In Vitro Utilization of Prebiotics by Listeria monocytogenes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Ministry of Education, Youth and Sports of the Czech Republic
MEYS Grant No: LM2023064
METROFOOD-CZ research infrastructure project
PubMed
39338550
PubMed Central
PMC11433794
DOI
10.3390/microorganisms12091876
PII: microorganisms12091876
Knihovny.cz E-zdroje
- Klíčová slova
- Listeria monocytogenes, beta-(1,3)-D-glucan, oligosaccharides, pathogen growth, prebiotics,
- Publikační typ
- časopisecké články MeSH
Listeria monocytognes is an emerging pathogen responsible for the serious foodborne disease, listeriosis. The commensal gut microbiota is the first line of defense against pathogen internalization. The gut microbiome can be modified by prebiotic substrates, which are frequently added to food products and dietary supplements. Prebiotics should selectively support the growth of beneficial microbes and thus improve host health. Nevertheless, little is known about their effect on the growth of L. monocytogenes. The aim of this study was to evaluate the growth ability of four L. monocytogenes strains, representing the most common serotypes, on prebiotic oligosaccharides (beta-(1,3)-D-glucan, inulin, fructooligosaccharides, galactooligosaccharides, lactulose, raffinose, stachyose and 2'-fucosyllactose and a mixture of human milk oligosaccharides) as a sole carbon source. The results showed that only beta-(1,3)-D-glucan was metabolized by L. monocytogenes. These cell culture data suggest that beta-(1,3)-D-glucan may not be selectively utilized by healthy commensal bacteria, and its role in intestinal pathogen growth warrants further exploration in vivo.
Zobrazit více v PubMed
Bhunia A.K. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. 2nd ed. Springer; Cham, Switzerland: 2018. p. 365.
Farber J.M., Peterkin P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991;55:476–511. doi: 10.1128/mr.55.3.476-511.1991. PubMed DOI PMC
Shamloo E., Hosseini H., Moghadam A.Z., Larsen H.M., Haslberger A., Alebouyeh M. Importance of Listeria monocytogenes in food safety: A review of its prevalence, detection, and antibiotic resistance. Iran. J. Vet. Res. 2019;20:241. doi: 10.1007/s00248-023-02269-9. PubMed DOI PMC
Azari S., Johnson L.J., Webb A., Kozlowski S.M., Zhang X., Rood K., Amer A., Seveau S. Hofbauer cells spread Listeria monocytogenes among placental cells and undergo pro-inflammatory reprogramming while retaining production of tolerogenic factors. mBio. 2021;12:e0184921. doi: 10.1128/mBio.01849-21. PubMed DOI PMC
European Food Safety Authority. European Centre for Disease Prevention and Control The European Union one health 2020 zoonoses report. EFSA J. 2021;19:6971. doi: 10.2903/J.EFSA.2021.6971. PubMed DOI PMC
Das S., Surendran P.K., Thampuran N. Detection and differentiation of Listeria monocytogenes and Listeria innocua by multiplex PCR. Fish. Technol. 2010;47:91–94.
