In Vitro Utilization of Prebiotics by Listeria monocytogenes

. 2024 Sep 11 ; 12 (9) : . [epub] 20240911

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39338550

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845 Ministry of Education, Youth and Sports of the Czech Republic
MEYS Grant No: LM2023064 METROFOOD-CZ research infrastructure project

Odkazy

PubMed 39338550
PubMed Central PMC11433794
DOI 10.3390/microorganisms12091876
PII: microorganisms12091876
Knihovny.cz E-zdroje

Listeria monocytognes is an emerging pathogen responsible for the serious foodborne disease, listeriosis. The commensal gut microbiota is the first line of defense against pathogen internalization. The gut microbiome can be modified by prebiotic substrates, which are frequently added to food products and dietary supplements. Prebiotics should selectively support the growth of beneficial microbes and thus improve host health. Nevertheless, little is known about their effect on the growth of L. monocytogenes. The aim of this study was to evaluate the growth ability of four L. monocytogenes strains, representing the most common serotypes, on prebiotic oligosaccharides (beta-(1,3)-D-glucan, inulin, fructooligosaccharides, galactooligosaccharides, lactulose, raffinose, stachyose and 2'-fucosyllactose and a mixture of human milk oligosaccharides) as a sole carbon source. The results showed that only beta-(1,3)-D-glucan was metabolized by L. monocytogenes. These cell culture data suggest that beta-(1,3)-D-glucan may not be selectively utilized by healthy commensal bacteria, and its role in intestinal pathogen growth warrants further exploration in vivo.

Zobrazit více v PubMed

Bhunia A.K. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis. 2nd ed. Springer; Cham, Switzerland: 2018. p. 365.

Farber J.M., Peterkin P.I. Listeria monocytogenes, a food-borne pathogen. Microbiol. Rev. 1991;55:476–511. doi: 10.1128/mr.55.3.476-511.1991. PubMed DOI PMC

Shamloo E., Hosseini H., Moghadam A.Z., Larsen H.M., Haslberger A., Alebouyeh M. Importance of Listeria monocytogenes in food safety: A review of its prevalence, detection, and antibiotic resistance. Iran. J. Vet. Res. 2019;20:241. doi: 10.1007/s00248-023-02269-9. PubMed DOI PMC

Azari S., Johnson L.J., Webb A., Kozlowski S.M., Zhang X., Rood K., Amer A., Seveau S. Hofbauer cells spread Listeria monocytogenes among placental cells and undergo pro-inflammatory reprogramming while retaining production of tolerogenic factors. mBio. 2021;12:e0184921. doi: 10.1128/mBio.01849-21. PubMed DOI PMC

European Food Safety Authority. European Centre for Disease Prevention and Control The European Union one health 2020 zoonoses report. EFSA J. 2021;19:6971. doi: 10.2903/J.EFSA.2021.6971. PubMed DOI PMC

Das S., Surendran P.K., Thampuran N. Detection and differentiation of Listeria monocytogenes and Listeria innocua by multiplex PCR. Fish. Technol. 2010;47:91–94.

Nadon C.A., Woodward D.L., Young C., Rodgers F.G., Wiedmann M. Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J. Clin. Microbiol. 2001;39:2704. doi: 10.1128/JCM.39.7.2704-2707.2001. PubMed DOI PMC

Bortolussi R. Public health - Listeriosis: A primer. Can. Med. Assoc. J. 2008;179:795–797. doi: 10.1503/cmaj.081377. PubMed DOI PMC

Miceli A., Settanni L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019;69:185–199. doi: 10.1007/s13213-019-1435-6. DOI

Simonetti T., Peter K., Chen Y., Jin Q., Zhang G., LaBorde L.F., Macarisin D. Prevalence and distribution of Listeria monocytogenes in three commercial tree fruit packinghouses. Front. Microbiol. 2021;12:652708. doi: 10.3389/fmicb.2021.652708. PubMed DOI PMC

