Structural analysis of glucans
Status PubMed-not-MEDLINE Jazyk angličtina Země Čína Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
25332993
PubMed Central
PMC4202478
DOI
10.3978/j.issn.2305-5839.2014.02.07
PII: atm-02-02-17
Knihovny.cz E-zdroje
- Klíčová slova
- Glucans, NMR spectroscopy, chemolytic methods, molecular weight, purity, structure, vibration spectroscopy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Glucans are most widespread polysaccharides in the nature. There is a large diversity in their molecular weight and configuration depending on the original source. According to the anomeric structure of glucose units it is possible to distinguish linear and branched α-, β- as well as mixed α,β-glucans with various glycoside bond positions and molecular masses. Isolation of glucans from raw sources needs removal of ballast compounds including proteins, lipids, polyphenols and other polysaccharides. Purity control of glucan fractions is necessary to evaluate the isolation and purification steps; more rigorous structural analyses of purified polysaccharides are required to clarify their structure. A set of spectroscopic, chemical and separation methods are used for this purpose. Among them, NMR spectroscopy is known as a powerful tool in structural analysis of glucans both in solution and in solid state. Along with chemolytic methods [methylation analysis (MA), periodate oxidation, partial chemical or enzymatic hydrolysis, etc.], correlation NMR experiments are able to determine the exact structure of tested polysaccharides. Vibration spectroscopic methods (FTIR, Raman) are sensitive to anomeric structure of glucans and can be used for purity control as well. Molecular weight distribution, homogeneity and branching of glucans can be estimated by size-exclusion chromatography (SEC), laser light scattering (LLS) and viscometry.
Zobrazit více v PubMed
Synytsya A, Novák M.Structural diversity of fungal glucans. Carbohydr Polym 2013;92:792-809. PubMed
Carbonero ER, Montai AV, Woranovicz-Barreira S, et al. Polysaccharides of lichenized fungi of three Cladina spp.: significance as chemotypes. Phytochemistry 2002;61:681-6. PubMed
Thitipraphunkul K, Uttapap D, Piyachomkwan K, et al. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylose and amylopectin. Carbohydr Polym 2003;54:489-98
Luo X, Xu X, Yu M, et al. Characterisation and immunostimulatory activity of an α-(1→6)-d-glucan from the cultured Armillariella tabescens mycelia. Food Chem 2008;111:357-63 PubMed
Han XQ, Wu XM, Chai XY, et al. Isolation, characterization and immunological activity of a polysaccharide from the fruit bodies of an edible mushroom, Sarcodon aspratus (Berk.) S. Ito. Food Res Int 2011;44:489-93 PubMed
Painter TJ. Details of the fine structure of nigeran revealed by the kinetics of its oxidation by periodate. Carbohydr Res 1990;200:403-8
Bock K, Gagnaire D, Vignon M, et al. High resolution nuclear magnetic resonance studies of nigeran. Carbohydr Polym 1983;3:13-22
Tsumuraya Y, Misaki A, Takaya S, et al. A new fungal α-d-glucan, elsinan, elaborated by Elsinoe leucospila. Carbohydr Res 1978;66:53-65
Olafsdottir ES, Ingolfsdortir K, Barsett H, et al. Immunologically active (1-->3)-(1-->4)-alpha-D-glucan from Cetraria islandica. Phytomedicine 1999;6:33-9. PubMed
Singh RS, Saini GK, Kennedy JF. Pullulan: microbial sources, production and applications. Carbohydr Polym 2008;73:515-31 PubMed
