773–776. 10.1016/j.jmgm.2010.10.007 PubMed DOI PMC
Tao H, Liu W, Simmons BN, Harris HK, Cox TC, Massiah M a. Purifying natively folded proteins from inclusion bodies using sarkosyl, Triton X-100, and CHAPS. Biotechniques. 2010;48: 61–64. 10.2144/000113304 PubMed DOI
Pastel E, Pointud J-C, Volat F, Martinez A, Lefrançois-Martinez A-M. Aldo-Keto Reductases 1B in Endocrinology and Metabolism. Front Pharmacol. 2012;3: 148 10.3389/fphar.2012.00148 PubMed DOI PMC
Ruiz FX, Porté S, Gallego O, Moro A, Ardèvol A, Del Río-Espínola A, et al. Retinaldehyde is a substrate for human aldo-keto reductases of the 1C subfamily. Biochem J. 2011;440: 335–344. 10.1042/BJ20111286 PubMed DOI
Crosas B, Cederlund E, Torres D, Jornvall H, Farrés J, Parés X. A vertebrate aldo-keto reductase active with retinoids and ethanol. J Biol Chem. 2001;276: 19132–19140. PubMed
Verma M, Martin HJ, Haq W, O’Connor TR, Maser E, Balendiran GK. Inhibiting wild-type and C299S mutant AKR1B10; a homologue of aldose reductase upregulated in cancers. Eur J Pharmacol. 2008;584: 213–221. 10.1016/j.ejphar.2008.01.036 PubMed DOI PMC
Ruiz FX, Cousido-Siah A, Mitschler A, Farrés J, Parés X, Podjarny A. X-ray structure of the V301L aldo—keto reductase 1B10 complexed with NADP+ and the potent aldose reductase inhibitor fidarestat: Implications for inhibitor binding and selectivity. Chem Biol Interact. 2013;202: 178–185. 10.1016/j.cbi.2012.12.013 PubMed DOI
Zhang L, Zhang H, Zhao Y, Li Z, Chen S, Zhai J, et al. Inhibitor selectivity between aldo-keto reductase superfamily members AKR1B10 and AKR1B1: role of Trp112 (Trp111). FEBS Lett. 2013;587: 3681–3686. 10.1016/j.febslet.2013.09.031 PubMed DOI
Sundaram K, Dhagat U, Endo S, Chung R, Matsunaga T, Hara A, et al. Structure of rat aldose reductase-like protein AKR1B14 holoenzyme: Probing the role of His269 in coenzyme binding by site-directed mutagenesis. Bioorg Med Chem Lett. 2011;21: 801–804. 10.1016/j.bmcl.2010.11.086 PubMed DOI
Urzhumtsev A, Tête-Favier F, Mitschler A, Barbanton J, Barth P, Urzhumtseva L, et al. A “specificity” pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure. 1997;5: 601–612. PubMed
Kokkinidis M, Glykos NM, Fadouloglou VE. Protein Flexibility and Enzymatic Catalysis Adv Protein Chem Struct Biol. 2012. pp. 181–218. 10.1016/B978-0-12-398312-1.00007-X PubMed DOI
Kedishvili NY. Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res. 2013;54: 1744–1760. 10.1194/jlr.R037028 PubMed DOI PMC
Belyaeva OV, Korkina OV, Stetsenko AV, Kedishvili NY. Human retinol dehydrogenase 13 (RDH13) is a mitochondrial short-chain dehydrogenase/reductase with a retinaldehyde reductase activity. FEBS J. 2008;275: 138–147. PubMed PMC
Ruiz FX, Porté S, Parés X, Farrés J. Biological role of aldo-keto reductases in retinoic Acid biosynthesis and signaling. Front Pharmacol. 2012;3: 58 10.3389/fphar.2012.00058 PubMed DOI PMC
Palczewski G, Amengual J, Hoppel CL, von Lintig J. Evidence for compartmentalization of mammalian carotenoid metabolism. FASEB J. 2014; 1–13. 10.1096/fj.14-0101LTE PubMed DOI PMC
Jiang W, Napoli JL. The retinol dehydrogenase Rdh10 localizes to lipid droplets during acyl ester biosynthesis. J Biol Chem. 2013;288: 589–597. 10.1074/jbc.M112.402883 PubMed DOI PMC
Acin-Perez R, Hoyos B, Zhao F, Vinogradov V, Fischman D a, Harris R a, et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J. 2010;24: 627–636. 10.1096/fj.09-142281 PubMed DOI PMC
Echtay KS, Brand MD. 4-hydroxy-2-nonenal and uncoupling proteins: an approach for regulation of mitochondrial ROS production. Redox Rep. 2007;12: 26–29. PubMed
Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol. 2015;4: 193–199. 10.1016/j.redox.2014.12.011 PubMed DOI PMC
Luong C, Miller A, Barnett J, Chow J, Ramesha C, Browner MF. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat Struct Biol. 1996;3: 927–933. PubMed
Kimble-Hill AC, Parajuli B, Chen CH, Mochly-Rosen D, Hurley TD. Development of selective inhibitors for aldehyde dehydrogenases based on substituted indole-2,3-diones. J Med Chem. 2014;57: 714–722. 10.1021/jm401377v PubMed DOI PMC
Endo S, Matsunaga T, Mamiya H, Ohta C, Soda M, Kitade Y, et al. Kinetic studies of AKR1B10, human aldose reductase-like protein: endogenous substrates and inhibition by steroids. Arch Biochem Biophys. 2009;487: 1–9. 10.1016/j.abb.2009.05.009 PubMed DOI
Shen Y, Zhong L, Johnson S, Cao D. Human aldo-keto reductases 1B1 and 1B10: a comparative study on their enzyme activity toward electrophilic carbonyl compounds. Chem Biol Interact. 2011;191: 192–198. 10.1016/j.cbi.2011.02.004 PubMed DOI PMC
Calam E, Porté S, Fernández MR, Farrés J, Parés X, Biosca JA. Biocatalytic production of alpha-hydroxy ketones and vicinal diols by yeast and human aldo-keto reductases. Chem Biol Interact. 2013;202: 195–203. 10.1016/j.cbi.2012.12.006 PubMed DOI
Kubiseski TJ, Flynn TG. Studies on human aldose reductase. Probing the role of arginine 268 by site-directed mutagenesis. J Biol Chem. 1995;270: 16911–16917. PubMed
Ehrig T, Bohren KM, Prendergast FG, Gabbay KH. Mechanism of aldose reductase inhibition: binding of NADP+/NADPH and alrestatin-like inhibitors. Biochemistry. 1994;33: 7157–7165. PubMed
Endo S, Matsunaga T, Soda M, Tajima K, Zhao H-T, El-Kabbani O, et al. Selective inhibition of the tumor marker AKR1B10 by antiinflammatory N-phenylanthranilic acids and glycyrrhetic acid. Biol Pharm Bull. 2010;33: 886–890. PubMed