Gibson G.R., Probert H.M., Loo J.V., Rastall R.A., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004;17:259–275. doi: 10.1079/NRR200479. PubMed DOI

Khan R., Petersen F.C., Shekhar S. Commensal bacteria: An emerging player in defense against respiratory pathogens. Front. Immunol. 2019;10:1203. doi: 10.3389/fimmu.2019.01203. PubMed DOI PMC

Roberfroid M., Gibson G.R., Hoyles L., McCartney A.L., Rastall R., Rowland I., Wolvers D., Watzl B., Szajewska H., Stahl B., et al. Prebiotic effects: Metabolic and health benefits. Br. J. Nutr. 2010;104((Suppl. S2)):1–63. doi: 10.1017/S0007114510003363. PubMed DOI

Gibson G.R., Hutkins R., Sanders M.E., Prescott S.L., Reimer R.A., Salminen S.J., Scott K., Stanton C., Swanson K.S., Cani P.D., et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017;14:491–502. doi: 10.1038/nrgastro.2017.75. PubMed DOI

Charalampopoulos D., Rastall R.A. Prebiotics in foods. Curr. Opin. Biotechnol. 2012;23:187–191. doi: 10.1016/j.copbio.2011.12.028. PubMed DOI

Musilova S., Rada V., Vlkova E., Bunesova V. Beneficial effects of human milk oligosaccharides on gut microbiota. Benef. Microbes. 2014;5:273–283. doi: 10.3920/BM2013.0080. PubMed DOI

Bunešová V., Vlková E., Rada V., Kňazovická V., Ročková Š., Geigerová M., Božik M. Growth of infant fecal bacteria on commercial prebiotics. Folia Microbiol. 2012;57:273–275. doi: 10.1007/s12223-012-0123-8. PubMed DOI

Rada V., Nevoral J., Trojanová I., Tománková E., Šmehilová M., Killer J. Growth of infant faecal bifidobacteria and clostridia on prebiotic oligosaccharides in in vitro conditions. Anaerobe. 2008;14:205–208. doi: 10.1016/j.anaerobe.2008.05.003. PubMed DOI

Sauer J.-D., Herskovits A.A., O’Riordan M.X.D. Metabolism of the Gram-positive bacterial pathogen Listeria monocytogenes. Microbiol. Spectr. 2019;7:1–12. doi: 10.1128/microbiolspec.GPP3-0066-2019. PubMed DOI PMC

Friedman M.E., Roessler W.G. Growth of Listeria monocytogenes in defined media. J. Bacteriol. 1961;82:528–533. doi: 10.1128/jb.82.4.528-533.1961. PubMed DOI PMC

Balay D.R., Gänzle M.G., McMullen L.M. The effect of carbohydrates and bacteriocins on the growth kinetics and resistance of Listeria monocytogenes. Front. Microbiol. 2018;9:347. doi: 10.3389/fmicb.2018.00347. PubMed DOI PMC

Gopal S., Berg D., Hagen N., Schriefer E.M., Stoll R., Goebel W., Kreft J. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS ONE. 2010;5:10349. doi: 10.1371/journal.pone.0010349. PubMed DOI PMC

Pine L., Malcolm G.B., Brooks J.B., Daneshvar M.I. Physiological studies on the growth and utilization of sugars by Listeria species. Can. J. Microbiol. 1989;35:245–254. doi: 10.1139/m89-037. PubMed DOI

Schardt J., Jones G., Müller-Herbst S., Schauer K., D’Orazio S.E.F., Fuchs T.M. Comparison between Listeria sensu stricto and Listeria sensu lato strains identifies novel determinants involved in infection. Sci. Rep. 2017;7:17821. doi: 10.1038/s41598-017-17570-0. PubMed DOI PMC

Bae D., Seo K.S., Zhang T., Wang C. Characterization of a potential Listeria monocytogenes virulence factor associated with attachment to fresh produce. Appl. Environ. Microbiol. 2013;79:6855–6861. doi: 10.1128/AEM.01006-13. PubMed DOI PMC

Paspaliari D.K., Loose J.S.M., Larsen M.H., Vaaje-Kolstad G. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase. FEBS J. 2015;282:921–936. doi: 10.1111/febs.13191. PubMed DOI

Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 1: Detection Method. International Organization for Standardization; Geneva, Switzerland: 2017. [(accessed on 6 September 2024)]. Available online: https://www.iso.org/standard/60313.html.