Catley BJ, Whelan WJ. Observations on the structure of pullulan. Arch Biochem Biophys 1971;143:138-42. PubMed
McIntyre DD, Vogel HJ. Structural studies of pullulan by nuclear magnetic resonance spectroscopy. Starch 1993;45:406-10
Reis RA, Tischer CA, Gorin PA, et al. A new pullulan and a branched (1→3)-, (1→6)-linked beta-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiology Letters 2002;210:1-5. PubMed
Sillerud LO, Shulman RG. Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Biochemistry 1983;22:1087-94. PubMed
Naessens M, Cerdobbel A, Soetaert W, et al. Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 2005;80:845-60
Chen XY, Kim JY. Callose synthesis in higher plants. Plant Signal Behav 2009;4:489-92. PubMed PMC
Kiss JZ, Vasconcelos AC, Triemer RE. Structure of the euglenoid storage carbohydrate, paramylon. American J Botany 1987;74:877-82
Marchessault RH, Deslandes Y. Fine structure of (1→3)-β-D-glucans: curdlan and paramylon. Carbohydr Res 1979;75:231-42
McIntosh M, Stone BA, Stanisich VA. Curdlan and other bacterial (1-3)-β-D-glucans. Appl Microbiol Biotechnol 2005;68:163-73. PubMed
Hoffmann GC, Simson BW, Timell TE. Structure and molecular size of pachyman. Carbohydr Res 1971;20:185-8. PubMed
Read SM, Currie G, Bacic A. Analysis of the structural heterogeneity of laminarin by electrospray-ionisation-mass spectrometry. Carbohydr Res 1996;281:187-201. PubMed
Kroon-Batenburg LM, Kroon J. The crystal and molecular structures of cellulose I and II. Glycoconj J 1997;14:677-90. PubMed
Chawla PR, Bajaj IB, Survase SA, et al. Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 2009;47:107-24
Pereyra MT, Prieto A, Bernabé M, et al. Studies of new polysaccharide from Lasallia pustulata (L.) Hoffm. Lichenologist 2003;35:177-85
Sassaki GL, Ferreira JC, Glienke-Blanco C, et al. Pustulan and branched β-galactofuranan from the phytopathogenic fungus Guignardia citricarpa, excreted from media containing glucose and sucrose. Carbohydr Polym 2002;48:385-9
Carbonero ER, Montai AV, Mellinger CG, et al. Glucans of lichenized fungi: Significance for taxonomy of the genera Parmotrema and Rimelia. Phytochemistry 2005;66:929-34. PubMed
Liu Y, White PJ. Molecular weight and structure of water soluble (1→3),(1→4)-β-glucans affect pasting properties of oat flours. J Food Sci 2011;76:C68-74. PubMed
Mandal S, Maity KK., Bhunia SK, et al. Chemical analysis of new water-soluble (1→6),(1→4)-α,β-glucan and water insoluble (1→3),(1→4)-β-glucan (Calocyban) from alkaline extract of an edible mushroom, Calocybe indica (Dudh Chattu). Carbohydr Res 2010;345:2657-63. PubMed
Zhang Y, Li S, Wang X, et al. Advances in lentinan: Isolation, structure, chain conformation and bioactivities. Food Hydrocol 2011;25:196-206
Ohno N, Kurachi Y, Yadomae T.Physicochemical properties and antitumor activities of carboxymethylated derivatives of glucan from Sclerotinia sclerotiorum. Chem Pharm Bull (Tokyo) 1988;36:1016-25. PubMed
Tada R, Adachi Y, Ishibashi K, et al. An unambiguous structural elucidation of a 1,3-β-D-glucan obtained from liquid-cultured Grifola frondosa by solution NMR experiments. Carbohydr Res 2009;344:400-4. PubMed
Tabata K, Ito W, Kojima T, et al. Ultrasonic degradation of schizophyllan, an antitumor polysaccharide produced by Schizophyllum commune Fries. Carbohydr Res 1981;89:121-35. PubMed
Coviello T, Palleschi A, Grassi M, et al. Scleroglucan: a versatile polysaccharide for modified drug delivery. Molecules 2005;10:6-33. PubMed PMC