Nadon C.A., Woodward D.L., Young C., Rodgers F.G., Wiedmann M. Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J. Clin. Microbiol. 2001;39:2704. doi: 10.1128/JCM.39.7.2704-2707.2001. PubMed DOI PMC
Bortolussi R. Public health - Listeriosis: A primer. Can. Med. Assoc. J. 2008;179:795–797. doi: 10.1503/cmaj.081377. PubMed DOI PMC
Miceli A., Settanni L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019;69:185–199. doi: 10.1007/s13213-019-1435-6. DOI
Simonetti T., Peter K., Chen Y., Jin Q., Zhang G., LaBorde L.F., Macarisin D. Prevalence and distribution of Listeria monocytogenes in three commercial tree fruit packinghouses. Front. Microbiol. 2021;12:652708. doi: 10.3389/fmicb.2021.652708. PubMed DOI PMC
Gibson G.R., Probert H.M., Loo J.V., Rastall R.A., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. PubMed DOI
Khan R., Petersen F.C., Shekhar S. Commensal bacteria: An emerging player in defense against respiratory pathogens. Front. Immunol. 2019;10:1203. doi: 10.3389/fimmu.2019.01203. PubMed DOI PMC
Roberfroid M., Gibson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010;104((Suppl. S2)):1–63. doi: 10.1017/S0007114510003363. PubMed DOI
Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75. PubMed DOI
Charalampopoulos D., Rastall R.A. Prebiotics in foods. Curr. Opin. Biotechnol. 2012;23:187–191. doi: 10.1016/j.copbio.2011.12.028. PubMed DOI
Musilova S., Rada V., Vlkova E., Bunesova V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef. Microbes. 2014;5:273–283. doi: 10.3920/BM2013.0080. PubMed DOI
Bunešová V., Vlková E., Rada V., Kňazovická V., Ročková Š., Geigerová M., Božik M. Growth of infant fecal bacteria on commercial prebiotics. Folia Microbiol. 2012;57:273–275. doi: 10.1007/s12223-012-0123-8. PubMed DOI
Rada V., Nevoral J., Trojanová I., Tománková E., Šmehilová M., Killer J. Growth of infant faecal bifidobacteria and clostridia on prebiotic oligosaccharides in in vitro conditions. Anaerobe. 2008;14:205–208. doi: 10.1016/j.anaerobe.2008.05.003. PubMed DOI
Sauer J.-D., Herskovits A.A., O’Riordan M.X.D. Metabolism of the Gram-positive bacterial pathogen Listeria monocytogenes. Microbiol. Spectr. 2019;7:1–12. doi: 10.1128/microbiolspec.GPP3-0066-2019. PubMed DOI PMC
Friedman M.E., Roessler W.G. Growth of Listeria monocytogenes in defined media. J. Bacteriol. 1961;82:528–533. doi: 10.1128/jb.82.4.528-533.1961. PubMed DOI PMC
Balay D.R., Gänzle M.G., McMullen L.M. The effect of carbohydrates and bacteriocins on the growth kinetics and resistance of Listeria monocytogenes. Front. Microbiol. 2018;9:347. doi: 10.3389/fmicb.2018.00347. PubMed DOI PMC
Gopal S., Berg D., Hagen N., Schriefer E.M., Stoll R., Goebel W., Kreft J. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS ONE. 2010;5:10349. doi: 10.1371/journal.pone.0010349. PubMed DOI PMC
Pine L., Malcolm G.B., Brooks J.B., Daneshvar M.I. Physiological studies on the growth and utilization of sugars by Listeria species. Can. J. Microbiol. 1989;35:245–254. doi: 10.1139/m89-037. PubMed DOI
Schardt J., Jones G., Müller-Herbst S., Schauer K., D’Orazio S.E.F., Fuchs T.M. Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection. Sci. Rep. 2017;7:17821. doi: 10.1038/s41598-017-17570-0. PubMed DOI PMC
Bae D., Seo K.S., Zhang T., Wang C. Characterization of a potential Listeria monocytogenes virulence factor associated with attachment to fresh produce. Appl. Environ. Microbiol. 2013;79:6855–6861. doi: 10.1128/AEM.01006-13. PubMed DOI PMC
Paspaliari D.K., Loose J.S.M., Larsen M.H., Vaaje-Kolstad G. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. FEBS J. 2015;282:921–936. doi: 10.1111/febs.13191. PubMed DOI
Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. International Organization for Standardization; Geneva, Switzerland: 2017. [(accessed on 6 September 2024)]. Available online: https://www.iso.org/standard/60313.html.
Salmonová H., Killer J., Bunešová V., Geigerová M., Vlková E. Cultivable bacteria from Pectinatella magnifica and the surrounding water in South Bohemia indicate potential new Gammaproteobacterial, Betaproteobacterial and Firmicutes taxa. FEMS Microbiol. Lett. 2018;365:fny118. doi: 10.1093/femsle/fny118. PubMed DOI
Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC
Hall T., Biosciences I., Carlsbad C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011;2:60–61.
Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC
McGinnis S., Madden T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:20–25. doi: 10.1093/nar/gkh435. PubMed DOI PMC
Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC
Liu D., Ainsworth A.J., Austin F.W., Lawrence M.L. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J. Med. Microbiol. 2003;52:1065–1070. doi: 10.1099/jmm.0.05358-0. PubMed DOI
Hungate R.E. A roll tube method for cultivation of strict anaerobes. In: Norris J.R., Ribbons D.W., editors. Methods in Microbiology. 1st ed. Volume 3. Academic Press; San Diego, CA, USA: 1969. pp. 117–132. DOI
Rockova S., Nevoral J., Rada V., Marsik P., Sklenar J., Hinkova A., Vlkova E., Marounek M. Factors affecting the growth of bifidobacteria in human milk. Int. Dairy J. 2011;21:504–508. doi: 10.1016/j.idairyj.2011.02.005. DOI
Bai Y.P., Zhou H.M., Zhu K.R., Li Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021;271:118416. doi: 10.1016/j.carbpol.2021.118416. PubMed DOI
Zhao Y., Zhou H.M., Huang Z.H., Zhao R.Y. Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocoll. 2020;101:105543. doi: 10.1016/j.foodhyd.2019.105543. DOI
Jones G.S., D’Orazio S.E.F. Listeria monocytogenes: Cultivation and laboratory. Curr. Protoc. Microbiol. 2013;31:9B.2.1. doi: 10.1002/9780471729259.mc09b02s31. PubMed DOI PMC
Humble M.W., King A., Phillips I. API ZYM: A simple rapid system for the detection of bacterial enzymes. J. Clin. Pathol. 1977;30:275–277. doi: 10.1136/jcp.30.3.275. PubMed DOI PMC
Durica-Mitic S., Göpel Y., Görke B. Carbohydrate utilization in bacteria: Making the most out of sugars with the help of small regulatory RNAs. Microbiol. Spectr. 2018;6:229–248. doi: 10.1128/microbiolspec.RWR-0013-2017. PubMed DOI PMC
Gahan C.G.M., Hill C. Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Front. Cell Infect. Microbiol. 2014;5:1–7. doi: 10.3389/fcimb.2014.00009. PubMed DOI PMC
Liu S., Graham J.E., Bigelow L., Morse P.D., Wilkinson B.J. Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl. Environ. Environ. Microbiol. 2002;68:1697–1705. doi: 10.1128/AEM.68.4.1697-1705.2002. PubMed DOI PMC
Lockyer S., Stanner S. Prebiotics—An added benefit of some fibre types. Nutr. Bull. 2019;44:74–91. doi: 10.1111/nbu.12366. DOI
Ibrahim O.O. Functional oligosaccharides: Chemicals structure, manufacturing, health benefits, applications and regulations. J. Food Chem. Nanotechnol. 2018;4:65–76. doi: 10.17756/jfcn.2018-060. DOI
Kim K.S., Yun H.S. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzym. Microb. Technol. 2006;39:496–500. doi: 10.1016/j.enzmictec.2005.12.020. DOI
Mudgil D. The interaction between insoluble and soluble fiber. In: Samaan R.A., editor. Dietary Fiber for the Prevention of Cardiovascular Disease: Fiber’s Interaction between Gut Micoflora, Sugar Metabolism, Weight Control and Cardiovascular Health. 1st ed. Academic Press; San Diego, CA, USA: 2017. pp. 35–59. DOI
Stone B.A. Chemistry of β-glucans. In: Bacic A., Fincher G.B., Stone B.A., editors. Chemistry, Biochemistry, and Biology of 1–3 Beta Glucans and Related Polysaccharides. 1st ed. Academic Press; San Diego, CA, USA: 2009. pp. 5–46. DOI
del Corral F., Buchanan R.L. Evaluation of the API-ZYM system for identification of Listeria. Food Microbiol. 1990;7:99–106. doi: 10.1016/0740-0020(90)90015-A. DOI
Singhania R.R., Patel A.K., Sukumaran R.K., Larroche C., Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013;127:500–507. doi: 10.1016/j.biortech.2012.09.012. PubMed DOI
Ouyang B., Wang G., Zhang N., Zuo J., Huang Y., Zhao X. Recent Advances in β-glucosidase sequence and structure engineering: A brief review. Molecules. 2023;28:4990. doi: 10.3390/molecules28134990. PubMed DOI PMC