Salmonová H., Killer J., Bunešová V., Geigerová M., Vlková E. Cultivable bacteria from Pectinatella magnifica and the surrounding water in South Bohemia indicate potential new Gammaproteobacterial, Betaproteobacterial and Firmicutes taxa. FEMS Microbiol. Lett. 2018;365:fny118. doi: 10.1093/femsle/fny118. PubMed DOI

Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. PubMed DOI PMC

Hall T., Biosciences I., Carlsbad C. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2011;2:60–61.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC

McGinnis S., Madden T.L. BLAST: At the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32:20–25. doi: 10.1093/nar/gkh435. PubMed DOI PMC

Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Liu D., Ainsworth A.J., Austin F.W., Lawrence M.L. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J. Med. Microbiol. 2003;52:1065–1070. doi: 10.1099/jmm.0.05358-0. PubMed DOI

Hungate R.E. A roll tube method for cultivation of strict anaerobes. In: Norris J.R., Ribbons D.W., editors. Methods in Microbiology. 1st ed. Volume 3. Academic Press; San Diego, CA, USA: 1969. pp. 117–132. DOI

Rockova S., Nevoral J., Rada V., Marsik P., Sklenar J., Hinkova A., Vlkova E., Marounek M. Factors affecting the growth of bifidobacteria in human milk. Int. Dairy J. 2011;21:504–508. doi: 10.1016/j.idairyj.2011.02.005. DOI

Bai Y.P., Zhou H.M., Zhu K.R., Li Q. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan. Carbohydr. Polym. 2021;271:118416. doi: 10.1016/j.carbpol.2021.118416. PubMed DOI

Zhao Y., Zhou H.M., Huang Z.H., Zhao R.Y. Different aggregation states of barley β-glucan molecules affects their solution behavior: A comparative analysis. Food Hydrocoll. 2020;101:105543. doi: 10.1016/j.foodhyd.2019.105543. DOI

Jones G.S., D’Orazio S.E.F. Listeria monocytogenes: Cultivation and laboratory. Curr. Protoc. Microbiol. 2013;31:9B.2.1. doi: 10.1002/9780471729259.mc09b02s31. PubMed DOI PMC

Humble M.W., King A., Phillips I. API ZYM: A simple rapid system for the detection of bacterial enzymes. J. Clin. Pathol. 1977;30:275–277. doi: 10.1136/jcp.30.3.275. PubMed DOI PMC

Durica-Mitic S., Göpel Y., Görke B. Carbohydrate utilization in bacteria: Making the most out of sugars with the help of small regulatory RNAs. Microbiol. Spectr. 2018;6:229–248. doi: 10.1128/microbiolspec.RWR-0013-2017. PubMed DOI PMC

Gahan C.G.M., Hill C. Listeria monocytogenes: Survival and adaptation in the gastrointestinal tract. Front. Cell Infect. Microbiol. 2014;5:1–7. doi: 10.3389/fcimb.2014.00009. PubMed DOI PMC

Liu S., Graham J.E., Bigelow L., Morse P.D., Wilkinson B.J. Identification of Listeria monocytogenes genes expressed in response to growth at low temperature. Appl. Environ. Environ. Microbiol. 2002;68:1697–1705. doi: 10.1128/AEM.68.4.1697-1705.2002. PubMed DOI PMC

Lockyer S., Stanner S. Prebiotics—An added benefit of some fibre types. Nutr. Bull. 2019;44:74–91. doi: 10.1111/nbu.12366. DOI