Karácsonyi Š, Kuniak L.Polysaccharides of Pleurotus ostreatus: isolation and structure of pleuran, an alkali-insoluble β-d-glucan. Carbohydr Polym 1994;24:107-11
Barbosa AM, Steluti RM, Dekker RFH, et al. Structural characterization of botryosphaeran: a (1-3;1-6)-β-D-glucan produced by the ascomyceteous fungus, Botryosphaeria sp. Carbohydr Res 2003;338:1691-8. PubMed
Chandra K, Ghosh K, Roy SK, et al. A water soluble glucan isolated from an edible mushroom Termitomyces microcarpus. Carbohydr Res 2007;342:2484-9. PubMed
Chakraborty I, Mondal S, Pramanik M, et al. Structural investigation of a water-soluble glucan from an edible mushroom, Astraeus hygrometricus. Carbohydr Res 2004;339:2249-54. PubMed
Olennikov DN, Agafonova SV, Rokhin AV, et al. Branched glucan from the fruiting bodies of Piptoporus betulinus (Bull.:Fr) Karst. Prikl Biokhim Mikrobiol 2012;48:74-80. PubMed
Jarvis MC. Plant cell walls: supramolecular assemblies. Food Hydrocol 2011;25:257-62
Shi Z, Zhang Y, Phillips GO, et al. Utilization of bacterial cellulose in food. Food Hydrocol 2014;35:539-45
Lazaridou A, Biliaderis CG. Molecular aspects of cereal b-glucan functionality: physical properties, technological applications and physiological effects. J Cereal Sci 2007;46:101-18
Izydorczyk MS, Biliaderis CG. Structural and functional aspects of cereal arabinoxylans and β-glucans. In: Doxastakis G, Kiosseoglou V. eds. Novel Macromolecules in Food Systems. Amsterdam: Elsevier Science BV, 2000:361-84.
Wasser SP. Medicinal mushrooms as a source of antitumour and immunomodulating polysaccharides. Appl Microbiol Biotechnol 2002;60:258-74. PubMed
Stone BA, Clarke AE. Chemistry and biology of (1→3)-β-glucans. Melbourne, Australia: La Trobe University Press, 1992.
An Synytsya, Míčková K, Synytsya Al, et al. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: structure and potential prebiotic activity. Carbohydr Polym 2009;76:548-56
Jin Y, Zhang L, Tao Y, et al. Solution properties of water-insoluble (1-3)-α-D-glucan isolated from Poria cocos mycelia. Carbohydr Polym 2004;57:205-9
Zhang P, Zhang L, Cheng S.Effects of urea and sodium hydroxide on the molecular weight and conformation of α-(1-3)-D-glucan from Lentinus edodes in aqueous solution. Carbohydr Res 2000;327:431-8. PubMed
Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances. Anal Chem 1956;28:350-6
Dische S.Colour production and stability in the Folin and Wu method of blood glucose estimation. J Clin Pathol 1955;8:253-61. PubMed PMC
Smogyi M.Notes on sugar determination. J Biol Chem 1952;195:19-23. PubMed
Nelson N.A photometric adaptation of the Somogyi method for the determination of glucose. J Biol Chem 1944;153:375-80
Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 1959;31:426-8
Lever M.A new reaction for colorimetric determination of carbohydrates. Anal Biochem 1972;47:273-9. PubMed
Doner LW, Irwin PL. Assay of reducing end-groups in oligosaccharide homologues with 2,2'-bicinchoninate. Anal Biochem 1992;202:50-3. PubMed
Martinez C.Determination of amylose in flour by a colorimetric assay: collaborative study. Starch 1996;48:86-9
Chen GC, Johnson BR. Improved colorimetric determination of cell wall chitin in wood decay fungi. Appl Environ Microbiol 1983;46:13-6. PubMed PMC
Ekblad A, Näsholm T.Determination of chitin in fungi and mycorrhizal roots by an improved HPLC analysis of glucosamine. Plant Soil 1996;178:29-35