Synytsya A., Novak M. Structural analysis of glucans. Ann. Transl. Med. 2014;2:17. doi: 10.3978/J.ISSN.2305-5839.2014.02.07. PubMed DOI PMC
Kumar K., Correia M.A.S., Pires V.M.R., Dhillon A., Sharma K., Rajulapati V., Fontes C.M.G.A., Carvalho A.L., Goyal A. Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int. J. Biol. Macromol. 2018;117:890–901. doi: 10.1016/j.ijbiomac.2018.06.003. PubMed DOI
Ramos O.S., Malcata F.X. Food-grade enzymes. In: Moo-Young M., editor. Comprehensive Biotechnology. 2nd ed. Volume 3. Academic Press; San Diego, CA, USA: 2011. pp. 555–569. DOI
Romick T.L., Fleming H.P., Mcfeeters R.F. Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Appl. Environ. Environ. Microbiol. 1996;62:304–307. doi: 10.1128/aem.62.1.304-307.1996. PubMed DOI PMC
Kunová G., Rada V., Lisová I., Ročková Š., Vlková E. In vitro fermentability of prebiotic oligosaccharides by lactobacilli. Czech J. Food Sci. 2011;29:49–54. doi: 10.17221/306/2011-CJFS. DOI
Zhao J., Cheung P.C.K. Fermentation of β-glucans derived from different sources by bifidobacteria: Evaluation of their bifidogenic effect. J. Agric. Food Chem. 2011;59:5986–5992. doi: 10.1021/jf200621y. PubMed DOI
Jayachandran M., Chen J., Chung S.S.M., Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018;61:101–110. doi: 10.1016/j.jnutbio.2018.06.010. PubMed DOI
Shokri H., Asadi F., Khosravi A.R., Shokriy H., Khosraviy A.R. Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Nat. Prod. Res. 2009;22:414–421. doi: 10.1080/14786410701591622. PubMed DOI
Kumar A., Naraian R. Differential expression of the microbial β-1,4-xylanase, and β-1,4-endoglucanase genes. In: Singh H.B., Gupta V.K., Jogaiah S., editors. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Genes Biochemistry and Applications. 1st ed. Elsiever; Amsterdam, The Netherlands: 2019. pp. 95–111. DOI
Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8:92. doi: 10.3390/foods8030092. PubMed DOI PMC
Kaur A.P., Bhardwaj S., Dhanjal D.S., Nepovimova E., Cruz-martins N., Kuča K., Chopra C., Singh R., Kumar H., Șen F., et al. Plant prebiotics and their role in the amelioration of diseases. Biomolecules. 2021;11:440. doi: 10.3390/biom11030440. PubMed DOI PMC
Wang S., Xiao Y., Tian F., Zhao J., Zhang H., Zhai Q., Chen W. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J. Funct. Foods. 2020;66:103838. doi: 10.1016/j.jff.2020.103838. DOI
Buddington K.K., Donahoo J.B., Buddington R.K. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J. Nutr. 2002;132:472–477. doi: 10.1093/jn/132.3.472. PubMed DOI
Chen P., Reiter T., Huang B., Kong N., Weimer B.C. Prebiotic oligosaccharides potentiate host protective responses against L. monocytogenes infection. Pathogens. 2017;6:68. doi: 10.3390/pathogens6040068. PubMed DOI PMC
Karakan T., Tuohy K.M., Janssen-van Solingen G. Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption. Front. Nutr. 2021;8:672925. doi: 10.3389/fnut.2021.672925. PubMed DOI PMC
Sangwan V., Tomar S.K., Ali B., Singh R.R.B., Singh A.K. Galactooligosaccharides reduce infection caused by Listeria monocytogenes and modulate IgG and IgA levels in mice. Int. Dairy. J. 2015;41:58–63. doi: 10.1016/j.idairyj.2014.09.010. DOI
Kupfahl C., Geginat G., Hof H. Lentinan has a stimulatory effect on innate and adaptive immunity against murine Listeria monocytogenes infection. Int. Immunopharmacol. 2006;6:686–696. doi: 10.1016/j.intimp.2005.10.008. PubMed DOI