Ibrahim O.O. Functional oligosaccharides: Chemicals structure, manufacturing, health benefits, applications and regulations. J. Food Chem. Nanotechnol. 2018;4:65–76. doi: 10.17756/jfcn.2018-060. DOI

Kim K.S., Yun H.S. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzym. Microb. Technol. 2006;39:496–500. doi: 10.1016/j.enzmictec.2005.12.020. DOI

Mudgil D. The interaction between insoluble and soluble fiber. In: Samaan R.A., editor. Dietary Fiber for the Prevention of Cardiovascular Disease: Fiber’s Interaction between Gut Micoflora, Sugar Metabolism, Weight Control and Cardiovascular Health. 1st ed. Academic Press; San Diego, CA, USA: 2017. pp. 35–59. DOI

Stone B.A. Chemistry of β-glucans. In: Bacic A., Fincher G.B., Stone B.A., editors. Chemistry, Biochemistry, and Biology of 1–3 Beta Glucans and Related Polysaccharides. 1st ed. Academic Press; San Diego, CA, USA: 2009. pp. 5–46. DOI

del Corral F., Buchanan R.L. Evaluation of the API-ZYM system for identification of Listeria. Food Microbiol. 1990;7:99–106. doi: 10.1016/0740-0020(90)90015-A. DOI

Singhania R.R., Patel A.K., Sukumaran R.K., Larroche C., Pandey A. Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 2013;127:500–507. doi: 10.1016/j.biortech.2012.09.012. PubMed DOI

Ouyang B., Wang G., Zhang N., Zuo J., Huang Y., Zhao X. Recent Advances in β-glucosidase sequence and structure engineering: A brief review. Molecules. 2023;28:4990. doi: 10.3390/molecules28134990. PubMed DOI PMC

Synytsya A., Novak M. Structural analysis of glucans. Ann. Transl. Med. 2014;2:17. doi: 10.3978/J.ISSN.2305-5839.2014.02.07. PubMed DOI PMC

Kumar K., Correia M.A.S., Pires V.M.R., Dhillon A., Sharma K., Rajulapati V., Fontes C.M.G.A., Carvalho A.L., Goyal A. Novel insights into the degradation of β-1,3-glucans by the cellulosome of Clostridium thermocellum revealed by structure and function studies of a family 81 glycoside hydrolase. Int. J. Biol. Macromol. 2018;117:890–901. doi: 10.1016/j.ijbiomac.2018.06.003. PubMed DOI

Ramos O.S., Malcata F.X. Food-grade enzymes. In: Moo-Young M., editor. Comprehensive Biotechnology. 2nd ed. Volume 3. Academic Press; San Diego, CA, USA: 2011. pp. 555–569. DOI

Romick T.L., Fleming H.P., Mcfeeters R.F. Aerobic and anaerobic metabolism of Listeria monocytogenes in defined glucose medium. Appl. Environ. Environ. Microbiol. 1996;62:304–307. doi: 10.1128/aem.62.1.304-307.1996. PubMed DOI PMC

Kunová G., Rada V., Lisová I., Ročková Š., Vlková E. In vitro fermentability of prebiotic oligosaccharides by lactobacilli. Czech J. Food Sci. 2011;29:49–54. doi: 10.17221/306/2011-CJFS. DOI

Zhao J., Cheung P.C.K. Fermentation of β-glucans derived from different sources by bifidobacteria: Evaluation of their bifidogenic effect. J. Agric. Food Chem. 2011;59:5986–5992. doi: 10.1021/jf200621y. PubMed DOI

Jayachandran M., Chen J., Chung S.S.M., Xu B. A critical review on the impacts of β-glucans on gut microbiota and human health. J. Nutr. Biochem. 2018;61:101–110. doi: 10.1016/j.jnutbio.2018.06.010. PubMed DOI

Shokri H., Asadi F., Khosravi A.R., Shokriy H., Khosraviy A.R. Isolation of β-glucan from the cell wall of Saccharomyces cerevisiae. Nat. Prod. Res. 2009;22:414–421. doi: 10.1080/14786410701591622. PubMed DOI