Holan Z, Votruba J, Vlasáková V.New method of chitin determination based on deacetylation and gas-liquid chromatographic assay of liberated acetic acid. J Chromat 1980;190:67-76
Bitter T, Muir HM. A modified uronic acid carbazole reaction. Anal Biochem 1962;4:330-4. PubMed
Blumenkrantz N, Asboe-Hansen G.New method for quantitative determination of uronic acids. Anal Biochem 1973;54:484-9. PubMed
Downs F, Pigman W.Determination of O-acetyl groups by the Hestrin method. Methods Carbohydr Chem 1976;7:241-3
Jernejc K, Cimerma A, Perdih A.Comparison of different methods for protein determination in Aspergillus niger mycelium. Appl Microbiol Biotechnol 1986;23:445-8
Lynch JM, Barbano DM. Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products. J AOAC Int 1999;82:1389-98. PubMed
Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75. PubMed
Bradford MM. A rapid and sensitive for the quantitation of microgram quantitites of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. PubMed
Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 1965;16:144-58
You SG, Lim ST. Molecular characterization of corn starch using an aqueous HPSEC MALLS-RI system under various dissolution and analytical conditions. Cereal Chem 2000;77:303-8
Zhong F, Yokoyama W, Wang Q, et al. Rice starch, amylopectin, and amylose: molecular weight and solubility in dimethyl sulfoxide-based solvents. J Agric Food Chem 2006;54:2320-6. PubMed
Cave RA, Seabrook SA, Gidley MJ, et al. Characterization of starch by size-exclusion chromatography: the limitations imposed by shear scission. Biomacromolecules 2009;10:2245-53. PubMed
Blennow A, Mette Bay-Smidt A, Bauer R.Amylopectin aggregation as a function of starch phosphate content studied by size exclusion chromatography and on-line refractive index and light scattering. Int J Biol Macromol 2001;28:409-20. PubMed
Striegel AM, Timpa JD. Gel permeation chromatography of polysaccharides using universal calibration. Int J Polym Anal Charact 1996;2:213-20
Zhang L, Ding Q, Zhang P, et al. Molecular weight and aggregation behaviour in solution of β-D-glucan from Poria cocos sclerotium. Carbohydr Res 1997;303:193-7
Zhang L, Ding Q, Meng D, et al. Investigation of molecular masses and aggregation of β-D-glucan from Poria cocos sclerotium by size-exclusion chromatography. J Chromatogr A 1999;839:49-55
Lindberg B, Lönngren J.Methylation analysis of complex carbohydrates: general procedure and application for sequence analysis. Methods Enzymol 1978;50:3-33. PubMed
Rolf D, Gray GR. Reductive cleavage of glycosides. J Am Chem Soc 1982;104:3539-41
Methacanona P, Madla S, Kirtikara K, et al. Structural elucidation of bioactive fungi-derived polymers. Carbohydr Polym 2005;60:199-203
Rolf D, Bennek JR, Gray GR. Analysis of linkage positions in D-glucopyranosyl residues by the reductive-cleavage method. Carbohydr Res 1985;137:183-96 PubMed
Sugawara T, Takahashi S, Osumic M, et al. Refinement of the structures of cell-wall glucans of Schizosaccharomyces pombe by chemical modification and NMR spectroscopy. Carbohydr Res 2004;339:2255-65. PubMed
Hung WT, Wang SH, Chen CH, et al. Structure determination of β-glucans from Ganoderma lucidum with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Molecules 2008;13:1538-50. PubMed PMC
Wood PJ, Weisz J, Blackwell BA. Structural studies of (1→3)(1→4)-β-D-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance anion-exchange chromatography of oligosaccharides released by lichenase. Cereal Chem 1991;71:301-7