Li W., Yajima T., Saito K., Nishimura H., Fushimi T., Ohshima Y., Tsukamoto Y., Yoshikai Y. Immunostimulating properties of intragastrically administered acetobacter-derived soluble branched (1,4)-β-D-glucans decrease murine susceptibility to Listeria monocytogenes. Infect. Immun. 2004;72:7005–7011. doi: 10.1128/IAI.72.12.7005-7011.2004. PubMed DOI PMC
Torello C.O., De Souza Queiroz J., Oliveira S.C., Queiroz M.L.S. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes. Int. Immunopharmacol. 2010;10:1573–1579. doi: 10.1016/j.intimp.2010.09.009. PubMed DOI
Alonso V.P.P., Harada A.M.M., Kabuki D.Y. Competitive and/or cooperative interactions of Listeria monocytogenes with Bacillus cereus in dual-species biofilm formation. Front. Microbiol. 2020;11:177. doi: 10.3389/fmicb.2020.00177. PubMed DOI PMC
Amézquita A., Brashears M.M. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J. Food Prot. 2002;65:316–325. doi: 10.4315/0362-028X-65.2.316. PubMed DOI
Corr S.C., Gahan C.G.M., Hill C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol. 2007;50:380–388. doi: 10.1111/j.1574-695X.2007.00264.x. PubMed DOI
da Silva Sabo S., Converti A., Todorov S.D., Domínguez J.M., de Souza Oliveira R.P. Effect of inulin on growth and bacteriocin production by Lactobacillus plantarum in stationary and shaken cultures. Int. J. Food Sci. Technol. 2015;50:864–870. doi: 10.1111/ijfs.12711. DOI
García M.J., Ruíz F., Asurmendi P., Pascual L., Barberis L. Searching potential candidates for development of protective cultures: Evaluation of two Lactobacillus strains to reduce Listeria monocytogenes in artificially contaminated milk. J. Food Saf. 2020;40:e12723. doi: 10.1111/jfs.12723. DOI
Hascoët A.S., Ripolles-avila C., Cervantes-huamán B.R.H., Rodríguez-Jerez J.J. In vitro preformed biofilms of Bacillus safensis inhibit the adhesion and subsequent development of Listeria monocytogenes on stainless-steel surfaces. Biomolecules. 2021;11:475. doi: 10.3390/biom11030475. PubMed DOI PMC
Shao X., Fang K., Medina D., Wan J., Lee J.L., Hong S.H. The probiotic, Leuconostoc mesenteroides, inhibits Listeria monocytogenes biofilm formation. J. Food Saf. 2020;40:e12750. doi: 10.1111/jfs.12750. DOI
Tran T.D., Cid C.D., Hnasko R., Gorski L., McGarvey J.A. Bacillus amyloliquefaciens ALB65 inhibits the growth of Listeria monocytogenes on Cantaloupe melons. Appl. Environ. Microbiol. 2020;87:1–10. doi: 10.1128/AEM.01926-20. PubMed DOI PMC
Aké F.M.D., Joyet P., Deutscher J., Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol. Microbiol. 2011;81:274–293. doi: 10.1111/j.1365-2958.2011.07692.x. PubMed DOI
Crespo Tapia N., Dorey A.L., Gahan C.G.M., den Besten H.M.W., O’Byrne C.P., Abee T. Different carbon sources result in differential activation of sigma B and stress resistance in Listeria monocytogenes. Int. J. Food Microbiol. 2020;320:108504. doi: 10.1016/j.ijfoodmicro.2019.108504. PubMed DOI
Jaradat Z.W., Bhunia A.K. Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl. Environ. Microbiol. 2002;68:4876–4883. doi: 10.1128/AEM.68.10.4876-4883.2002. PubMed DOI PMC
Park S.F., Kroll R.G. Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol. Microbiol. 1993;8:653–661. doi: 10.1111/j.1365-2958.1993.tb01609.x. PubMed DOI
Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. doi: 10.1093/jn/125.6.1401. PubMed DOI
Hutkins R.W., Krumbeck J.A., Bindels L.B., Cani P.D., Fahey G., Goh Y.J., Hamaker B., Martens E.C., Mills D.A., Rastal R.A., et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016;37:1–7. doi: 10.1016/j.copbio.2015.09.001. PubMed DOI PMC
Bindels L.B., Delzenne N.M., Cani P.D., Walter J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015;12:303–310. doi: 10.1038/nrgastro.2015.47. PubMed DOI