Kumar A., Naraian R. Differential expression of the microbial β-1,4-xylanase, and β-1,4-endoglucanase genes. In: Singh H.B., Gupta V.K., Jogaiah S., editors. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Genes Biochemistry and Applications. 1st ed. Elsiever; Amsterdam, The Netherlands: 2019. pp. 95–111. DOI

Davani-Davari D., Negahdaripour M., Karimzadeh I., Seifan M., Mohkam M., Masoumi S.J., Berenjian A., Ghasemi Y. Prebiotics: Definition, types, sources, mechanisms, and clinical applications. Foods. 2019;8:92. doi: 10.3390/foods8030092. PubMed DOI PMC

Kaur A.P., Bhardwaj S., Dhanjal D.S., Nepovimova E., Cruz-martins N., Kuča K., Chopra C., Singh R., Kumar H., Șen F., et al. Plant prebiotics and their role in the amelioration of diseases. Biomolecules. 2021;11:440. doi: 10.3390/biom11030440. PubMed DOI PMC

Wang S., Xiao Y., Tian F., Zhao J., Zhang H., Zhai Q., Chen W. Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J. Funct. Foods. 2020;66:103838. doi: 10.1016/j.jff.2020.103838. DOI

Buddington K.K., Donahoo J.B., Buddington R.K. Dietary oligofructose and inulin protect mice from enteric and systemic pathogens and tumor inducers. J. Nutr. 2002;132:472–477. doi: 10.1093/jn/132.3.472. PubMed DOI

Chen P., Reiter T., Huang B., Kong N., Weimer B.C. Prebiotic oligosaccharides potentiate host protective responses against L. monocytogenes infection. Pathogens. 2017;6:68. doi: 10.3390/pathogens6040068. PubMed DOI PMC

Karakan T., Tuohy K.M., Janssen-van Solingen G. Low-dose lactulose as a prebiotic for improved gut health and enhanced mineral absorption. Front. Nutr. 2021;8:672925. doi: 10.3389/fnut.2021.672925. PubMed DOI PMC

Sangwan V., Tomar S.K., Ali B., Singh R.R.B., Singh A.K. Galactooligosaccharides reduce infection caused by Listeria monocytogenes and modulate IgG and IgA levels in mice. Int. Dairy. J. 2015;41:58–63. doi: 10.1016/j.idairyj.2014.09.010. DOI

Kupfahl C., Geginat G., Hof H. Lentinan has a stimulatory effect on innate and adaptive immunity against murine Listeria monocytogenes infection. Int. Immunopharmacol. 2006;6:686–696. doi: 10.1016/j.intimp.2005.10.008. PubMed DOI

Li W., Yajima T., Saito K., Nishimura H., Fushimi T., Ohshima Y., Tsukamoto Y., Yoshikai Y. Immunostimulating properties of intragastrically administered acetobacter-derived soluble branched (1,4)-β-D-glucans decrease murine susceptibility to Listeria monocytogenes. Infect. Immun. 2004;72:7005–7011. doi: 10.1128/IAI.72.12.7005-7011.2004. PubMed DOI PMC

Torello C.O., De Souza Queiroz J., Oliveira S.C., Queiroz M.L.S. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes. Int. Immunopharmacol. 2010;10:1573–1579. doi: 10.1016/j.intimp.2010.09.009. PubMed DOI

Alonso V.P.P., Harada A.M.M., Kabuki D.Y. Competitive and/or cooperative interactions of Listeria monocytogenes with Bacillus cereus in dual-species biofilm formation. Front. Microbiol. 2020;11:177. doi: 10.3389/fmicb.2020.00177. PubMed DOI PMC

Amézquita A., Brashears M.M. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J. Food Prot. 2002;65:316–325. doi: 10.4315/0362-028X-65.2.316. PubMed DOI