Prado BM, Kim S, Özen BF, et al. Differentiation of carbohydrate gums and mixtures using Fourier transform infrared spectroscopy and chemometrics. J Agric Food Chem 2005;53:2823-9. PubMed
Kačuráková M, Capek P, Sasinková V, et al. FT-IR study of plant cell wall model compounds: pectic polysaccharides and hemicelluloses. Carbohydr Polym 2000;43:195-203
Zeng J, Li G, Gao H, et al. Comparison of A and B starch granules from three wheat varieties. Molecules 2011;16:10570-91. PubMed PMC
Cael JJ, Koenig JL, Blackwell J. Infrared and Raman spectroscopy of carbohydrates. Part IV: normal coordinate analysis of V-amylose. Biopolymers 1975;14:1885-903
Van Soest JJG, Tournois H, de Wit D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 1995;279:201-14
Goni I, García-Diz L, Mañas E, et al. Analysis of resistant starch: a method for foods and food products. Food Chem 1996;56:445-9
Goodfellow BJ, Wilson RH. A Fourier transform IR study of the gelation of amylose and amylopectin. Biopolym 2004;30:1183-9
Ciolagu D, Ciolagu F, Popa VI. Amorphous cellulose – structure and characterisation. Cellulose Chem Technol 2011;45:13-21
Michell AJ. Second-derivative FTIR spectra of native celluloses from Valonia and tunicin. Carbohydr Res 1993;241:47-54
Hinterstoisser B, Salmén L.Application of dynamic 2D FTIR to cellulose. Vibrational Spectrosc 2000;22:111-8
Šandula J, Kogan G, Kačuráková M, et al. Microbial (1→3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydr Polym 1999;38:247-53
Unursaikhan S, Xu X, Zeng F, et al. Antitumor activity of O-sulfonated derivatives of (1-3)-α-glucan from different Lentinus edodes. Biosci Biotechnol Biochem 2006;70:38-46. PubMed
Wang T, Deng L, Li S, et al. Structural characterization of a water-insoluble (1-3)-α-D-glucan isolated from the Penicillium chrysogenum. Carbohydr Polym 2007;67:133-7
Zhang P, Zhang L, Chen S.Chemical structure and molecular weights of α-(1-3)-D-glucan. Bioscience Biotechnology Biochemistry 1999;63:1197-202 PubMed
Chen J, Zhang L, Nakamura Y, et al. Viscosity behavior and chain conformation of a (1-3)-α-glucan from Ganoderma lucidum. Polym Bull 1998b;41:471-8
Gałat A.Study of the Raman scattering and infrared absorption spectra of branched polysaccharides. Acta Biochim Pol 1980;27:135-42. PubMed
Schenzel K, Fischer S.Application of Raman spectroscopy for the characterization of cellulose. Lenzinger Berichte 2004;83:64-70
Zhbankov RG, Firsov SP, Buslov DK, et al. Structural physico-chemistry of cellulose macromolecules. Vibrational spectra and structure of cellulose. J Mol Struct 2002;614:117-25
Santha N, Sudha KG, Vijayakumari KP, et al. Raman and infrared spectra of starch samples of sweet potato and cassava. Proc Indian Acad Sci (Chem Sci)1990;102:705-12
Zhbankov RG, Firsov SP, Korolik EV, et al. Vibrational spectra and the structure of medical biopolymers. J Mol Struct 2000;555:85-96
Almeida MR, Alves RS, Nascimbem LB, et al. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis. Anal Bioanal Chem 2010;397:2693-701. PubMed
Bulkin BJ, Kwak Y, Dea ICM. Retrogradation kinetics of waxy-corn and potato starches: a rapid, Raman-spectroscopic study. Carbohydr Res 1987;160:95-112
Fechner PM, Wartewig S, Kleinebudde P, et al. Studies of the retrogradation process for various starch gels using Raman spectroscopy. Carbohydr Res 2005;340:2563-8. PubMed
Dupuy N, Laureyns J.Recognition of starches by Raman spectroscopy. Carbohydr Polym 2002;49:83-90
Szymańska-Chargot M, Cybulska J, Zdunek A.Sensing the structural differences in cellulose from apple and bacterial cell wall materials by raman and FT-IR spectroscopy. Sensors 2011;11:5543-60. PubMed PMC
Agarwal UP, Reiner RS, Ralph SA. Cellulose I crystallinity determination using FT-Raman spectroscopy: univariate and multivariate methods. Cellulose 2010;17:721-33
Schenzel K, Fischer S, Brendler E.New method for determining the degree of cellulose I crystallinity by means of FT Raman spectroscopy. Cellulose 2005;12:223-31
Mikkelsen MS, Jespersen BM, Larsen FH, et al. Molecular structure of large-scale extracted β-glucan from barley and oat: identification of a significantly changed block structure in a high β-glucan barley mutant. Food Chem 2013;136:130-8. PubMed
Mikkelsen MS, Jespersen BM, Møller BL, et al. Comparative spectroscopic and rheological studies on crude and purified soluble barley and oat β-glucan preparations. Food Res Int 2010;43:2417-24
Bell AF, Hecht L, Barren LD. Polysaccharide vibrational Raman optical activity: laminarin and pullulan. J Raman Spectrosc 1995;26:1071-4
Mulloy B.High-field NMR as a technique for the determination of polysaccharide structures. Mol Biotechnol 1996;6:241-65. PubMed
Falk H, Stanek M.Two-dimensional 1H and 13C NMR spectroscopy and the structural aspects of amylose and amylopectin. Monatshefte für Chemie 1997;128:777-84
Isogai A.NMR analysis of cellulose dissolved in aqueous NaOH solutions. Cellulose 1997;4:99-107
Moulthrop JS, Swatloski RP, Moyna G, et al. High-resolution 13C NMR studies of cellulose and cellulose oligomers in ionic liquid solutions. Chem Commun (Camb) 2005;(12):1557-9. PubMed
Kim YT, Kim EH, Cheong C, et al. Structural characterization of β-D-(1→3, 1→6)-linked glucans using NMR spectroscopy. Carbohydr Res 2000;328:331-41. PubMed
Atalla RH, Van der Hart DL. The role of solid state 13C NMR spectroscopy in studies of the nature of native celluloses. Solid State Nucl Magn Reson 1999;15:1-19. PubMed
Isogai A, Usuda M, Kato T, et al. Solid-state CP/MAS carbon-13 NMR study of cellulose polymorphs. Macromolecules 1989;22:3168-72
Newman RH, Davies LM, Harris PJ. Solid-state 13C nuclear magnetic resonance characterization of cellulose in the cell walls of Arabidopsis thaliana leaves. Plant Physiol 1996;111:475-85. PubMed PMC
Morgan KR, Roberts CJ, Tendler SJB, et al. A 13C CP/MAS NMR spectroscopy and AFM study of the structure of Glucagel™, a gelling β-glucan from barley. Carbohydr Res 1999;315:169-79
Pelosi L, Bulone V, Heux L.Polymorphism of curdlan and (1-3)-β-D-glucans synthesized in vitro: a 13C CP-MAS and X-ray diffraction analysis. Carbohydr Polym 2006;66:199-207
Fyfe CA, Stephenson PJ, Taylor MG, et al. Hydration effects in the carbon-13 CP/MAS NMR spectra of solid (1-3)-β-D-glucans. Macromol 1984;17:501-2
Saitô H, Ohki T, Sasaki T.A 13C-nuclear magnetic resonance study of polysaccharide gels. Molecular architecture in the gels consisting of fungal, branched (1-3)-β-D-glucans (lentinan and schizophyllan) as manifested by conformational changes induced by sodium hydroxide. Carbohydr Res 1979;74:227-40
Saitô H, Yoshioka Y, Yokoi M, et al. Distinct gelation mechanism between linear and branched (1-3)-β-D-glucans as revealed by high-resolution solid-state 13C NMR. Biopolymers 1990;29:1689-98. PubMed
In Vitro Utilization of Prebiotics by Listeria monocytogenes
Hydrocolloids from the Mushroom Auricularia heimuer: Composition and Properties