Corr S.C., Gahan C.G.M., Hill C. Impact of selected Lactobacillus and Bifidobacterium species on Listeria monocytogenes infection and the mucosal immune response. FEMS Immunol. Med. Microbiol. 2007;50:380–388. doi: 10.1111/j.1574-695X.2007.00264.x. PubMed DOI

da Silva Sabo S., Converti A., Todorov S.D., Domínguez J.M., de Souza Oliveira R.P. Effect of inulin on growth and bacteriocin production by Lactobacillus plantarum in stationary and shaken cultures. Int. J. Food Sci. Technol. 2015;50:864–870. doi: 10.1111/ijfs.12711. DOI

García M.J., Ruíz F., Asurmendi P., Pascual L., Barberis L. Searching potential candidates for development of protective cultures: Evaluation of two Lactobacillus strains to reduce Listeria monocytogenes in artificially contaminated milk. J. Food Saf. 2020;40:e12723. doi: 10.1111/jfs.12723. DOI

Hascoët A.S., Ripolles-avila C., Cervantes-huamán B.R.H., Rodríguez-Jerez J.J. In vitro preformed biofilms of Bacillus safensis inhibit the adhesion and subsequent development of Listeria monocytogenes on stainless-steel surfaces. Biomolecules. 2021;11:475. doi: 10.3390/biom11030475. PubMed DOI PMC

Shao X., Fang K., Medina D., Wan J., Lee J.L., Hong S.H. The probiotic, Leuconostoc mesenteroides, inhibits Listeria monocytogenes biofilm formation. J. Food Saf. 2020;40:e12750. doi: 10.1111/jfs.12750. DOI

Tran T.D., Cid C.D., Hnasko R., Gorski L., McGarvey J.A. Bacillus amyloliquefaciens ALB65 inhibits the growth of Listeria monocytogenes on Cantaloupe melons. Appl. Environ. Microbiol. 2020;87:1–10. doi: 10.1128/AEM.01926-20. PubMed DOI PMC

Aké F.M.D., Joyet P., Deutscher J., Milohanic E. Mutational analysis of glucose transport regulation and glucose-mediated virulence gene repression in Listeria monocytogenes. Mol. Microbiol. 2011;81:274–293. doi: 10.1111/j.1365-2958.2011.07692.x. PubMed DOI

Crespo Tapia N., Dorey A.L., Gahan C.G.M., den Besten H.M.W., O’Byrne C.P., Abee T. Different carbon sources result in differential activation of sigma B and stress resistance in Listeria monocytogenes. Int. J. Food Microbiol. 2020;320:108504. doi: 10.1016/j.ijfoodmicro.2019.108504. PubMed DOI

Jaradat Z.W., Bhunia A.K. Glucose and nutrient concentrations affect the expression of a 104-kilodalton Listeria adhesion protein in Listeria monocytogenes. Appl. Environ. Microbiol. 2002;68:4876–4883. doi: 10.1128/AEM.68.10.4876-4883.2002. PubMed DOI PMC

Park S.F., Kroll R.G. Expression of listeriolysin and phosphatidylinositol-specific phospholipase C is repressed by the plant-derived molecule cellobiose in Listeria monocytogenes. Mol. Microbiol. 1993;8:653–661. doi: 10.1111/j.1365-2958.1993.tb01609.x. PubMed DOI

Gibson G.R., Roberfroid M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995;125:1401–1412. doi: 10.1093/jn/125.6.1401. PubMed DOI

Hutkins R.W., Krumbeck J.A., Bindels L.B., Cani P.D., Fahey G., Goh Y.J., Hamaker B., Martens E.C., Mills D.A., Rastal R.A., et al. Prebiotics: Why definitions matter. Curr. Opin. Biotechnol. 2016;37:1–7. doi: 10.1016/j.copbio.2015.09.001. PubMed DOI PMC

Bindels L.B., Delzenne N.M., Cani P.D., Walter J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2015;12:303–310. doi: 10.1038/nrgastro.2015.47. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...